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Introduction

Hungary is frequently impacted by droughts 
that severely affect agricultural production 
and cause substantial economic damage (145 
million USD annually). Therefore, it is essen-
tial to investigate the possibility of artificial 
groundwater recharge, as well as water reten-
tion behind river dams, in order to moderate 
the decline of available water resources need-
ed for irrigation in the region. Moreover, the 
possible effects of climate change must also 
be accounted for in order to implement an ef-
fective spatial planning for national climate 
adaptation. According to the guidelines of 
the International Commission on Irrigation 
and Drainage (ICID, 2016), when precipitation 
cannot satisfy water needs because there is a 

large deficit compared to normal or expected 
precipitation that extends over a long time 
period, then there is a drought.

Meteorological droughts are characterized 
by substantially reduced rainfall compared 
to the multi-year average, coupled with air 
temperatures exceeding the average and low 
relative humidity. The percentage of blocking-
related warm temperature extremes exceeds 
80 per cent in large continental regions north 
of 45° N (Shaw, A.T. et al. 2016). Most of the 
large drought events are caused by blocking 
anticyclones. The term “agricultural drought” 
refers to a shortage of water in the root zone of 
crops, such that the yield of plants is reduced 
considerably. Agricultural droughts can be 
observed and monitored effectively using sat-
ellite imagery and field measurements.
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The aims of this study were to monitor 
the effects of droughts through biophysical 
changes on forest vegetation, determine the 
practical applicability of spectral indices cal-
culated from MODIS sensor data collected 
by NASA’s Terra satellite, and calculate the 
trend in drought intensity. The results can 
be used to create a near real-time drought 
monitoring system to assess agricultural and 
forest drought damage.

This study is a culmination of our earlier 
methodological developments in drought as-
sessment through changes in vegetation can-
opies and biomass (Kovács, F. 2007; Gulácsi, 
A. and Kovács, F. 2015).

Review of applied spectral indices

Multispectral vegetation indices – thanks 
for the AVHRR sensor – have been in use for 
decades in real-time monitoring of drought 
(Kogan, F.N. 1995). In general, greenness-
related vegetation indices such as the Nor-
malized Difference Vegetation Index (NDVI) 
and the Enhanced Vegetation Index (EVI) 
are used (Rouse, J.W. et al. 1973; Solano, R.  
et al. 2010). U.S. Drought Monitor (DM) uses 
the Vegetation Health Index (VHI) which is 
calculated using linearly-scaled NDVI and 
brightness temperature data from AVHRR.

However, there is a need to evaluate the 
sensitivity of water-related vegetation indi-
ces that use the short-wave infrared (SWIR) 
bands to assess the shortage of water and 
associated impacts (Bajgain, R. et al. 2015). 
Absorption by the chloroplasts of healthy 
vegetation is high in the visible wavelength 
range because of intensive photosynthesis. If 
the chlorophyll content decreases, the absorp-
tion will also decrease. In contrast, dry and 
unhealthy vegetation canopies with lower 
chlorophyll contents have lower NDVI val-
ues, because the reflectance in the visible red 
channel is increased at the same time that the 
reflectance in the NIR channel, which is locat-
ed at the high reflectance plateau, decreases. 
EVI is an NDVI variant that includes correc-
tion factors for minimizing atmospheric ef-

fects and removing soil-brightness induced 
variations. Generally, EVI is more exact than 
NDVI, but surfaces covered with quasi-natu-
ral vegetation in regional scale can be evalu-
ated better with NDVI (Li, Z. et al. 2010). 

NDVI provides information on vegeta-
tion greenness or chlorophyll content, which 
are not directly related to vegetation water 
content (VWC) because, as summarized by 
Ceccato, P. et al. (2002), each species has its 
own characteristics in terms of chlorophyll 
content and water content. Thus, a decrease 
in chlorophyll content does not imply a de-
crease in water content, and a decrease in 
water content does not imply a decrease in 
chlorophyll content. However, numerous 
water indices have been developed that are 
suitable for quantifying VWC. Absorption by 
vegetation liquid water in the NIR channel 
is negligible, while in the SWIR channel it is 
very high. If VWC decreases, then reflectance 
in the SWIR channel increases significantly. 
Thus, the Normalized Difference Water Index 
(NDWI) value – that combines information 
from the NIR and the SWIR bands – decreas-
es, reflecting dry vegetation that is experienc-
ing drought stress (Gao, B-C. 1996). NDWI is 
one of the indicators implemented within the 
European Drought Observatory (EDO).

Ceccato, P. et al. (2001) demonstrated that 
remote sensing using the SWIR wavelength 
range is critical, but not sufficient, for retriev-
ing VWC because two other leaf parameters 
(internal structure and dry matter) are also 
responsible for leaf reflectance variations in 
the SWIR channel. The NIR channel is needed 
to account for variations in leaf internal struc-
ture and dry matter. Thus, a combination of 
the SWIR and NIR channels is required to 
retrieve VWC. Ceccato, P. et al. (2002) de-
veloped and tested a NIR-SWIR-based index 
called Global Vegetation Moisture Index 
(GVMI). It was sensitive to the mass or vol-
ume of water, rather than to the fractional 
percentage of water in vegetation canopies. 

Jackson, T.J. et al. (2004) used Landsat da-
ta-derived NDVI and NDWI values to map 
VWC in corn and soybean fields. Compared 
to NDVI, NDWI was found to be superior, 



31Gulácsi, A. and Kovács, F. Hungarian Geographical Bulletin 67 (2018) (1) 29–42.

based upon a quantitative analysis of the bias 
and standard error. Chen, D. et al. (2005) found 
that both NDWI1640, which uses the SWIR band 
centred at 1,640 nm, and NDWI2130, which uses 
the SWIR band centred at 2,130 nm, derived 
from MODIS data covering corn and soybean 
fields had potential for VWC estimation.

Gu, Y. et al. (2007, 2008) concluded that NDWI 
reacts more sensitively to drought conditions 
than NDVI. Gu, Y. et al. (2007) used MODIS 
surface reflectance data and introduced the 
Normalized Difference Drought Index (NDDI) 
by combining NDVI with NDWI.

Zhang, N. et al. (2013) proposed a MODIS-
based visible and shortwave infrared drought 
index (VSDI) for monitoring both soil and 
vegetation moisture using the NIR channel, 
the visible blue channel, and the SWIR chan-
nel (centred at 2,130 nm), and proved the ap-
plicability of VSDI as a drought indicator.

The Normalized Multi-Band Drought 
Index (NMDI) combines the NIR and the 
SWIR channels centred at 1,640 nm and 2,130 
nm from MODIS data (Wang, L. and Qu, J.J. 
2007). They found that NMDI is well-suited 
to estimate the water content of soil and 
vegetation. Moreover, because it combines 
information from multiple NIR and SWIR 
channels, NMDI has an enhanced sensitivity 
to drought severity.

Data and methods

MODIS data processing and software used

MOD09A1 (Collection 5) 500-m resolution 
8-day surface reflectance composite images 
(Surface Reflectance 8-Day L3 Global 500 m 
SIN Grid) provided the basis for this study. The 
MODIS data covering the 89th through the 273rd 
days of each year from 2000 to 2014 were down-
loaded from the Land Processes Distributed 
Active Archive System and accessed from the 
USGS Global Visualization Viewer (GLOVIS). 
A total number of 358 images were obtained.

The main advantage of using MODIS data 
is the high temporal resolution (daily im-
ages are available) and the composite image 

technology which enables to create an 8-day 
or 16-day composite from the highest qual-
ity pixels, that is, free of atmospheric effects 
like cloud cover and shadow. The disadvan-
tages of MODIS are the moderate geometric 
resolution (250 or 500 meters) and the data 
is from 2000, so that we do not have more 
decades of available satellite imagery like 
Landsat does. For the specifications about 
the MODIS surface reflectance data (see 
Vermote, E.F. et al. 2011).

The data were processed as follows. (1) 
The MODIS HDF data were converted into 
GeoTIFF format and re-projected into WGS 
84 and UTM zone 34N using the nearest 
neighbour resampling method, in order to 
keep the QA bit field values unchanged. (2) 
Cells with inaccurate or inconsistent val-
ues, which were mainly caused by cloud 
cover, were masked out using the Quality 
Control and State Flag bands; only the best 
quality cells were kept. (3) A subset of the 
data corresponding to the study area was se-
lected. Data were re-projected to Hungarian 
National Projection (EOV). Finally, (4), the 
spectral indices were calculated.

The following programs were used for data 
processing, analysis, and mapping: SAGA 
GIS 2.1.2, QGIS 2.8.2-Wien (with Python 2.7.5 
and GDAL 1.11.2), R 3.2.1 (R Core Team, 
2013), LDOPE Tools 1.7 and the MODIS Re-
projection Tool 4.1 (Roy, D.P. et al. 2002), and 
the authors’ own programs that were writ-
ten in the C language using the Code: Blocks 
10.05 IDE. Processing was automated using 
Python and command line scripts.

Calculation of spectral indices

NDVI and NDWI were calculated according 
to equations (1) and (2):

                   NDVI = 
ρNIR – ρred    ,                       (1)

                                
ρNIR + ρred

and

                   NDWI = 
ρNIR + ρSWIR    ,                       (2)

                               
ρNIR – ρSWIR
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where NDVI = Normalized Difference Veg-
etation Index, NDWI = the Normalized Dif-
ference Water Index, ρred = the visible red 
channel (620–670 nm), ρNIR = the near infrared 
channel (841–876 nm), and ρSWIR = one of the 
middle infrared channels (2,105–2,155 nm) 
measured by the MODIS sensor. Normalized 
Difference Drought Index (NDDI) is calcu-
lated from NDVI and NDWI according to 
equation (3) (Gu, Y. et al. 2007):

                NDDI = NDVI – NDWI       ,                       (3)
                          NDVI + NDWI

In spite of the quality assessment, extreme 
negative and positive NDDI values may re-
sult from this calculation, but it only affects 
a small number of cells in cases with large 
open water surfaces and built-up areas. 
These have to be removed. Gu, Y. et al. (2007) 
removed spike points (e.g. abnormally high 
values) from NDWI time series by using a 
quality assurance (QA) mask before calcu-
lating NDDI. On the other hand, Renza, D. 
et al. (2010) rescaled NDVI and NDWI into 
the 8-bit interval (from 0 to 255) in order to 
force the NDDI values into the range of –1 
and +1. This rescaling is unnecessary step, 
so it was not used here. Simple difference 
indices were calculated as well, according 
to equation (4):

                   DDI = DVI – DWI ,                                      (4)

where DDI = Difference Drought Index, DVI 
= Difference Vegetation Index (Tucker, C.J. 
1980), DWI = Difference Water Index (Zhang, 
D. et al. 2013). DVI = ρNIR − ρred, and DWI = 
ρNIR − ρSWIR. These difference indices are rare-
ly used; because they lack a normalization 
step, they do not compensate for different 
irradiational conditions (Tucker, C.J. 1979).

To make different time periods directly 
comparable with each other on the same 
scale, standardization with the SD was ap-
plied to every cell separately. The resulting 
standardized spectral index is calculated ac-
cording to equation (5):

                            Zij =
 xij – xij    ,                       (5)

                                      SDij

where Zij = the standardized spectral index 
(Z-score value), i and j = the row and column 
number of the current cell, xij = the current 
value of any given spectral index, xij = the 
average of the spectral index values for the 
reference period from 2000 to 2014, and SDij 
= the standard deviation of the spectral index 
values for the reference period. 

It should be noted here that the anomalies 
are dependent on the time series available to 
calculate the mean values and the standard 
deviations. This period, which is currently 15 
years, should be long enough to characterize 
the area where the index is being calculated.

Reference data and statistical analysis

The Pálfai Drought Index (PAI) is commonly 
used in Hungary, and it is an annual index ag-
gregated at country level. Its base value (PAI0) 
is calculated from daily temperature and pre-
cipitation time series using equation (6):

                     PAI0 = 
T (Apr–Aug) ⋅ 100   ,                      (6)

                             P (Oct–Aug)

where PAI0 = the base value of Pálfai Drought 
Index, the T(Apr–Aug) = the average temperature 
for the period between April and August, and 
P(Oct–Aug) = the monthly weighted sum of pre-
cipitation for the period between October and 
August. The units of this quantity are °C/100 
mm. The corrected PAI value is obtained by 
multiplying PAI0 with empirical correction fac-
tors, according to equation (7) (Pálfai, I. 1989):

                      PAI = PAI0 ⋅ ct ⋅ cp ⋅ cgw   ,                      (7)

where ct = the correction factor for tem-
perature, cp = the correction factor for pre-
cipitation, and cgw = the correction factor for 
groundwater levels (not discussed in detail).

In addition to PAI, the annual average crop 
yields (kg/ha) of barley, corn, and wheat were 
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also used as reference data. The source of these 
data is the Hungarian Central Statistical Office 
(HCSO). The whole-country aggregated mean 
of spectral indices were compared to the whole-
country mean of PAI and crop yields data.

Unfortunately, the limited access to refer-
ence data confined our options in validating 
the results. Pearson’s r-values were calcu-
lated and the Mann-Kendall test was used 
to assess the significance of the fitted trends.

Delineating forest vegetation for drought 
monitoring

Caution needs to be taken when using any 
sort of spectral indices for remote sensing 
of drought, because land cover changes re-
sulting in removal of vegetation (such as the 
opening of surface mines, deforestation, for-
est fires, and harvest of arable land) may be 
confused with areas experiencing drought. 
Accurate drought monitoring can only be 
accomplished when we are able to accu-
rately delineate cells with vegetation cover 
and exclude all the cells that are affected by 
land cover change. We decided to monitor 
drought over forest vegetation, because the 
chlorophyll and VWC of trees are highly sen-
sitive to drought conditions; they are thus 
good indicators of drought. In addition to 
multi-year fluctuations, it may be possible to 
detect short-term effects of climate change on 
drought conditions via vegetation changes. 
However, a longer time period is needed to 
assert with certainty that these changes were 
indeed the result of alterations in climatic 
conditions. High-amplitude multi-year fluc-
tuations in drought intensity can suppress 
the increasing trend in aridity.

Forest covered areas were delineated us-
ing the European Union’s Corine Land Cover 
(CLC) datasets covering the years 2000, 2006, 
and 2012. The CLC is an inventory of land 
cover that includes 44 classes. It is presented 
as a cartographic product with a scale of 
1:100,000 (EEA). Sub-setting was carried out 
as follows. For the period from 2000 to 2005, 
the CLC 2000 land cover database was used; 

for the period from 2006 to 2011, the CLC 
2006 land cover database was used; and fi-
nally, for the period between 2012 and 2014, 
the CLC 2012 land cover database was used. 
The spatial resolution of the available satel-
lite imagery did not allow the precise evalu-
ation of the heterogeneous land cover char-
acterizing the study area. To overcome this 
problem, only so called representative pixels 
were considered (Kovács, F. 2007). A pixel 
was representative if two third of its area was 
dominated by the same land cover. The class 
of forests was subdivided into deciduous, co-
niferous, and mixed forest categories.

Study area

Hungary is located in East Central Europe in 
the middle of the Carpathian Basin. Accord-
ing to the Köppen-Geiger climate classifica-
tion system (Peel, M.C. et al. 2007), the coun-
try has a humid continental climate without a 
dry season and with warm summers. The an-
nual mean temperature is between 10–11 °C, 
and the annual total precipitation is between 
500–750 mm on average (Hungarian Meteoro-
logical Service). The study area is the Danube-
Tisza Interfluve landscape, which is located 
within the lowlands of the Great Hungarian 
Plain, between the Danube and Tisza rivers 
(Figure 1). It has elevations below 200 m in el-
evation and has a total area of 15,000 km2. It is 
an agricultural region with intensive forestry.

Fig. 1. The location of the study area inside Hungary
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The Danube-Tisza Interfluve has been ex-
periencing aridification during the past sev-
eral decades, which has caused a decline of 
250–300 cm in groundwater levels between 
the base period of 1956–1960 and the mid-
1990s (VITUKI, 2006). The water balance of 
the landscape is persistently negative. It is 
estimated that, from the mid-1970s to 2003, 
there was a water deficit of 5 km3 (Rakonczai, 
J. 2011). The central parts of the Danube-Tisza 
Interfluve are 40–80 m above river water lev-
els; the effect of the rivers thus is only detect-
able in narrow regions around the rivers. 
The recharge of the water supply depends 
only on the precipitation the region receives. 
Based on regional hydrological models us-
ing MODFLOW, the decline in annual pre-
cipitation is contributing 80 per cent of the 
groundwater decline in the area (Völgyesi, 
I. 2000). Climate models project increasing 
drought hazard in the Carpathian Basin. More 
frequent and severe droughts have already 
caused significant agricultural yield losses in 
recent decades (Mezősi, G. et al. 2016).

The suggestion that alterations in climatic 
conditions may also occur over shorter time 
intervals (Kovács, F. 2007) might have some 
validity here because this landscape has con-
siderable sensitivity to climate change. It is 
the reason why we chose this rapidly chang-
ing landscape as our study area.

Results

Monitoring drought intensity with NDDI and 
determining the trend in aridity

In 2000 the areas occupied by deciduous, 
mixed, and coniferous forest were 42,527 
ha, 45,892 ha, and 16,528 ha, respectively. 
In 2006 the areas of deciduous, mixed, and 
coniferous forest were 58,234 ha, 45,827 ha, 
and 15,819 ha, respectively. Finally, in 2012, 
the areas of deciduous, mixed, and coniferous 
forest were 55,808 ha, 37,241 ha, and 9,917 
ha, respectively. The area of deciduous for-
est increased from 2000 to 2012. The area of 
mixed forest was practically unchanged from 

2000 to 2006. It subsequently declined by 19 
per cent by 2012. An astonishing 37 per cent 
of the area covered by coniferous forests was 
deforested between 2006 and 2012. The base 
map of MODIS cells representing deciduous, 
mixed, and coniferous forests on the Danube-
Tisza Interfluve in 2012 is shown in Figure 2.

After masking out cells with inappropriate 
values, the number of valid cells was reduced 
slightly. In addition, 16 large positive outliers 
(with Z-score values > 1.75) in the period be-
tween 2006 and 2011 were removed because of 
deforestation. In each of the five-year periods 
(2000–2005, 2006–2011, 2012–2014), the follow-
ing numbers of cells were removed from the 
areas covered by each of the forest types: de-
ciduous forests: none, 2, and 1; mixed forests: 
4, 5, and 6; and coniferous forests: 1, 63, and 1, 
respectively (the removals had negligible effect 
on the results). The standardized NDDI images 
were reclassified as follows. Non-drought ar-
eas were indicated by Z-score values less than 
or equal to 0.0, whereas drought areas were 
indicated by Z-score values above 0.0.

Nonetheless, it should be noted that the 
drought phenomena may not have a clear-cut 
boundary. In addition, the low spatial resolu-
tion makes it impossible not to make abrupt 
boundaries. Positive deviations from the 
mean indicate higher likelihood of drought; 
negative deviations mean the opposite.

Based on NDDI, in the period between 2000 
and 2005, 85.4 per cent of the cells (38,894 ha) 
exceeded the average of the reference period. 
This quantity was 20.3 per cent (11,827 ha) 
in the period between 2006 and 2011, and it 
was 17.2 per cent (9,573 ha) in the period be-
tween 2012 and 2014 for deciduous forests. 
In the case of mixed forests, 72.0 per cent 
(32,970 ha), 17.2 per cent (7,856 ha) and 22.0 
per cent (8,178 ha) were above average, re-
spectively. Finally, in the case of coniferous 
forests, 36.3 per cent (5,989 ha), 26.9 per cent 
(3,885 ha), and 18.7 per cent (1,846 ha) were 
above average, respectively. The areal cover-
age of drought is higher in deciduous forests 
than in coniferous forests. However, in the 
period between 2012 and 2014 the percentage 
of drought-stricken area is a little bit higher 
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Fig. 2. Representative cells containing deciduous, mixed, and coniferous forests in the study area in 2012.  
Red lines indicate geographic landscape boundaries.
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in coniferous forests than in deciduous for-
ests. Drought-stricken areas of mixed forests 
slightly increased in the last period. These 
differences are not significant, and do not 
change the fact that coniferous forests (made 
up of Pinus) appear to be more drought-toler-
ant compared to deciduous forests (made up 
of Robinia, Populus) planted on the landscape.

The drought intensity was higher during 
the period between 2000 and 2005, since 
there were intense drought years (2000, 2001, 
2002, and 2003). In particular, 2003 was one 
of the most severe droughts on record, based 
on the spectral indices and PAI. Since then, 
a decrease in drought intensity has been ob-
served. In the box plot (Figure 3), the period 
between 2000 and 2005 stands out, and the 
following periods of 2006–2011 and 2012–
2014 reflects less intensive drought condi-
tions. There were drought years (2007, 2009 
and 2012) during these periods as well, but 
they were surpassed by the large droughts 
of the early 2000s in terms of their intensity.

Because of the lack of annual land cover as-
sessment, changes in forest cover may not be 
fully accounted for by the Corine land cover 
assessments, which are made every 5 or 6 
years. Therefore, even though outliers were 
removed, the median was used, since the arith-
metic mean is sensitive to extreme values. It 
has been found that coniferous forests have 
larger mean NDDI values compared to the oth-
er forest types. Additionally, 2009 stands out as 
having the second highest median after 2003. 
Deciduous forests have the smallest medians; 
the second largest drought was in 2000. In the 
case of all three time series, the same drought 
pattern is observable but with a different rank-
ing of drought years; however, 2003 has the 
largest median in every series. The drought 
years were 2000, 2001, 2002, 2003, 2007, 2009, 
2011 and 2012. Interestingly, the coniferous 
forests reflect drought in 2011, rather than in 
2012. Subsequent drought- and non-drought 
years (2003–2004, 2006–2007) have marked dif-
ferences (22–30%) in median values (Figure 4).

The significance of the fitted linear trends 
was evaluated by the Mann-Kendall test with 
no correction for autocorrelation, since the time 

series are not auto-correlated. It was conclud-
ed that, in the case of deciduous and mixed 
forests, NDDI does not show any significant 
monotonic decreasing trend (p = 0.14, p = 0.06, 
respectively) during the examined period. On 
the other hand, for coniferous forests, a de-
creasing trend was found to be significant at 
the p < 0.05 level. However, it was not accepted 
either, because the decreasing trend is likely an 
artefact of the large droughts of the early 2000s. 
Drought maps were also created for every year 
during the examined period (Figure 5).

Validation of results

Linear regressions were applied to charac-
terize the statistical connection between the 
annual average of spectral indices and the 
Pálfai Drought Index (PAI). In addition to 
Pearson’s r values, the statistical significance 
levels were given as well. The normalized 
versions (NDVI and NDWI) performed better 

Fig. 3. Boxplot of standardized NDDI values for de-
ciduous, mixed, and coniferous forests. Outliers were 
omitted from the graph. Crosses indicate the arithme-
tic mean values. Note the wide range of the whiskers 
in case of coniferous forests in 2006–2011. There are 
also substantial gaps between the arithmetic mean 
and median values. These gaps are caused by positive 

outliers, which were removed afterwards.
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(r is −0.90 and −0.92 with PAI, respectively). 
On the other hand, the drought indices per-
formed worse. DDI shows a moderate corre-
lation with PAI. However, NDDI showed the 
weakest correlation based on linear regres-
sion, although it incorporates information on 
the chlorophyll and VWC of the vegetation.

PAI is an indicator of meteorological 
drought. On the other hand, spectral indices 
represent agricultural drought. Therefore, 
they do not necessarily match every year. Lag 
effects must also be taken into consideration. 
For example, one year’s recharge of ground-
water and soil moisture can moderate agri-
cultural drought in the following year, so that 
crops have sufficient water reserves. Under 
such circumstances, the groundwater level 
is elevated, enabling plants to utilize it. Thus, 
plants can grow normally, even if there is an 
ongoing meteorological drought (Table 1).

Connections with crop yield data obtained 
from HCSO were evaluated as well. A regres-
sion was performed for the ‘Non-irrigated ar-
able land’ class (code 212) of the Corine Land 
Cover Database 2012 because, unfortunately, 
no data on the production area of different 
crops are available. The results of this analy-
sis are shown in Table 2.

For the period between 18 and 25 of June, 
NDDI and DDI have the highest correlations 
with barley, corn, and wheat yields. The veg-
etation and water indices have lower correla-
tions with barley, corn, and wheat yields. For 
example, the vegetation indices have no sig-
nificant connections with corn yields. NDWI 
displays a weak correlation with corn yields, 
but shows higher correlations with those of 
barley and wheat. On the other hand, for the 
period between 12 and 9 of July, NDDI and 
DDI have slightly lower correlations with 
crop yields compared to the vegetation and 
water indices. In the case of corn, the veg-
etation and water indices performed best. In 

Fig. 4. Barplot showing the median of NDDI in the examined years for deciduous, mixed, and coniferous 
forests. Coloured lines indicate the average of the medians as the drought threshold limit (av_d is the average 
for deciduous forests, av_m is the average for mixed forests, and av_c is the average for coniferous forests).

Table 1. Correlation matrixa between the spectral 
indicesb  and PAI for the period between 2000 and 2014.

Spectral index Correlation with PAI
NDDI
DDI
NDVI
DVI
NDWI
DWI

0.64*
   0.80***
− 0.90***
− 0.81***
− 0.91***
− 0.87***

aPearson’s r; bApril-August average, including the 89th 
through the 273rd days of each year. Significance levels: 
*P ≤ 0.05, ***P ≤ 0.001, according to a two-tailed t-test.
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contrast, in June, their performance was the 
weakest.

The NDDI was selected as the most appro-
priate method for agricultural drought moni-
toring. As an alternative, NDVI and NDWI 
can be used separately for the same task.

All spectral indices were found to be signif-
icant in quantifying drought intensity based 
on PAI, but normalized indices are preferred 

over difference indices. Further validation 
with ground truth data is needed to fully 
assess the performance of NDDI. These pre-
liminary findings appear to be promising, 
however, the sample size is small, and only 
national averages were compared to each 
other. There is a pressing need to obtain 
more reference data to enable an extended 
calibration and validation process.

Fig. 5. Growing season NDDI averages, standardized and reclassified into drought and non-drought categories. 
Outliers have been removed. Drought years were highlighted with yellow background. Although large areas 
were drier than average in 2005 and in 2006, especially the northern parts of the study area had slightly posi-

tive anomalies, but overall, not as high as in 2007 which considered to be a drought year
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Discussion and conclusions

No indicator can fully capture the multi-
scale, multi-impact nature of drought, so 
the combination of many different param-
eters, indicators or indices (remote sensing 
data included) in a single drought classifica-
tion product is required (Hayes, M.J. et al. 
2012). To look at the international level, the 
composite indicator approach is used by the 
USDM (U.S. Drought Monitor), which was 
initiated in 1999 and is globally considered 
the state-of-the-art drought monitoring tool. 
It produces weekly maps (Svoboda, M. et al. 
2002). The European Drought Observatory 
(EDO) also created a composite called Com-
bined Drought Indicator which is composed 
from Standard Precipitation Index (SPI), soil 
moisture and fraction of absorbed photosyn-
thetically active radiation data (EDO 2013).

Our index product (NDDI) and cannot 
alone serve a basis of a national drought 
monitoring system, since additional in situ 
measurements depicting the major compo-
nents of the hydrologic cycle (like tempera-

ture, precipitation, soil moisture, streamflow, 
snow water equivalent) are also needed to 
fully capture the nature of drought in its 
complexity. Nonetheless, NDDI can be par-
ticularly useful for vegetation monitoring, 
since vegetation stress is may be the most 
detrimental consequence of drought.

The standardized NDDI was proven to be 
sensitive to land cover changes (afforestation 
or deforestation). As a result of this, a false 
drought signal is observed. Our results in-
dicate that this false signal is small and only 
affects a few cells that can be excluded from 
the analysis based on standard deviation 
values. Therefore, it has a marginal effect 
on the results, but it must not be ignored. 
Moreover, with the use of an improved land 
cover assessment, the false drought signal 
can be minimized even more.

Interestingly, it has been found that 
lower positive standardized NDDI values 
most likely represent drought, or at least a 
change in drought intensity, from the chosen 
reference period. On the other hand, large 
positive deviations (even 10+ Z-scores) are 

Table 2. Correlation coefficientsa between the spectral indices and crop yields, and between PAI and  
crop yields, for the examined periodb

Period Index
Yields

barley corn wheat

18–25 June

NDDI
DDI
NDVI
DVI
NDWI
DWI

  − 0.91***
  − 0.90***

  0.57*
    0.66**

      0.83***
      0.81***

  − 0.69**
  − 0.69**

  0.34
  0.51

   0.60*
   0.63*

   − 0.79***
  − 0.77**

  0.54*
  0.63*

    0.75**
    0.74**

12–19 July

NDDI
DDI
NDVI
DVI
NDWI
DWI

− 0.60*
−  0.68**
  0.63*

    0.67**
    0.71**
    0.73**

− 0.63*
 − 0.68**

      0.83***
    0.73**

      0.80***
    0.76**

− 0.63*
 − 0.71**
    0.66**
    0.67**
    0.73**
    0.73**
 − 0.66**Whole year PAI − 0.61*    − 0.93***

aPearson’s r; bSpectral index averages for the 8-day periods between 18 and 25 of June and between 12 and 
19 of July were used. Significance levels: *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001, according to a two-tailed t-test.
Notes: In the case of the 8-day period in June, there was one missing data point in 2001. Because of high 
cloud cover, it could not be replaced by the previous or the following 8-day period. In 2010, the average 
of the previous 8-day period between 10 and 17 of June was used instead, due to high cloud cover. In the 
case of the 8-day period in July in 2000, 2002, 2004, and 2012, the mean values of the spectral indexes for 
the 8-day period between 4 and 11 of July were used, due to high cloud cover. The harvest period starts 
at the end of June.
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artefacts of deforestation in the examined 
periods, especially in the case of coniferous 
forest during the period between 2006 and 
2011. Moreover, afforestation or reforesta-
tion can also cause large negative deviations 
from the mean. This is the result of our lim-
ited capability to delineate areas with for-
est cover. A clear, unbiased climatic signal 
can only be obtained and used for detecting 
regional climatic trends through changes in 
forest vegetation canopy when we are able 
to minimize the effect of land cover changes.

It was concluded based on our validation 
process that all the spectral indices calculat-
ed from the MODIS spectral reflectance data 
collected by the Terra satellite in this paper 
were proven to be applicable for the remote 
sensing of drought, confirming our previous 
results (Gulácsi, A. and Kovács, F. 2015). 
The normalized difference indices (NDDI, 
NDWI, and NDVI) are preferred over the sim-
ple difference indices (DDI, DWI, and DVI). 
Basically, all of the spectral indices are only 
different versions of the same index or a com-
bination of them. Chlorophyll and VWC in-
formation can be fused into one single index, 
the NDDI. Because of this, the use of NDDI 
is preferred by the authors. Using NDVI and 
NDWI separately is also a viable option.

These satellite indices can be computed 
on a real-near-time basis which largely con-
tributes to regional drought monitoring and 
makes decadal-scale time series analysis pos-
sible to assess changes in drought severity.

Further research is needed to carry out an 
extended validation of the spectral indices 
using other ground truth data, such as the 
SPI (McKee, T.B. et al. 1993), which is cal-
culated from precipitation data collected at 
measuring stations. 

Successful drought monitoring of vegeta-
tion can only be achieved when we are able to 
accurately delineate vegetation cover. Because 
we use the Corine Land Cover database and 
remove outliers, land cover change has only 
a minor effect on the results. Drought inten-
sity shows a slight downward trend during 
the examined period, as the result of the large 
droughts that occurred in the early 2000s.

In the study, the basis of a cost-effective, 
near-real-time, MODIS-based drought moni-
toring system of vegetation was laid down. 
NDDI can be used as a sensitive drought as-
sessment tool for water management, agri-
culture, and conservation of natural areas.
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