Integral Transforms of New Subclass of Meromorphic Univalent Functions Defined by Linear Operator I
 Aqeel Ketab AL-khafaji
 Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babylon, Iraq.
 aqeelketab@gmail.com

Article history: Received 15 January 2019, Accepted 18 March 2019, Publish May 2019
Doi: 10.30526/32.2.2147

Abstract

New class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$ is introduced of meromorphic univalent functions with positive coefficient $f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, z \in U^{*}, \forall n \in \mathbb{N}=\{1,2,3, \ldots\}\right)$ defined by the integral operator in the punctured unit disc $U^{*}=\{z \in \mathbb{C}: 0<|z|<1\}$, satisfying $\left|\frac{z^{2}\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime \prime}+2 z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}}{\beta z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime \prime}-\alpha(1+\gamma) z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}}\right|<\mu,\left(0<\mu \leq 1,0 \leq \alpha, \gamma<1,0<\beta \leq \frac{1}{2}, k=\right.$ $1,2,3, \ldots$). Several properties were studied like coefficient estimates, convex set and weighted mean.

Keywords: Meromorphic univalent function; coefficient estimates; convex set; weighted mean.

1. Introduction

Let W^{*} denote the class of functions of the form:
$f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n},\left(z \in U^{*}, n \in \mathbb{N}=\{1,2,3, \ldots\}\right)$,
which are analytic and meromorphic univalent in the punctured unit disc
$U^{*}=\{z \in \mathbb{C}: 0<|z|<1\}=U-\{0\}$.
The Hadamard product [1]. (convolution) of function $f(z)$ in (1) and a function $g(z)$:
$g(z)=\frac{1}{z}+\sum_{n=1}^{\infty} b_{n} z^{n},\left(z \in U^{*}, \mathbb{N}=\{1,2,3, \ldots\}\right)$,
is defined in the class W^{*} as
$(f * g)(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} b_{n} z^{n},\left(z \in U^{*}, \forall n \in \mathbb{N}=\{1,2,3, \ldots\}\right)$.
Let A^{*} be a subclass of the class W^{*} of functions of the form:
$f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n},\left(a_{n} \geq 0, z \in U^{*}, n \in \mathbb{N}=\{1,2,3, \ldots\}\right)$.
A function f in the class A^{*} is said to be meromorphic starlike and meromorphic convex of order $\delta[2]$. $\left(0 \leq \delta<1, z \in, U^{*} f^{\prime}(z) \neq 0\right)$, respectively if $-\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\delta$ and $-\operatorname{Re}\{1+$ $\left.\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\delta$.

In 2013, Juma and Zirar [3]. defined the function $\widetilde{\emptyset}(a, c ; z)$ as follows:
$\widetilde{\emptyset}(a, c ; z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| z^{n}, z \in U^{*}$
for $(c \in \mathbb{C}, c \neq 0,-1,-2, \ldots$ and $a \in \mathbb{C}-\{0\})$, where $(a)_{n}=a(a+1)_{n-1}$ is the Pochhammer symbol.

Gaussian hypergeometric function $\left({ }_{2} F_{1}(b, a, c ; z)=\sum_{n=0}^{\infty} \frac{(b)_{n}(a)_{n}}{(c)_{n} n!} z^{n}\right)$ was used, where $\widetilde{\emptyset}(a, c ; z)=\frac{1}{z} \quad{ }_{2} F_{1}(1, a, c ; z)$ and the Hadamard product for $f \in A^{*}$ corresponding to the function $\widetilde{\varnothing}(a, c ; z)$, the linear operator $L^{*}(a, c)$ [3] defined on A^{*} by
$L^{*}(a, c) f(z)=\widetilde{\emptyset}(a, c ; z) * f(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| a_{n} z^{n}$,
and
$I^{0}\left(L^{*}(a, c) f(z)\right)=L^{*}(a, c) f(z)$, and for $k=1,2,3, \ldots$
$I^{k}\left(L^{*}(a, c) f(z)\right)=z\left(I^{k-1}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}+\frac{2}{z}$
$=\frac{1}{z}+\sum_{n=0}^{\infty} n^{k}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| z^{n}$.
In [4]. Darus and Frasin studied the operator $I^{k}\left(L^{*}(a, c) f(z)\right)$.
Now, the condition for the function f which is defined in (4) belongs to a class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, where $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu) \subset A^{*}$ according to Equation (6).

Definition 1: A function $f \in A^{*}$ of the form (1) is said to be in the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, if satisfies the following condition:
$\left|\frac{z^{2}\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime \prime}+2 z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}}{\beta z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime \prime}-\alpha(1+\gamma) z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}}\right|<\mu$,
where $0<\mu \leq 1,0 \leq \alpha, \gamma<1,0<\beta \leq \frac{1}{2}, k=1,2,3, \ldots$.
In this paper, A new class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$ of meromorphic univalent functions is studied and discussed the positive coefficient defined by integral operator in the punctured unit disc U^{*}. Several properties are resulted such as, coefficient estimates, convex set, extreme point and obtain some interested results. See also References [5-9].

2. Results

In this section we introduce the results of the study in the two subsections:

2.1. Coefficient Estimates

In the first theorem, the necessary and sufficient condition is given to be the function f in the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$.

Theorem 1: A function $\mathrm{f}(\mathrm{z})$ defined by (4) is in the class $\mathrm{A}^{*}(\mathrm{a}, \mathrm{c}, \mathrm{k}, \beta, \alpha, \gamma, \mu)$ if and only if:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n} \leq \mu[2 \beta+\alpha(1+\gamma)] \tag{8}
\end{equation*}
$$

where $0<\mu \leq 1,0 \leq \alpha, \gamma<1,0<\beta \leq \frac{1}{2}, k=1,2,3, \ldots$.

Proof

Assume that (8) holds true. It is enough to show that:

$$
\begin{aligned}
& S=\left|z^{2}\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime \prime}+2 z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}\right| \\
& \quad-\mu\left|\beta z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime \prime}-\alpha(1+\gamma) z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}\right|<0
\end{aligned}
$$

for $|z|=r<1$, from (8), that resulted:

$$
\begin{aligned}
S=\mid z^{2}\left(2 z^{-3}\right. & \left.+\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}(n-1) a_{n} z^{n-2}\right) \\
& \left.+2 z\left(-z^{-2}+\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1} a_{n} z^{n-1}\right) \right\rvert\, \\
& -\mu \left\lvert\, \beta z^{2}\left(2 z^{-3}+\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}(n-1) a_{n} z^{n-2}\right)\right. \\
& \left.-\alpha(1+\gamma) z\left(-z^{-2}+\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1} a_{n} z^{n-1}\right) \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\left.=\left|\sum_{n=1}^{\infty}\right| \frac{(a)_{n+1}}{(c)_{n+1}} \right\rvert\, & n^{k+1}(3 n-1) a_{n} z^{n} \mid \\
& \quad-\mu\left|(2 \beta+\alpha(1+\gamma)) z^{-2}+\sum_{n=1}^{\infty}\right| \frac{(a)_{n+1}}{(c)_{n+1}}\left|n^{k+1}[\beta(n-1)-\alpha(1+\gamma)] a_{n} z^{n}\right| \\
\leq \sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| & n^{k+1}(3 n-1) a_{n} z^{n}-\mu(2 \beta+\alpha(1+\gamma)) r^{-2} \\
& \quad-\mu \sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[\beta(n-1)-\alpha(1+\gamma)] a_{n} r^{n} \\
< & \sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n} r^{n}-\mu[2 \beta+\alpha(1+\gamma)]<0 .
\end{aligned} .
\end{aligned}
$$

Hence, $f \in A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$.
Conversely, let $f(z) \in A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, then (7) holds true, so: we have:

$$
\begin{aligned}
& \left|\frac{z^{2}\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime \prime}+2 z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}}{\beta z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime \prime}-\alpha(1+\gamma) z\left(I^{k}\left(L^{*}(a, c) f(z)\right)\right)^{\prime}}\right| \\
& =\left|\frac{\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}(3 n-1) a_{n} z^{n}}{(2 \beta+\alpha(1+\gamma)) z^{-2}+\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[\beta(n-1)-\alpha(1+\gamma)] a_{n} z^{n}}\right|<\mu
\end{aligned}
$$

Since $\operatorname{Re}(z) \leq|z|$ for all z, it follows that:

$$
\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}(3 n-1) a_{n} z^{n}}{(2 \beta+\alpha(1+\gamma)) z^{-2}+\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[\beta(n-1)-\alpha(1+\gamma)] a_{n} z^{n}}\right\} \leq \mu
$$

Now, we choose the value of z on the real axis so that $I^{k}\left(L^{*}(a, c) f(z)\right)$ is real.
Letting $z \rightarrow 1^{-}$through real values, we obtain:
$\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n} \leq \mu[2 \beta+\alpha(1+\gamma)]$.
Hence, the result follows
Finally, sharpness follows if we take

$$
\begin{align*}
& f(z) \\
& =\frac{1}{z}+\frac{\mu[2 \beta+\alpha(1+\gamma)]}{\left\lvert\, \frac{(a)_{n+1}}{(c)_{n+1} \mid n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}\right.} z^{n} . \tag{9}\\
& \quad(n=1,2, \ldots) .
\end{align*}
$$

Corollary 1: If $f(z)$ defined by (4) is in the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, then:
a_{n}
$\leq \frac{\mu[2 \beta+\alpha(1+\gamma)]}{\left|\frac{(a)_{n+1}}{(c)_{n+1} \mid}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}$,
where $0<\mu \leq 1,0 \leq \alpha, \gamma<1,0<\beta \leq \frac{1}{2}, n \in \mathbb{N}, k=1,2,3, \ldots$.
Now, the function was defined $f_{i}(z)(i=1,2,3, \ldots)$, as follows:
$f_{i}(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n, i} z^{n}\left(a_{n, i} \geq 0, n \in \mathbb{N}\right)$.

2.2. Convex Set

Here, the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$ will prove as a convex set and give some result about it.

Theorem 2: The class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$ is convex set.

Proof

Let the functions $f_{i}(z)(i=1,2)$, defined by (11), be in the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, then for every $e(0 \leq e \leq 1)$, that showed must:
$\left[(1-e) f_{1}(z)+e f_{2}(z)\right] \in A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$.
Thus, we obtain:
$(1-e) f_{1}(z)+e f_{2}(z)=z^{-1}+\sum_{n=1}^{\infty}\left[(1-e) a_{n, 1}+e a_{n, 2}\right] z^{n}$,
and
$\sum_{n=1}^{\infty} \frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}{\mu[2 \beta+\alpha(1+\gamma)]}\left[(1-e) a_{n, 1}+e a_{n, 2}\right]$

$$
\begin{aligned}
=(1-e) \sum_{n=1}^{\infty} & \frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}{\mu[2 \beta+\alpha(1+\gamma)]} a_{n, 1} \\
& +e \sum_{n=1}^{\infty} \frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}{\mu[2 \beta+\alpha(1+\gamma)]} a_{n, 2} \leq 1
\end{aligned}
$$

Therefore, by Theorem (1), the result followed
Theorem 3: Let the functions $\mathrm{f}_{\mathrm{i}}(\mathrm{z})(\mathrm{i}=1,2)$, defined by (11) be in the class $\mathrm{A}^{*}(\mathrm{a}, \mathrm{c}, \mathrm{k}, \beta, \alpha, \gamma, \mu)$, then
$g(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) z^{n}$,
In the class $\mathrm{A}^{*}(\mathrm{a}, \mathrm{c}, \mathrm{k}, \beta, \alpha, \gamma, \delta)$, where:
$\delta \leq \frac{\mu^{2}[2 \beta+\alpha(1+\gamma)][\alpha(1+\gamma)-\beta(n-1)]}{\left\lvert\, \frac{(a)_{n+1}}{(c)_{n+1} \mid n^{2}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]^{2}-\mu^{2}[2 \beta+\alpha(1+\gamma)]} .\right.}$

Proof

Since $f_{i}(z) \in A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, then by Theorem (1), we have:
$\sum_{n=1}^{\infty}\left(\frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}{\mu[2 \beta+\alpha(1+\gamma)]}\right)^{2} a_{n, 1}^{2}$
$\leq \sum_{n=1}^{\infty}\left(\frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}{\mu[2 \beta+\alpha(1+\gamma)]} a_{n, 1}\right)^{2} \leq 1$,
and

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(\frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}{\mu[2 \beta+\alpha(1+\gamma)]}\right)^{2} a_{n, 2}^{2} \\
& \leq \sum_{n=1}^{\infty}\left(\frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}{\mu[2 \beta+\alpha(1+\gamma)]} a_{n, 1}\right)^{2} \leq 1 \tag{14}
\end{align*}
$$

It follows from (13) and (14), that:
$\sum_{n=1}^{\infty} \frac{1}{2}\left(\frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]}{\mu[2 \beta+\alpha(1+\gamma)]}\right)^{2}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1$.
But $g(z) \in A^{*}(a, c, k, \beta, \alpha, \gamma, \delta)$ if and only if:
$\sum_{n=1}^{\infty} \frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\delta(\alpha(1+\gamma)-\beta(n-1))-1]}{\delta[2 \beta+\alpha(1+\gamma)]}\left(a_{n, 1}^{2}+a_{n, 2}^{2}\right) \leq 1$.
The inequality (15) is satisfied if:

$$
\begin{aligned}
& \frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\delta(\alpha(1+\gamma)-\beta(n-1))-1]}{\delta[2 \beta+\alpha(1+\gamma)]} \\
& \quad \leq \frac{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{2(k+1)}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]^{2}}{\mu^{2}[2 \beta+\alpha(1+\gamma)]^{2}} .
\end{aligned}
$$

Hence:

$$
\begin{aligned}
\delta & \leq \frac{\mu^{2}[2 \beta+\alpha(1+\gamma)][\alpha(1+\gamma)-\beta(n-1)]}{\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{2}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]^{2}-\mu^{2}[2 \beta+\alpha(1+\gamma)]} . \\
& =L(n) .
\end{aligned}
$$

Since $L(n)$ is an increasing function of $n(n \geq 1)$, letting $n=2$ in (16), we get:
$\delta \leq \frac{\mu^{2}[2 \beta+\alpha(1+\gamma)][\alpha(1+\gamma)-\beta]}{\left|\frac{(a)_{3}}{(c)_{3}}\right| 4[5+\mu(\alpha(1+\gamma)-\beta)]^{2}-\mu^{2}[2 \beta+\alpha(1+\gamma)]}$.
This completes the proof
Theorem 4: Let the functions $\mathrm{f}_{\mathrm{i}}(\mathrm{z})(\mathrm{i}=1,2, \ldots, \mathrm{~m})$, defined by (12) be in the class $\mathrm{A}^{*}(\mathrm{a}, \mathrm{c}, \mathrm{k}, \beta, \alpha, \gamma, \mu)$, then:
$q_{1}(z)=\frac{1}{z}+\sum_{n=1}^{\infty} e_{n} z^{n}, \quad\left(e_{n} \geq 0, n \in \mathbb{N}\right)$
In the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, where:
$e_{n}=\frac{1}{m} \sum_{i=1}^{m} a_{n, i},(n=1,2, \ldots)$.

Proof

Since $f_{i}(z) \in A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, for all $(i=1,2,3, \ldots)$, it follows from theorem (1) that:
$\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n, i} \leq \mu[2 \beta+\alpha(1+\gamma)]$.
Hence:
$\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] e_{n}$.
$=\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]\left(\frac{1}{m} \sum_{i=1}^{m} a_{n, i}\right)$.
$=\frac{1}{m} \sum_{i=1}^{m}\left(\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n, i}\right) \leq \mu[2 \beta+\alpha(1+\gamma)]$,
Therefore by theorem (1), we get $q_{1}(z) \in A^{*}(a, c, k, \beta, \alpha, \gamma, \delta)$
Theorem 5: Let the functions f_{i} defined by (11), be in the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, (for all $\mathrm{i}=1,2, \ldots, \mathrm{~m}$), Then the function:
$q_{2}(z)=\sum_{i=1}^{m} c_{i} f_{i}(z), \quad\left(c_{i} \geq 0\right)$
Belongs to the class $\mathrm{A}^{*}(\mathrm{a}, \mathrm{c}, \mathrm{k}, \beta, \alpha, \gamma, \mu)$, where:
$\sum_{i=1}^{m} c_{i}=1, \quad\left(c_{i} \geq 0\right)$.
Proof
For every $i=1,2,3, \ldots$, it follows from theorem (1) that:
$\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n, i} \leq \mu[2 \beta+\alpha(1+\gamma)]$.
But
$q_{2}(z)=\sum_{i=1}^{m} c_{i} f_{i}(z)=\sum_{i=1}^{m} c_{i}\left(z^{-1}+\sum_{n=1}^{\infty} a_{n, i} z^{n}\right)=z^{-1}+\sum_{n=1}^{\infty}\left(\sum_{i=1}^{m} c_{i} a_{n, i}\right) z^{n}$.
Therefore
$\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1]\left(\sum_{i=1}^{m} c_{i} a_{n, i}\right)$
$=\sum_{i=1}^{m} c_{i}\left(\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n, i}\right)$
$\leq \sum_{i=1}^{m} c_{i} \mu[2 \beta+\alpha(1+\gamma)]=\mu[2 \beta+\alpha(1+\gamma)]$,
This end of the proof
Definition 2 [2]: The weighted mean $w_{j}(z)$ of functions fandg, defined by: $w_{j}=\frac{1}{2}[(1-j) f(z)+(1+j) g(z)], \quad 0<j<1$.

Theorem 6. Let the functions $f_{i}(z)(i=1,2)$, defined by (11), be in the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, then the function, then the weighted men of $f_{i}(z)(i=1,2)$, is also in the class $\mathrm{A}^{*}(\mathrm{a}, \mathrm{c}, \mathrm{k}, \beta, \alpha, \gamma, \delta)$.

Proof

By Definition (2), we have

$$
\begin{aligned}
w_{j} & =\frac{1}{2}\left[(1-j) f_{1}(z)+(1+j) f_{2}(z)\right] \\
& =\frac{1}{2}\left[(1-j)\left(z^{-1}+\sum_{n=1}^{\infty} a_{n, 1} z^{n}\right)+(1+j)\left(z^{-1}+\sum_{n=1}^{\infty} a_{n, 2} z^{n}\right)\right] \\
& =z^{-1}+\sum_{n=1}^{\infty} \frac{1}{2}\left[(1-j) a_{n, 1}+(1+j) a_{n, 2}\right] z^{n},
\end{aligned}
$$

Since $f_{i}(z)(i=1,2)$, in the class $A^{*}(a, c, k, \beta, \alpha, \gamma, \mu)$, then by Theorem (1), we have:
$\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n, 1} \leq \mu[2 \beta+\alpha(1+\gamma)]$,
and
$\sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n, 2} \leq \mu[2 \beta+\alpha(1+\gamma)]$.
Hence

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] \frac{1}{2}\left[(1-j) a_{n, 1}+(1+j) a_{n, 2}\right] \\
& =\frac{1}{2}(1-j) \sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n, 1}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{2}(1+j) \sum_{n=1}^{\infty}\left|\frac{(a)_{n+1}}{(c)_{n+1}}\right| n^{k+1}[3 n+\mu(\alpha(1+\gamma)-\beta(n-1))-1] a_{n, 2} \\
& \leq \frac{1}{2} \mu[2 \beta+\alpha(1+\gamma)]+\frac{1}{2} \mu[2 \beta+\alpha(1+\gamma)] \\
& =\mu[2 \beta+\alpha(1+\gamma)] .
\end{aligned}
$$

$$
\text { So } w_{j} \in A^{*}(a, c, k, \beta, \alpha, \gamma, \delta)
$$

3. Conclusions

From above and [10] we can use this class to generate another using the definition of meromorphic multivalent function. Also by suitable operator with meromorphic multivalent function can getting on a good class studies.

References

1. Ruscheweyh, S. New criteria for univalent functions, Proc. Amer. Math. Soc.1975, 49, 109-115.
2. Duren, P.L. Springer-Verlarg, New York, Berlin, Heidleberg, Tokyo, 1983.
3. Juma, R.S.; Zirar, H. On A Class of Meromorphic Univalent Functions Defined By Hypergeomatric Function, Gen. Math. Notes. 2013, 1, 63-73.
4. Darus, M.; Frasin, B.A. On Certain Meromorphic Function with Positive Coefficient. South East Asian Bull. Math. 2004, 28, 615-623.
5. AL-khafaji, A.K.; Atshan, W.G.; Abed, S.S. On the Generalization of a Class of Harmonic Univalent Functions Defined by Differential Operator. Mathematics. 2018, 6, 12, 312.
6. AL-khafaji, A.K.; Atshan, W.G.; Abed, S.S. On a Differential Subordination of a Certain Subclass of Univalent Functions. Journal of Kufa for Mathematics and Computer. 2018, 5, 3, 11-16.
7. Abed, S.; Faraj, A. Fixed Points Results in G-Metric Spaces. Ibn AL- Haitham Journal For Pure And Applied Science. 2019, 32, 1, 139-146.
8. Abed, S.; Abdul Sada, K. Common Fixed Points in Modular Spaces. Ibn AL- Haitham Journal for Pure And Applied Science. 2018, 500-509. https://doi.org/10.30526/2017.IHSCICONF.1822.
9. Jabber, A.K.; Tawfiq, L.N.M. New Transform Fundamental Properties and Its Applications. Ibn AL- Haitham Journal for Pure And Applied Science. 2018, 31, 2, 151163, doi.org/10.30526/31.2.1954.
10. Tawfiq, L.N.M.; Jabber, A.K. New Transform Fundamental Properties and its Applications. Ibn Alhaitham Journal for Pure and Applied Science. 2018, 31, 1, 151163, doi: http://dx.doi.org/10.30526/31.2.1954
