

Ibn Al-Haitham Journal for Pure and Applied Sciences

Journal homepage: jih.uobaghdad.edu.iq

(1) -Semi-p Open Set

Muna L. Abd Ul Ridha Department of Mathematics , College of Education for Pure Sciences,Ibn Al –Haitham, University of Baghdad, Baghdad ,Iraq. <u>mona.laith1203a@ihcoedu.uobaghdad.edu.iq</u> Suaad G. Gasim Department of Mathematics , College of Education for Pure Sciences,Ibn Al –Haitham, University of Baghdad, Baghdad ,Iraq. <u>suaad.gedaan@yahoo.com</u>

Article history: Received 3 Augest 2022, Accepted 24 Augest 2022, Published in January 2023.

doi.org/10.30526/36.1.2969

Abstract

Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called (ω) -preopen in 2002 and 2005, respectively. Definitions of (ω) -preinterior and (ω) -preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called (ω) -semi-p-open set. We present the definition of this set with its equivalent. We give definition of (ω) -semi-p-interior and (ω) -semi-p-closure of a set and discuss their properties. Also the properties of (ω) -preinterior and (ω) -preclosure are discussed. In addition, we give a new type of continuous function in a generalized topological space as $((\omega)_1, (\omega)_2)$ -semi-p-continuous function and $((\omega)_1, (\omega)_2)$ -semi-p-irresolute function. The relationship between them is showed. We prove that every (ω) -open ((ω) -preopen) set is an (ω) -semi-p-continuous function, but not conversely. Also we show that the union of any family of (ω) -semi-p-continuous function, but not conversely. Also we show that the union of any family of (ω) -semi-p-open sets is an (ω) -semi-p-open set, but the intersection of two (ω) -semi-p-open sets need not to be an (ω) -semi-p-open set.

Keywords: (ω) -semi-p-open , (ω) -semi-p-interior , (ω) -semi-p-closure, $(\omega)_1, (\omega)_2$)-semi-p-irresolute and $(\omega)_1, (\omega)_2$)-semi-p-continuous.

1.Introduction and Preliminaries

In this paper, we denote a topological space by (Z, X) and the closure (interior) of a subset H of Z by cl(H)(int(H)), respectively.

1. The interior of H is the set $int(H) = \bigcup \{ U : U \in X \text{ and } U \subseteq H \}$.

2. The closure of H is the set $cl(H) = \bigcap \{F: F \in X' \text{ and } H \subseteq F\} [1]$, where X' symbolizes the family of closed subsets of Z.

The term "preopen" was introduced for the first time in 1984 [2]. A subset A of a topological space (Z, X) is called a preopen set if A \subseteq Int(clA). The complement of a preopen set is called a preclosed set. The family of all preopen sets of Z is denoted by PO(Z). The family of all preclosed sets of Z is denoted by PC(Z). In 2000, Navalagi used "preopen" term to define a "Semi-p-open set" [3]. A subset A of a topological space (Z, X) is said to be semi-p-open set if there exists a preopen set U in Z such that $U \subseteq A \subseteq$ pre-cl U. The family of all semi-p-open sets of Z is denoted by S-PO(Z). The complement of a semi-p-open set is called semi-p-closed set. The family of all semi-p-closed sets of Z is denoted by S-PC(Z). A function f: $(Z_1, X_1) \rightarrow (Z_2, X_2)$ is said to be a continuous function if the inverse image of any open set in Z₂ is an open set in Z₁ [4]. Navalagi used the term "preopen" to introduce new types of a continuous function "pre-irresolute function" and "pre-continuous function". A function $f: (Z_1, X_1) \rightarrow (Z_2, X_2)$ is called pre-irresolute(pre-continuous) function if the inverse image of any pre-open set in Z_2 is a pre-open set in Z_1 (the inverse image of any open set in Z₂ is a pre-open set Z₁). In [5], Al-Khazraji used the term of "Semi-p-open set" to define new types of continuous functions "semi-p-irresolute" and "semi-p-continuous" function. A function f: $(Z_1, X_1) \rightarrow (Z_2, X_2)$ is called a semi-p-irresolute (semi-p-continuous) function if the inverse image of any semi-p-open set in Z₂ is a semi-p-open set in Z₁(the inverse image of any open set in Z_2 is a semi-p- open set in Z_1). Let Z be a nonempty set, a collection (4) of subsets of Z is called a generalized topology (in brief, GT) on Z if \emptyset belongs to \Box) and the arbitrary unions of elements of (x) is an element in (x), (Z, (y)) is called generalized topological space (in brief, *GTS*) [6]. Every set in (ω) is called (ω) -open, while the complement of (ω) -open is called (ω) -closed; the family of all ω -closed sets is denoted by ω' . The union of all ω -open set contained in a set H is called the (μ)- interior of H and is denoted by int (μ)(H), whereas the intersection of all (μ)-closed set containing H is called the (ω) -closure of H and is denoted by cl_{(ω}(H)[7].

2. (.)-Pre-Open Set

Definition 2.1 [8]

In a *GTS* (Z, ω) by an ω -pre-open (in brief, $\omega - p - o$) set, we mean a subset H of Z with $H \subseteq int_{\omega}cl_{\omega}$ H. An ω -pre-closed (in brief, $\omega - p - c$) set is the complement of an ω -pre-open set. The collection of all $\omega - p - o(\omega - p - c)$ subsets of Z will be denoted by ω -PO(Z) (ω -PC(Z), respectively).

Proposition 2.2

For a subset H of a (Z, ω), we have $\bigcup_{\alpha \in \Lambda} \operatorname{int}_{\omega} \operatorname{cl}_{\omega} \operatorname{H}_{\alpha} \subseteq \operatorname{int}_{\omega} \operatorname{cl}_{\omega} \bigcup_{\alpha \in \Lambda} \operatorname{H}_{\alpha}$.

Proof:

$$\begin{split} H_{\alpha} &\subseteq \bigcup_{\alpha \in \Lambda} H_{\alpha}, \, \text{for every } \alpha \in \Lambda, \, \text{so } cl_{\omega} H_{\alpha} \subseteq cl_{\omega} \, \bigcup_{\alpha \in \Lambda} H_{\alpha} \, \text{for every } \alpha \in \Lambda, \, \text{it follows that} \\ \text{int}_{\omega} cl_{\omega} H_{\alpha} \subseteq \, \text{int}_{\omega} cl_{\omega} \, \bigcup_{\alpha \in \Lambda} H_{\alpha} \, \, \forall \alpha \, \in \Lambda. \end{split}$$

Hence $\bigcup_{\alpha \in \Lambda} \operatorname{int}_{(\mu)} \operatorname{cl}_{(\mu)} \operatorname{H}_{\alpha} \subseteq \operatorname{int}_{(\mu)} \operatorname{cl}_{(\mu)} \bigcup_{\alpha \in \Lambda} \operatorname{H}_{\alpha}$.

Proposition 2.3

The union of any collection of (y) - p - o sets is an (y) - p - o set.

Proof:

Let { H_{α} : $\alpha \in \Lambda$ } be a family of $\omega - p - o$ sets, so $H_{\alpha} \subseteq int_{\omega} cl_{\omega} H_{\alpha}$, $\forall \alpha \in \Lambda$. Which means $\bigcup_{\alpha \in \Lambda} H_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} int_{\omega} cl_{\omega} H_{\alpha}$, but $\bigcup_{\alpha \in \Lambda} int_{\omega} cl_{\omega} H_{\alpha} \subseteq int_{\omega} cl_{\omega} \bigcup_{\alpha \in \Lambda} H_{\alpha}$ (by Proposition 2.2), therefore, we obtain $\bigcup_{\alpha \in \Lambda} H_{\alpha} \subseteq int_{\omega} cl_{\omega} \bigcup_{\alpha \in \Lambda} H_{\alpha}$, hence $\bigcup_{\alpha \in \Lambda} H_{\alpha}$ is an $\omega - p - o$ set.

Corollary 2.4

The intersection of any collection of (y) - p - c sets is an (y) - p - c set.

Definition 2.5: [6]

Let (Z, G) be a *GTS*, and H be a subset of Z

- 1. The union of all (y) p o sets contained in H is called the (y)-preinterior of H and denoted by pre-int_(y)H.
- 2. The intersection of all (y) p c sets containing H is called the (y)-preclosuer of H and denoted by pre-cl_(y)H.

Theorem 2.6

Let H and T be subsets of (Z, ω) . Then, the following properties are true:

- 1. $\mathbb{H} \subseteq \operatorname{pre-cl}_{\omega}\mathbb{H}$.
- 2. pre-int_{ω}H_{ω} = H_{ω}.
- 3. If $H \subseteq T$, then pre-int_{ω} $H \subseteq$ pre-int_{ω}T.
- 4. If $H_{\mathcal{L}} \subseteq \mathcal{T}$, then pre-cl_{ω} $H_{\mathcal{L}} \subseteq$ pre-cl_{ω} \mathcal{T} .

Proof:

- 1. From Definition of $pre-cl_{(x)}H_{0}$.
- 2. From Definition of pre-int_{ω}H_{ω}.
- 3. Let $H \subseteq \mathcal{T}$, we have from 2, pre-int_{ω} $H \subseteq \mathcal{H}$, so pre int_{ω} $H \subseteq \mathcal{T}$, but pre int_{ω} \mathcal{T} is the largest ω p o set contained in \mathcal{T} . So pre int_{ω} $H \subseteq$ pre int_{ω} \mathcal{T} .
- 4. Let $H_{\mathcal{L}} \subseteq \mathbb{T}$, we have from 1, $\mathbb{T} \subseteq \text{pre-cl}_{(\omega)}\mathbb{T}$, so $H_{\mathcal{L}} \subseteq \text{pre-cl}_{(\omega)}\mathbb{T}$, but $\text{pre-cl}_{(\omega)}H_{\mathcal{L}}$ is the smallest $(\omega) p c$ set containing $H_{\mathcal{L}}$. So $\text{pre-cl}_{(\omega)}H_{\mathcal{L}} \subseteq \text{pre-cl}_{(\omega)}\mathbb{T}$.

Proposition 2.7

Let (Z, G) be a *GTS* let H be a subset of Z. Then:

- 1. H is an (c) p c set, if and only if $H = pre-cl_{(c)}H$.
- 2. H is an (c) p oset, if and only if $H = pre-int_{(c)}H$.

Proposition 2.8

 $\bigcup_{\alpha \in \Lambda} pre - cl_{\omega} H_{\alpha} \subseteq \ pre - cl_{\omega} \ \bigcup_{\alpha \in \Lambda} H_{\alpha}$

Proof:

 $H_{\alpha} \subseteq \bigcup_{\alpha \in \Lambda} H_{\alpha}$, for every $\alpha \in \Lambda$, so pre-cl_{ω} $H_{\alpha} \subseteq$ pre-cl_{ω} $\bigcup_{\alpha \in \Lambda} H_{\alpha}$ for every $\alpha \in \Lambda$, therefore, $\bigcup_{\alpha \in \Lambda} pre - cl_{\omega}H_{\alpha} \subseteq pre - cl_{\omega} \bigcup_{\alpha \in \Lambda} H_{\alpha}$.

Remark 2.9

The reverse of Proposition 2.8 is not correct in general, as we show in the following example:

For example

 $Z = \{a, b, c\}, (a) = \{Z, \emptyset, \{a, b\}\}, and (a)' = \{Z, \emptyset, \{c\}\}, then:$

 $(y)-PO(Z) = \{Z, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$

let $H_{\sigma} = \{b\}$ and $T_{\sigma} = \{a\}$, so pre-cl_{ω} $H_{\sigma} = \{b\}$ and pre-cl_{ω} $T_{\sigma} = \{a\}$, note that $H_{\sigma} \cup T_{\sigma} = \{a, b\}$, and pre-cl_{ω} ($H_{\sigma} \cup T_{\sigma}$) = Z, while pre-cl_{ω} $H_{\sigma} \cup T_{\sigma} = \{a, b\}$.

Hence, pre-cl_{ω}(H \cup T) $\not\subseteq$ pre-cl_{ω}H \cup pre-cl_{ω}T.

Proposition: 2.10

If H is any subset of a topological space (Z, X), then:

1. $[pre - int (H)]^{c} = pre - cl (H^{c}).$

2. $pre - int(H^c) = [pre - cl(H)]^c$.

3. (.)-Semi-P-Open Set

Definition 3.1

A subset G of a *GTS* (Z, ω) is said to be ω -semi-p-open(in brief, $\omega - sp - o$) set if there exists an $\omega - p - o$ set H in Z such that $H \subseteq G \subseteq \text{pre-cl}_{\omega}H$. Any subset of Z is called ω -semi-pclosed(in brief, $\omega - sp - c$) set if its complement is ω -semi-p-open set. The collection of all $\omega - sp - o$ subsets of Z will be denoted by ω -SPO(Z). The collection of all $\omega - sp - c$ subsets of Z will be denoted by ω -SPC(Z).

Theorem 3.2

Let (Z, ω) be a *GTS* and $G \subseteq Z$. Then G is an ω – sp – oset $\Leftrightarrow G \subseteq \text{pre-cl}_{\omega}\text{pre-int}_{\omega}G$.

Proof:

The "if" part

Assume that G is an $(\omega) - sp - oset$, then there exists a $(\omega) - p - o$ subset H of Z such that $H \subseteq G \subseteq pre-cl_{(\omega)}H$, it follows by Theorem 2.6 (4) that $pre-int_{(\omega)}H \subseteq pre-int_{(\omega)}G$, but $pre-int_{(\omega)}H = H$, therefore $H \subseteq pre-int_{(\omega)}G$. It follows by Theorem 2.6 (3) that $pre-cl_{(\omega)}H \subseteq pre-cl_{(\omega)}pre-int_{(\omega)}G$. Now, we get $G \subseteq pre-cl_{(\omega)}H \subseteq pre-cl_{(\omega)}pre-int_{(\omega)}G$. Thus $G \subseteq pre-cl_{(\omega)}pre-int_{(\omega)}G$.

The "only if" part

Assume that $G \subseteq \text{pre-cl}_{(j)}\text{pre-int}_{(j)}G$, we have to show that G is a (j) - sp - oset. Take $\text{pre-int}_{(j)}G = H$, then H is a (j) - p - 0 set and $H \subseteq G \subseteq \text{pre-cl}_{(j)}H$. Hence G is an (j) - sp - oset.

Corollary 3.3

Let (Z, ω) be a *GTS* and $F \subseteq Z$. Then H is $\omega - sp - cif$ and only if pre- $int_{\omega}(pre-cl_{\omega}H) \subseteq H$.

Proof:

The "if" part

Let F be an (\mathfrak{g}) – sp – c subset of Z, then pre-cl_(\mathfrak{g}) H = H (by Proposition 2.9(1)) which implies pre-int_{(\mathfrak{g}}(pre-cl_{(\mathfrak{g}})H) \subseteq H, since pre-int_{(\mathfrak{g}})H \subseteq H (by Theorem 2.3(2).

The "only if" part

Assume that pre- $\operatorname{int}_{(\mathfrak{g})}\operatorname{pre-cl}_{(\mathfrak{g})} \mathbb{H} \subseteq \mathbb{H}$. We have to show \mathbb{H} is an $(\mathfrak{g}) - \operatorname{sp} - \operatorname{cset}$. Since $\operatorname{pre-int}_{(\mathfrak{g})}\operatorname{pre-cl}_{(\mathfrak{g})} \mathbb{H} \subseteq \mathbb{H}$, then $\mathbb{H}^{c} \subseteq [\operatorname{pre-int}_{(\mathfrak{g})}(\operatorname{pre-cl}_{(\mathfrak{g})} \mathbb{H})]^{c}$, so we obtain from Proposition 2.10 $\mathbb{H}^{c} \subseteq \operatorname{pre-cl}_{(\mathfrak{g})}(\operatorname{pre-cl}_{(\mathfrak{g})} \mathbb{H})^{c}$ and $\mathbb{H}^{c} \subseteq \operatorname{pre-cl}_{(\mathfrak{g})} \mathbb{H}^{c}$. Hence \mathbb{H}^{c} is an $(\mathfrak{g}) - \operatorname{sp} - \operatorname{o}$ set by Theorem (2.2.2) which means \mathbb{H} is an $(\mathfrak{g}) - \operatorname{sp} - c$.

Proposition 3.4

The union of any collection of (y) - sp - o sets is an (y) - sp - o set.

Proof:

Let {G_{\alpha}, \alpha \in \LeftA} be any family of (\alpha) - sp - o sets. Then there exists an (\alpha) - p - o set H_{\alpha} for each G_{\alpha}, \alpha \in \LeftA such that H_{\alpha} \sum G_{\alpha} \sum pre-cl_{\alpha} H_{\alpha}, so $\bigcup_{\alpha \in \Lambda} H_{\alpha} \sum \bigcup_{\alpha \in \Lambda} G_{\alpha} \sum \bigcup_{\alpha \in \Lambda} pre - cl_{\alpha} H_{\alpha}$ is an (\alpha) - p - o set by Theorem 2.3, and $\bigcup_{\alpha \in \Lambda} pre - cl_{\alpha} H_{\alpha} \sum pre-cl_{\alpha} H_{\alpha}. Hence$ $<math>\bigcup_{\alpha \in \Lambda} G_{\alpha}$ is an (\alpha) - sp - o set.

Corollary 3.5

The intersection of any collection of (y) - sp - c sets is an (y) - sp - c set.

Proof:

Let { F_{α} : $\alpha \in \Lambda$ } be any family of ω - sp - c subsets of Z. we have to show that $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ is an ω - sp - c set, we know that $Z - \bigcap_{\alpha \in \Lambda} F_{\alpha} = \bigcup_{\alpha \in \Lambda} (Z - F_{\alpha})$ (De Morgan's laws). But $\bigcup_{\alpha \in \Lambda} (Z - F_{\alpha})$ is an ω - sp - c set, so $Z - \bigcap_{\alpha \in \Lambda} F_{\alpha}$ is an ω - sp - o set. Hence $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ is an ω - sp - c.

Remark 3.6

The intersection of two (x) - sp - o sets need not to be an (x) - sp - o set, as we show in the following example:

Example

Let $Z = \{a, b, c, d\}, \omega = \{Z, \emptyset, \{a\}, \{d\}, \{a, d\}\}, \omega$ -PO(Z) = $\{Z, \emptyset, \{a\}, \{d\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}\}, and$

ω SPO(Z)=

 $\{Z, \emptyset, \{a\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}, \{a, c, d\} \}. Let \qquad H_{\mathfrak{b}} = \{a, b, c\} \text{ and } \mathcal{T} = \{b, d\}, H_{\mathfrak{b}} \text{ and } \mathcal{T} \text{ are } (\mathfrak{g}) - sp - o \text{ sets, but } H_{\mathfrak{b}} \cap \mathcal{T} = \{b\} \text{ which is not an } (\mathfrak{g}) - sp - o \text{ set because there is not } (\mathfrak{g}) - p - o \text{ set } V_{\omega} \text{ , therefore } V \subseteq \{b\} \subseteq \text{pre-} cl_{\omega}V.$

Remark 3.7

If H and T are two (a) -sp - c sets, then H \cup T need not be(a) -sp - c as we show in the following example:

Example

From the example of Remark 3.7 Let $H = \{d\}$ and $T = \{a, c\}$.

H and T are (c) -sp - c set, but $H \cup T = \{a, c, d\}$ is not an (c) -sp - c set because

 $Z - \{a, c, d\} = \{b\}$ is not an (y) - sp - o set.

The following diagram illustrates the relation among (*y*)-open, (*y*)-pre-open, and (*y*)-semi-p-open set

Definition 3.8

- 1. The union of all $(\omega) sp o$ sets contained in H is called the (ω) -semi-p-interior of H, denoted by s-p-int_{(ω)}(H).
- 2. The intersection of all $(\omega) sp c$ sets containing H is called the (ω) -semi-p-closure of H, denoted by s-p-cl_{(ω)}(H).

Proposition 3.9

Let H and T be two subsets of (Z, ω) . Then, the following properties are true:

1. $H_{\mathcal{L}} \subseteq s - p - cl_{\omega} H_{\mathcal{L}}$.

2. If
$$H_{\sigma} \subseteq T$$
, then $s - p - cl_{(\alpha)}H_{\sigma} \subseteq s - p - cl_{(\alpha)}T$.

- 3. $s p cl_{\omega}H \cup s p cl_{\omega}G \subseteq s p cl_{\omega}$ ($H \cup G$).
- 4. $s p cl_{(j)}(H_0 \cap T_0) \subseteq s p cl_{(j)}H_0 \cap s p cl_{(j)}T_0$.

Proof:

- 1. It is clear from Definition 3.14(2).
- 2. Let $H \subseteq T$, from (1) we have $T \subseteq s p cl_{(j)}T$, so $H \subseteq s p cl_{(j)}T$ which is (y) - sp - c set, but $s - p - cl_{(j)}H$ is the smallest (y) - sp - c set containing H, thus $s - p - cl_{(j)}H \subseteq s - p - cl_{(j)}T$.

- 3. Since $\mathbb{H} \subseteq \mathbb{H} \cup \mathbb{T}$ and $\mathbb{T} \subseteq \mathbb{H} \cup \mathbb{T}$, it follows from (1) that $s p cl_{(j)}\mathbb{H} \subseteq s p cl_{(j)}(\mathbb{H} \cup \mathbb{T})$ and $s p cl_{(j)}\mathbb{T} \subseteq s p cl_{(j)}(\mathbb{H} \cup \mathbb{T})$, therefore $s p cl_{(j)}\mathbb{H} \cup S p cl_{(j)}\mathbb{T} \subseteq s p cl_{(j)}(\mathbb{H} \cup \mathbb{T})$.
- 4. Since $(\mathbb{H} \cap \mathbb{T}) \subseteq \mathbb{H}$ and $(\mathbb{H} \cap \mathbb{T}) \subseteq \mathbb{T}$, so semi-p-cl_{ω} $(\mathbb{H} \cap \mathbb{T}) \subseteq$ semi-cl_{ω} \mathbb{H} and $s p cl_{\omega}(\mathbb{H} \cap \mathbb{T}) \subseteq s p cl_{\omega}\mathbb{T}$, thus $s p cl_{\omega}(\mathbb{H} \cap \mathbb{T}) \subseteq s p cl_{\omega}\mathbb{H} \cap s p cl_{\omega}\mathbb{T}$.

Theorem 3.10

H is (c) -sp - c set $\Leftrightarrow H = s - p - cl_{(c)}H$. **Proof:** Is clear.

Corollary 3.11

 $s - p - cl_{(1)}Z = Z.$

Theorem 3.12

Let H and T be two subsets of (Z, ω) . Then the following properties are true:

- 1. $s p int_{\omega}H_{\omega} \subseteq H_{\omega}$.
- 2. If $\mathbf{H} \subseteq \mathbf{T}$, then $s p \operatorname{int}_{\omega} \mathbf{H} \subseteq s p \operatorname{int}_{\omega} \mathbf{T}$.
- 3. $s p \operatorname{int}_{\omega} (\mathbb{H} \cap \mathbb{T}) \subseteq s p \operatorname{int}_{\omega} \mathbb{H} \cap s p \operatorname{int}_{\omega} \mathbb{T}$
- 4. $s p \operatorname{int}_{\omega} \operatorname{H} \cup s p \operatorname{int}_{\omega} \operatorname{T} \subseteq s p \operatorname{int}_{\omega} \operatorname{H} \cup \operatorname{T}$).

Proof:

- **1.** Clear.
- 2. Let $H_{\mathcal{G}} \subseteq \mathcal{T}$, from (1) we have $s p \operatorname{int}_{(j)} H_{\mathcal{G}} \subseteq H_{\mathcal{G}}$, so $s p \operatorname{int}_{(j)} H_{\mathcal{G}} \subseteq \mathcal{T}$ where $s p \operatorname{int}_{(j)} H_{\mathcal{G}}$ is the largest $(\mathfrak{g}) sp \mathfrak{o}$ set contained in \mathcal{T} , hence $s p \operatorname{int}_{(j)} H_{\mathcal{G}} \subseteq s p \operatorname{int}_{(j)} \mathcal{T}$.
- **3.** Since $(\mathbb{H} \cap \mathbb{T}) \subseteq \mathbb{H}$ and $(\mathbb{H} \cap \mathbb{T}) \subseteq \mathbb{T}$, so $s p \operatorname{int}_{(\mathcal{Y})}(\mathbb{H} \cap \mathbb{T}) \subseteq s p \operatorname{int}_{(\mathcal{Y})}\mathbb{H}$ and $s p \operatorname{int}_{(\mathcal{Y})}(\mathbb{H} \cap \mathbb{T}) \subseteq s p \operatorname{int}_{(\mathcal{Y})}\mathbb{T}$, so $s p \operatorname{int}_{(\mathcal{Y})}(\mathbb{H} \cap \mathbb{T}) \subseteq s p \operatorname{int}_{(\mathcal{Y})}\mathbb{H} \cap s p \operatorname{int}_{(\mathcal{Y})}\mathbb{T}$.
- **4.** Since $\mathbf{H} \subseteq \mathbf{H} \cup \mathbf{T}$ and $\mathbf{T} \subseteq \mathbf{H} \cup \mathbf{T}$, then $s p \operatorname{int}_{\omega} \mathbf{H} \subseteq s p \operatorname{int}_{\omega}$ ($\mathbf{H} \cup \mathbf{T}$) and $s p \operatorname{int}_{\omega} \mathbf{T} \subseteq s p \operatorname{int}_{\omega}$ ($\mathbf{H} \cup \mathbf{T}$). Thus $s p \operatorname{int}_{\omega} \mathbf{H} \cup s p \operatorname{int}_{\omega}$ $\mathbf{T} \subseteq s p \operatorname{int}_{\omega}$ ($\mathbf{H} \cup \mathbf{T}$).

Theorem 3.13

H is an (y) - sp - o set $\Leftrightarrow H = s - p - int_{(y)}H$. **Proof:** Is Clear.

Corollary 3.14

 $s - p - \operatorname{int}_{\omega} \emptyset = \emptyset$

4. (ω_1, ω_2) -semi-p-continuous function

Definition 4.1:[8]

Let (Z, ω_1) and (Y, ω_2) be two GTS's. A function $f: Z \to Y$ is said to be (ω_1, ω_2) -continuous function if the inverse image of any ω_2 -open subset of Y is an ω_1 -open set in Z.

Definition 4.2:[9]

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is called (ω_1, ω_2) -M- pre-open function if the direct image of any ω_1 - pre-open set in Z is an ω_2 - pre-open set in Y.

Definition 4.3:

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is called (ω_1, ω_2) -M-semi-p-open $((\omega_1, \omega_2)$ -M-semi-pclosed) function if the direct image of any ω_1 -semi-p-open $(\omega_1$ -semi-p-closed) set in Z is an ω_2 -semi-p-open $(\omega_2$ -semi-p-closed) set in Y.

Definition 4.4

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is said to be (ω_1, ω_2) -semi-p-continuous function if the inverse image of any ω_2 -open set in Y is an ω_1 -semi-p-open set in Z.

Theorem 4.5

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is an (ω_1, ω_2) -semi-p-continuous function \Leftrightarrow the inverse image of any ω_2 -closed set in Y is an ω_1 -semi-p-closed set in Z.

Proof:

The ''if'' part. Let F be any ω_2 -closed set in Y, thus (Y - F) is an ω_2 -open set in Y, then $f^{-1}(Y - F)$ is an ω_1 -semi-p-open set in Z (since f is an (ω_1, ω_2) -semi-p-continuous function), but $f^{-1}(Y - F) = Z - f^{-1}(F)$, then $f^{-1}(F)$ is an ω_1 -semi-p-closed set.

The "only if" part. Let H be any $(\mathfrak{g}_2$ -open set in Y, thus (Y - H) is an $(\mathfrak{g}_2$ -closed set in Y, then $f^{-1}(Y - H)$ is an $(\mathfrak{g}_1$ -semi-p-closed set in Z (by hypothesis) but $f^{-1}(Y - H) = Z - f^{-1}(H)$, then $f^{-1}(H)$ is an $(\mathfrak{g}_1$ -semi-p-open set in Z, therefore f is an $(\mathfrak{g}_1, \mathfrak{g}_2)$ -semi-p-continuous function.

Definition 4.6

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is said to be (ω_1, ω_2) -semi-p-irresolute function if the inverse image of any ω_2 -semi-p-open set in Y is an ω_1 -semi-p-open set in Z

Theorem 4.7

A function $f: (Z, \omega_1) \to (Y, \omega_2)$ is an (ω_1, ω_2) -semi-p-irresolute function \Leftrightarrow the inverse image of each ω_2 -semi-p-closed set in Y is an ω_1 -semi-p-closed set in Z.

Proof:

The ''if'' part. Let F be any $(\omega)_2$ -semi-p-closed set in Y, thus (Y - F) is an $(\omega)_2$ -semi-p-open set in Y, then $f^{-1}(Y - F)$ is an $(\omega)_1$ -semi-p-open set in Z (since f is an $(\omega)_1, (\omega)_2$)-semi-p-irresolute function), but $f^{-1}(Y - F) = Z - f^{-1}(F)$, therefore $f^{-1}(F)$ is an $(\omega)_1$ -semi-p-closed set.

The ''only if'' part. Let H be any $(\mathfrak{Y}_2$ -semi-p-open set in Y, thus (Y - H) is an $(\mathfrak{Y}_1$ -semi-p-closed set in Y then $f^{-1}(Y - H)$ is an $(\mathfrak{Y}_1$ -semi-p-closed set in Z (by hypothesis), but $f^{-1}(Y - H) = Z - f^{-1}(H)$, then $f^{-1}(H)$ is an $(\mathfrak{Y}_1$ -semi-p-open set in Z, therefore f is an $(\mathfrak{W}_1, \mathfrak{W}_2)$ -semi-p-irresolute function.

Proposition 4.8

Every (ω_1, ω_2) -semi-p-irresolute function is an (ω_1, ω_2) -semi-p-continuous function.

Proof:

Let f be any (ω_1, ω_2) -semi-p-irresolute function from (Z, ω_1) into (Y, ω_2) . Let H by any ω_2 open in Y, thus H is an ω_2 -semi-p- open set (Corollary 3.11), then $f^{-1}(H)$ is an ω_1 -semi-p-open set in Z(since f is (ω_1, ω_2) -semi-p-irresolute function), therefore f is an (ω_1, ω_2) -semi-pcontinuous function.

Remark 4.9

The reverse of Proposition 4.7 is not correct in general as we show in the following example:

Example

Let $Z = \{1,2,3,4\}, \omega_1 = \{Z, \emptyset, \{1\}, \{4\}, \{1,4\}\}, \omega_1 - PO(Z) = \{Z, \emptyset, \{1\}, \{4\}, \{1,2,4\}, \{1,3,4\}\}, and$ $\omega_1 - SPO(Z) = \omega_1 - PO(Z) \cup \{\{1,2\}, \{1,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}, \{1,2,4\}, \{2,3,4\}, \}.$ Let $Y = \{a, b, c, d\}, \omega_2 = \{\emptyset, \{b, d\}\}, \omega_2 - PO(Y) = \{\emptyset, \{b, d\}, \{b\}, \{d\}\}, \{d\}\}, \{d\}\}, \{d\}$

 $(\mathfrak{y}_2 - SPO(Y) = \mathbb{P}(Y)$ (The power set of Y).

Define $f: (\mathbb{Z}, \mathfrak{W}_1) \rightarrow (\mathbb{Y}, \mathfrak{W}_2)$ such that $f(1) = f(2) = \{d\}, f(3) = \{b\}$

f is an (ω_1, ω_2) -semi-p-continuous function. But not (ω_1, ω_2) -semi-p-irresolute function, since {b} is an ω_2 -semi-p-open set in Y, but $f^{-1}(\{b\}) = \{3\}$ is not an ω_1 -semi-p-open set in Z.

Proposition 4.10

Every (ω_1, ω_2) -continuous function is an (ω_1, ω_2) -semi-p-continuous function.

Proof:

Let f be any $(\mathfrak{G}_1, \mathfrak{G}_2)$ - continuous function from (Z, \mathfrak{G}_1) into (Y, \mathfrak{G}_2) . Let H by any \mathfrak{G}_2 -open in Y, it follows from Definition 4.1 that $f^{-1}(H)$ is an \mathfrak{G}_1 - open set in Z, but every \mathfrak{G}_1 - open set is an \mathfrak{G}_1 -semi-p-open. Therefore f is an $(\mathfrak{G}_1, \mathfrak{G}_2)$ -semi-p-continuous function.

Remark 4.11

The reverse of Remark 4.9 is not correct in general as we show in the following example:

Example

Let $Z = \{1,2,3\}, \ \omega_1 = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}, \text{ and } \omega_1 - PO(Z) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}, \ \omega_1 - SPO(Z) = \mathbb{P}(Z) \text{ (The power set of } Z).$ Let $Y = \{a, b, c, d\}, \ \omega_2 = \{\emptyset, \{b, d\}\}, \ \omega_2 - PO(Y) = \{\emptyset, \{b, d\}, \{b\}, \{d\}\}, \ \omega_2 - SPO(Y) = \mathbb{P}(Y) \text{ (The power set of } Y).$ Define $f : (Z, \omega_1) \to (Y, \omega_2)$ such that $f(1) = f(2) = \{a\}, f(3) = \{b\}, \ a = \{b\}, \ a$

f is an $(\mathfrak{Q}_1, \mathfrak{Q}_2)$ -semi-p-continuous function, but it is not an $(\mathfrak{Q}_1, \mathfrak{Q}_2)$ -continuous function, since $\{b, d\}$ is an \mathfrak{Q}_2 -open set in Y, but $f^{-1}(\{b, d\}) = \{3\}$ is not an \mathfrak{Q}_1 -open set in Z.

Proposition 4.12

The composition of (ω_1, ω_2) -semi-p-irresolute function and (ω_2, ω_3) -semi-p-irresolute function is an (ω_1, ω_3) -semi-p- irresolute function.

Proof

Let f: $(Z, \omega_1) \rightarrow (Y, \omega_2)$ be (ω_1, ω_2) -semi-p-irresolute function and g: $(Y, \omega_2) \rightarrow (W, \omega_3)$ be (ω_2, ω_3) -semi-p-irresolute functions, we have to show that $g \circ f : (Z, \omega_1) \rightarrow (W, \omega_3)$ is an (ω_1, ω_3) -semi-p-irresolute function. Let H be any ω_3 -semi-p-open set in W, then $(g \circ f)^{-1}(H) = f^{-1} \circ g^{-1}(H) = f^{-1}(g^{-1}(H))$, but $g^{-1}(H)$ is an ω_2 -semi-p-open set in Y (since g is an (ω_2, ω_3) -semi-p-irresolute function), and $f^{-1}(g^{-1}(H))$ is an ω_1 -semi-p-open set in Z (since f is an (ω_1, ω_2) -semi-p-irresolute functions), therefore $g \circ f$ is an (ω_1, ω_3) -semi-p-irresolute functions.

Remark 4.13

The composition of (ω_1, ω_2) -semi-p-continuous function and (ω_2, ω_3) -semi-p-continuous function need not to be (ω_1, ω_3) -semi-p-continuous function as we show in the following example:

Example

Let $Z = \{1, 2, 3\}, \ (j_1 = \{Z, \emptyset, \{1, 2\}\}, Y = \{a, b, c\}, \ (j_2 = \{Y, \emptyset, \{a, b\}\}, W = \{i, j, k\}, \ (j_3 = \{W, \emptyset, \{i, k\}\}, (j_1-PO(Z)=\{Z, \emptyset, \{1\}, \{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\} = (j_1-SPO(Z))$ ((j_2-PO(Y)= {Y, ∅, {1}, {2}, {1, 2}, {1, 3}, {2, 3}} = (j_2-SPO(Y), and (j_3-PO(W)= {W, ∅, {i}, {k}, {i, j}, {i, k}, {j, k}} = (j_3-SPO(W)) Define $f : (Z, (j_1)) \rightarrow (Y, (j_2))$ by $f(1) = f(3) = \{b\}, f(2) = \{c\}.$

And $g: (Y, \omega_2) \rightarrow (W, \omega_3)$ by $g(a) = g(c) = \{j\}, g(b) = \{k\}.$ Then $g \circ f: (Z, \omega_1) \rightarrow (W, \omega_3)$ is defined by: $g \circ f(1) = g(f(1)) = g(b) = \{k\},$ $g \circ f(2) = g(f(2)) = g(c) = \{j\},$ $g \circ f(3) = g(f(3)) = g(b) = \{k\},$

f is an (ω_1, ω_2) -semi-p-continuous function and g is an (ω_2, ω_3) -semi-p-continuous function. But g \circ f is not an (ω_1, ω_3) -semi-p-continuous function, since {i, k} is an ω_3 -semi-p-open set in W, but f⁻¹({i, k}) = {3} is not ω_1 -semi-p-open set in Z.

Proposition 4.14

The composition of an (ω_1, ω_2) -semi-p-continuous function and (ω_2, ω_3) - continuous function is an (ω_1, ω_3) -semi-p-continuous function.

Proof:

Let $f: (Z, (\omega)_1) \to (Y, (\omega)_2)$ be any $((\omega)_1, (\omega)_2)$ -semi-p-continuous function and $g: (Y, (\omega)_2) \to (W, (\omega)_3)$ be any $((\omega)_2, (\omega)_3)$ - continuous function. We have to show that $g \circ f: (Z, (\omega)_1) \to (W, (\omega)_3)$ is an $((\omega)_1, (\omega)_3)$ -semi-p- continuous function. Let H be any $(\omega)_3$ - open set in W. Then, $g^{-1}(H)$ is an $(\omega)_2$ -open set in Y (since g is an $((\omega)_2, (\omega)_3)$ -continuous function), so $f^{-1}(g^{-1}(H)$ is an $(\omega)_1$ -semi-p-open set in Z (since f is an $((\omega)_1, (\omega)_2)$ -semi-continuous function), but $(g \circ f)^{-1}(H) = f^{-1} \circ g^{-1}(H) = f^{-1}(g^{-1}(H)$. Hence $g \circ f$ is an $((\omega)_1, (\omega)_3)$ -semi-p-continuous function. Theorem 4.15

Let $f : (Z, \omega_1) \to (Y, \omega_2)$ be an onto function, then f is an (ω_1, ω_2) -M-semi-p-open function if and only if it is an (ω_1, ω_2) -M-semi-p-closed function.

Proof:

The "if" part. Let F be any $(\mathfrak{g}_1$ -semi-p-closed set, so $(\mathbb{Z} - \mathbb{F})$ is an $(\mathfrak{g}_1$ -semi-p-open set, then $f(\mathbb{Z} - \mathbb{F})$ is an $(\mathfrak{g}_2$ -semi-p-open set (since f is an $(\mathfrak{g}_1, \mathfrak{g}_2)$ -M-semi-p-open function), but $f(\mathbb{Z} - \mathbb{F}) = \mathbb{Y} - f(\mathbb{F})$, therefore $f(\mathbb{F})$ is an $(\mathfrak{g}_2$ -semi-p-closed. Hence f an $(\mathfrak{g}_1, \mathfrak{g}_2)$ -M-semi-p-closed function.

The "only if" part. Let H be any ω_1 -semi-p-open set, so (Z - H) is an ω_1 -semi-p-closed set, then f(Z - H) is an ω_2 -semi-p-closed set (since f is an (ω_1, ω_2) -M-semi-p-closed function), but f(Z - H) = Y - f(H), therefore f(H) is an ω_2 -semi-p-open. Hence f an (ω_1, ω_2) -M-semi-p-closed function.

Theorem 4.16

Let $f : (Z, \omega_1) \to (Y, \omega_2)$ be a bijective function, then f is an (ω_1, ω_2) -M-semi-p-open function, $\Leftrightarrow f^{-1} : (Y, \omega_2) \to (Z, \omega_1)$ is an (ω_1, ω_2) -semi-p-irresolute function.

Proof

The ''if'' part. Suppose that f is an (ω_1, ω_2) -M-semi-p-open function, to show that f^{-1} is an (ω_1, ω_2) -semi-p-irresolute function. Let H be any ω_1 -semi-p-open set in Z, then $(f^{-1})^{-1}(H) =$

f(H) is an $(\omega_2$ -semi-p-open set in Y (since f is an (ω_1, ω_2) -M-semi-p-open function), so f⁻¹ is an (ω_1, ω_2) -semi-p- irresolute function.

The "only if" part. Suppose that f^{-1} is an (ω_1, ω_2) -semi-p-irresolute function, to show that f is an (ω_1, ω_2) -M-semi-p-open function. Let H be any ω_1 -semi-p-open set in Z, then $(f^{-1})^{-1}(H) = f(H)$ is an ω_2 -semi-p-open set in Y(since f^{-1} is an (ω_1, ω_2) -semi-p-irresolute function), so f is an (ω_1, ω_2) -M-semi-p-open function.

Definition 4.17

A bijection function $f: (Z, \omega_1) \to (Y, \omega_2)$ is called (ω_1, ω_2) -semi-p-homeomorphism function if f is both (ω_1, ω_2) -semi-p-irresolute function and (ω_1, ω_2) -M-semi-p-open function.

References

1.Engelking, R., General Topology, Sigma Ser. Pure Math. 6, Heldermann Verlag Berlin, **1989**. 2.Mashhour, A.S. ; Abd El-Monsef, M.E. ; El-Deeb, S.N. On Pre-Topological Spaces Sets, *Bull. Math. Dela Soc. R.S. de Roumanie*, **1984**,*28*(76), 39-45.

3.Navalagi G.B.Definition Bank in General Topology, Internet 2000.

4.Sharma, L.J.N.Topology, Krishna Prakashan Media (P) Ltd, India, Twenty Fifth Edition, 2000.

5.Al-Khazraji, R.B., On Semi-P-Open Sets, M.Sc. Thesis, University of Baghdad, 2004.

6.Dhana Balan, A.P.; Padma, P. Separation Spaces in Generalized Topology, *International Journal of Mathematics Research*, **2017**, *9*, *1*, 65-74. ISSN 0976-5840.

7.Suaad, G. Gasim ;Muna L. Abd Ul Ridha, New Open Set on Topological Space with Generalized Topology, *Journal of Discrete Mathematical Sciences and Cryptography*, to appear.

8.Basdouria, I.; Messaouda, R.; Missaouia, A. Connected and Hyperconnected Generalized Topological Spaces, *Journal of Linear and Topological Algebra*, **2016**, *05*, *04*,229-234

9.Suaad, G. Gasim ; Mohanad, N. Jaafar , New Normality on Generalized Topological Spaces, *Journal of Physics*: Conference Series, **2021**.