Ibn Al-Haitham Journal for Pure and Applied Sciences
Journal homepage: jih.uobaghdad.edu.iq

()) -Semi-p Open Set

Muna L. Abd UI Ridha
Department of Mathematics, College of Education for Pure Sciences,Ibn Al-Haitham, University of Baghdad, Baghdad ,Iraq.
mona.laith1203a@ihcoedu.uobaghdad.edu.iq

Suaad G. Gasim
Department of Mathematics, College of Education for Pure Sciences, Ibn Al -Haitham, University of Baghdad, Baghdad ,Iraq. suaad.gedaan@yahoo.com

Article history: Received 3 Augest 2022, Accepted 24 Augest 2022, Published in January 2023.

doi.org/10.30526/36.1.2969

Abstract

Csaszar introduced the concept of generalized topological space and a new open set in a generalized topological space called () -preopen in 2002 and 2005, respectively. Definitions of ())-preinterior and ()-preclosuer were given. Successively, several studies have appeared to give many generalizations for an open set. The object of our paper is to give a new type of generalization of an open set in a generalized topological space called () -semi-p-open set. We present the definition of this set with its equivalent. We give definition of () -semi-p-interior and ())-semi-p-closure of a set and discuss their properties. Also the properties of ())-preinterior and () -preclosuer are discussed. In addition, we give a new type of continuous function in a generalized topological space as $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-continuous function and $\left(\mathrm{G}_{1},()_{2}\right)$-semi-pirresolute function. The relationship between them is showed. We prove that every ()$)$-open (G) preopen) set is an $\left(\mathcal{)}\right.$-semi-p-open set, but not conversely. Every $\left(\mathcal{V}_{1},()_{2}\right)$-semi-p-irresolute function is an $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-continuous function, but not conversely. Also we show that the union of any family of () -semi-p-open sets is an () -semi-p-open set, but the intersection of two () -semi-p-open sets need not to be an () -semi-p-open set.

Keywords: () -semi-p-open , $\left(\mathcal{)}\right.$-semi-p-interior, () -semi-p-closure, $\left(\mathcal{V}_{1}, \mathrm{~V}_{2}\right)$-semi-p-irresolute and $\left(\mathrm{V}_{1},()_{2}\right)$-semi-p-continuous.

1.Introduction and Preliminaries

In this paper, we denote a topological space by (Z, X) and the closure (interior) of a subset H of Z by $\mathrm{cl}(\mathrm{H})(\mathrm{int}(\mathrm{H})$), respectively.

1. The interior of H is the set $\operatorname{int}(H)=U\{U: U \in X$ and $U \subseteq H\}$.
2. The closure of H is the set $\operatorname{cl}(\mathrm{H})=\cap\left\{\mathrm{F}: \mathrm{F} \in \mathrm{X}^{\prime}\right.$ and $\left.\mathrm{H} \subseteq \mathrm{F}\right\}[1]$, where X^{\prime} symbolizes the family of closed subsets of Z .

The term "preopen" was introduced for the first time in 1984 [2]. A subset A of a topological space (Z, X) is called a preopen set if $\mathrm{A} \subseteq \operatorname{Int}(\mathrm{clA})$. The complement of a preopen set is called a preclosed set. The family of all preopen sets of Z is denoted by $\mathrm{PO}(\mathrm{Z})$. The family of all preclosed sets of Z is denoted by PC(Z). In 2000, Navalagi used "preopen" term to define a "Semi-p-open set" [3]. A subset A of a topological space (Z, X) is said to be semi-p-open set if there exists a preopen set U in Z such that $\mathrm{U} \subseteq \mathrm{A} \subseteq$ pre-cl U . The family of all semi-p-open sets of Z is denoted by $\mathrm{S}-\mathrm{PO}(\mathrm{Z})$. The complement of a semi-p-open set is called semi-p-closed set. The family of all semi-p-closed sets of Z is denoted by $\mathrm{S}-\mathrm{PC}(\mathrm{Z})$. A function $\mathrm{f}:\left(\mathrm{Z}_{1}, \mathrm{X}_{1}\right) \rightarrow\left(\mathrm{Z}_{2}, \mathrm{X}_{2}\right)$ is said to be a continuous function if the inverse image of any open set in Z_{2} is an open set in Z_{1} [4]. Navalagi used the term "preopen" to introduce new types of a continuous function "pre-irresolute function" and "pre-continuous function". A function $\mathrm{f}:\left(\mathrm{Z}_{1}, \mathrm{X}_{1}\right) \rightarrow\left(\mathrm{Z}_{2}, \mathrm{X}_{2}\right)$ is called pre-irresolute(pre-continuous) function if the inverse image of any pre-open set in Z_{2} is a pre-open set $i n Z_{1}$ (the inverse image of any open set in Z_{2} is a pre-open set Z_{1}). In [5], Al-Khazraji used the term of "Semi-p-open set" to define new types of continuous functions "semi-p-irresolute" and "semi-p-continuous" function. A function $\mathrm{f}:\left(\mathrm{Z}_{1}, \mathrm{X}_{1}\right) \rightarrow\left(\mathrm{Z}_{2}, \mathrm{X}_{2}\right)$ is called a semi-p-irresolute (semi-p-continuous) function if the inverse image of any semi-p-open set in Z_{2} is a semi-p-open set in Z_{1} (the inverse image of any open set in Z_{2} is a semi-p- open set in Z_{1}). Let Z be a nonempty set, a collection () of subsets of Z is called a generalized topology (in brief, $G T$) on Z if \emptyset belongs to () and the arbitrary unions of elements of (O) is an element in $(\mathrm{O},(\mathrm{Z},(\mathrm{V})$) is called generalized topological space (in brief, GTS) [6]. Every set in $(\mathcal{)}$) is called $(\mathcal{)}$-open, while the complement of $(\mathcal{)}$-open is called () -closed; the family of all () -closed sets is denoted by ()$^{\prime}$. The union of all () -open set contained in a set H is called the () - interior of H and is denoted by int ${ }_{()}(\mathrm{H})$, whereas the intersection of all () -closed set containing H is called the () -closure of H and is denoted by $\mathrm{cl}_{(\omega)}(H)[7]$.

2. ())-Pre-Open Set

Definition 2.1 [8]

In a $G T S(Z,())$ by an (\mathcal{O})-pre-open (in brief, $(\mathcal{O})-\mathrm{p}-\mathrm{o}$) set, we mean a subset H of Z with $\mathrm{H} \subseteq$ $\operatorname{int}_{()} \mathrm{cl}_{(1)}$ H. An () -pre-closed (in brief, ()$-\mathrm{p}-\mathrm{c}$) set is the complement of an () -pre-open set. The collection of all $(\mathrm{G})-\mathrm{p}-\mathrm{o}(\mathrm{G})-\mathrm{p}-\mathrm{c})$ subsets of Z will be denoted by $(\mathrm{G})-\mathrm{PO}(\mathrm{Z})(\mathrm{G})-\mathrm{PC}(\mathrm{Z})$, respectively).

Proposition 2.2

For a subset H of a $\left(\mathrm{Z},(\mathrm{V})\right.$), we have $\mathrm{U}_{\alpha \in \Lambda} \operatorname{int}_{()} \mathrm{cl}_{())} \mathrm{H}_{\alpha} \subseteq \operatorname{int}_{())} \mathrm{cl}_{())} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$.
Proof:
$\mathrm{H}_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$, for every $\alpha \in \Lambda$, so $\mathrm{cl}_{()} \mathrm{H}_{\alpha} \subseteq \mathrm{cl}_{()} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$ for every $\alpha \in \Lambda$, it follows that $\operatorname{int}_{(1)} \mathrm{cl}_{(1)} \mathrm{H}_{\alpha} \subseteq \operatorname{int}_{()} \mathrm{cl}_{()} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha} \forall \alpha \in \Lambda$.
Hence $\mathrm{U}_{\alpha \in \Lambda} \operatorname{int}_{()} \mathrm{cl}_{())} \mathrm{H}_{\alpha} \subseteq \operatorname{int}_{(\omega)} \mathrm{cl}_{()} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$.

Proposition 2.3

The union of any collection of $(\mathcal{)}-\mathrm{p}-\mathrm{o}$ sets is an $(\mathrm{O})-\mathrm{p}-\mathrm{o}$ set.

Proof:

Let $\left\{\mathrm{H}_{\alpha}: \alpha \in \Lambda\right\}$ be a family of $(\mathrm{O})-\mathrm{p}-\mathrm{o}$ sets, so $\mathrm{H}_{\alpha} \subseteq \operatorname{int}_{()} \mathrm{cl}_{())} \mathrm{H}_{\alpha}, \forall \alpha \in \Lambda$. Which means $\mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Lambda} \operatorname{int}_{(\omega)} \mathrm{cl}_{(\omega)} \mathrm{H}_{\alpha}$, but $\mathrm{U}_{\alpha \in \Lambda} \operatorname{int}_{(\omega)} \mathrm{cl}_{())} \mathrm{H}_{\alpha} \subseteq \operatorname{int}_{(\omega)} \mathrm{cl}_{())} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$ (by Proposition 2.2), therefore, we obtain $U_{\alpha \in \Lambda} H_{\alpha} \subseteq \operatorname{int}_{()} \mathrm{cl}_{\omega} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$, hence $\mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$ is an () -p-o set.

Corollary 2.4

The intersection of any collection of $(\mathrm{y})-\mathrm{p}-\mathrm{c}$ sets is an $(\mathrm{g})-\mathrm{p}-\mathrm{c}$ set.

Definition 2.5: [6]

Let (Z, O)) be a GTS, and H be a subset of Z

1. The union of all $(\mathrm{O})-\mathrm{p}-\mathrm{o}$ sets contained in H is called the (g)-preinterior of H and denoted by pre-int ${ }_{(2)}$ H.
2. The intersection of all ()$-p-c$ sets containing H is called the () -preclosuer of H and denoted by pre-cl ${ }_{(0)} \mathrm{H}$.

Theorem 2.6

Let H and T be subsets of $(\mathrm{Z},(\mathrm{J})$. Then, the following properties are true:

1. $\mathrm{H} \subseteq \operatorname{pre}-\mathrm{cl}_{(\mathrm{l})} \mathrm{H}$.
2. pre-int $(\omega) \mathrm{H} \subseteq \mathrm{H}$.

3. If $\mathrm{H} \subseteq \mathrm{T}$, then $\operatorname{pre}^{-\mathrm{cl}_{()}} \mathrm{H} \subseteq \operatorname{pre}^{-\mathrm{cl}_{()}} \mathrm{G}$.

Proof:

1. From Definition of pre-cl $_{()} \mathrm{H}$.
2. From Definition of pre-int ${ }_{(2)} H$.
3. Let $\mathrm{H} \subseteq \mathrm{G}$, we have from 2, pre-int ${ }_{(\omega)} \mathrm{H} \subseteq \mathrm{H}$, so pre - $\operatorname{int}_{(\omega)} \mathrm{H} \subseteq \mathrm{T}$, but pre $\operatorname{int}_{(\omega)} \mathrm{G}$ is the largest $(\mathrm{G})-\mathrm{p}-\mathrm{o}$ set contained in G . So pre $-\operatorname{int}_{()} \mathrm{H} \subseteq \mathrm{pre}^{\mathrm{H}} \operatorname{int}_{(\omega)} \mathrm{G}$.
4. Let $\mathrm{H} \subseteq \mathrm{T}$, we have from $1, \mathrm{~T} \subseteq \operatorname{pre-cl}_{())} \mathrm{G}$, so $\mathrm{H} \subseteq \operatorname{pre-cl}_{(\omega)} \mathrm{G}$, but pre-cl ${ }_{()} \mathrm{H}$ is the smallest $(\mathrm{g})-\mathrm{p}-\mathrm{c}$ set containing H. So pre-cl $\mathrm{l}_{()} \mathrm{H} \subseteq \operatorname{pre}-\mathrm{cl}_{(\mathrm{G})} \mathrm{G}$.

Proposition 2.7

Let $(\mathrm{Z},(\mathrm{O})$) be a GTS let H be a subset of Z . Then:

1. H is an $(\mathrm{G})-\mathrm{p}-\mathrm{c}$ set, if and only if $\mathrm{H}=\operatorname{pre}_{\mathrm{cl}}^{(),} \mathrm{H}$.
2. H is an $(\mathrm{O})-\mathrm{p}$ - oset, if and only if $\mathrm{H}=\mathrm{pre}_{\mathrm{int}}^{()} \mathrm{H}$.

Proposition 2.8

$$
\mathrm{U}_{\alpha \in \Lambda} \text { pre }-\mathrm{cl}_{()} \mathrm{H}_{\alpha} \subseteq \operatorname{pre}-\mathrm{cl}_{()} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}
$$

Proof:

$\mathrm{H}_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$, for every $\alpha \in \Lambda$, so pre-cl $\mathrm{cl}_{()} \mathrm{H}_{\alpha} \subseteq \operatorname{pre-cl}_{()} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$ for every $\alpha \in \Lambda$, therefore, $\mathrm{U}_{\alpha \in \Lambda} \operatorname{pre}-\mathrm{cl}_{()} \mathrm{H}_{\alpha} \subseteq \operatorname{pre}-\mathrm{cl}_{(\mathrm{H})} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$.

Remark 2.9

The reverse of Proposition 2.8 is not correct in general, as we show in the following example:

For example

$Z=\{a, b, c\},()=\{Z, \emptyset,\{a, b\}\}$, and ()$^{\prime}=\{Z, \emptyset,\{c\}\}$, then:
()$-P O(Z)=\{Z, \emptyset,\{a\},\{b\},\{a, b\},\{a, c\},\{b, c\}\}$.
()$-P C(Z)=\{\emptyset, Z,\{b, c\},\{a, c\},\{c\},\{b\},\{a\}\}$,

Proposition: 2.10
If H is any subset of a topological space (Z, X), then:

1. $[\operatorname{pre}-\operatorname{int}(\mathrm{H})]^{\mathrm{c}}=\operatorname{pre}-\mathrm{cl}\left(\mathrm{H}^{\mathrm{c}}\right)$.
2. $\operatorname{pre}-\operatorname{int}\left(\mathrm{H}^{\mathrm{c}}\right)=[\mathrm{pre}-\mathrm{cl}(\mathrm{H})]^{\mathrm{c}}$.

3. ())-Semi-P-Open Set

Definition 3.1

A subset G of a $\operatorname{GTS}(\mathrm{Z},(\mathrm{G})$) is said to be $(\mathcal{)}$-semi-p-open(in brief, $(\mathcal{)})-\mathrm{sp}-\mathrm{o}$) set if there exists an ()$-p-o$ set H in Z such that $H \subseteq G \subseteq \operatorname{pre-cl}_{()} H$. Any subset of Z is called () -semi-pclosed (in brief, $(\mathcal{)})-\mathrm{sp}-\mathrm{c}$) set if its complement is $(\mathcal{)}$-semi-p-open set .The collection of all $(\mathrm{c})-\mathrm{sp}-\mathrm{o}$ subsets of Z will be denoted by $(\mathrm{O})-\mathrm{SPO}(\mathrm{Z})$. The collection of all $(\mathrm{g})-\mathrm{sp}-\mathrm{c}$ subsets of Z will be denoted by ()$-\operatorname{SPC}(Z)$.

Theorem 3.2

Let $\left(\mathrm{Z},(\mathrm{G})\right.$) be a $G T S$ and $\mathrm{G} \subseteq \mathrm{Z}$. Then G is an $(\mathrm{J})-\mathrm{sp}-$ oset $\Leftrightarrow \mathrm{G} \subseteq \operatorname{pre-cl}_{()} \mathrm{pre}^{\operatorname{int}}{ }_{(1)} \mathrm{G}$.

Proof:

The 'if" part

Assume that G is an ()$-\mathrm{sp}$ - oset, then there exists $\mathrm{a}(\mathrm{O})-\mathrm{p}-\mathrm{o}$ subset H of Z such that $\mathrm{H} \subseteq$ $\mathrm{G} \subseteq \operatorname{pre}^{\mathrm{cl}}{ }_{(\omega)} \mathrm{H}$, it follows by Theorem 2.6 (4) that pre-int ${ }_{(1)} \mathrm{H} \subseteq$ pre-int $_{(\omega)} \mathrm{G}$, but pre-int $(\underset{)}{ } \mathrm{H}=$ H , therefore $\mathrm{H} \subseteq \operatorname{pre}^{-\mathrm{int}_{()}} \mathrm{G}$. It follows by Theorem 2.6 (3) that pre-cl $(\omega) \mathrm{H} \subseteq$ pre-cl $\mathrm{cl}_{()}$pre-

The 'only if' part

Assume that $G \subseteq \operatorname{pre}^{-\mathrm{cl}_{()}} \operatorname{pre}^{-i n t}{ }_{(\omega)} \mathrm{G}$, we have to show that G is a $(\mathcal{)})-\mathrm{sp}$ - oset. Take pre$\operatorname{int}_{()} G=H$, then H is a ()$-p-o$ set and $H \subseteq G \subseteq \operatorname{pre}^{\left(c l_{()}\right.}{ }^{H}$. Hence G is an ()$-s p-$ oset.

Corollary 3.3

Proof:

The 'if" part

Let F be an $(\mathrm{g})-\mathrm{sp}-\mathrm{c}$ subset of Z , then $\operatorname{pre}^{-\mathrm{cl}_{()}} \mathrm{H}=\mathrm{H}$ (by Proposition 2.9(1)) which implies pre-int $(\omega)\left(\right.$ pre-cl $\left._{(\omega)} \mathrm{H}\right) \subseteq \mathrm{H}$, since pre-int ${ }_{(\omega)} \mathrm{H} \subseteq \mathrm{H}$ (by Theorem 2.3(2).

The 'only if' part

Assume that pre- $\operatorname{int}_{(\omega)}$ pre-cl $_{(\omega)} \mathrm{H} \subseteq \mathrm{H}$. We have to show H is an $(\mathrm{J})-\mathrm{sp}$ - cset. Since pre-int ${ }_{(\omega)}$ pre$\mathrm{cl}_{(\omega)} \mathrm{H} \subseteq \mathrm{H}$, then $\mathrm{H}^{\mathrm{c}} \subseteq\left[\text { pre- }^{\operatorname{int}}{ }_{()}\left(\text {pre-cl }_{(\omega)} \mathrm{H}\right)\right]^{\mathrm{c}}$, so we obtain from Proposition $2.10 \mathrm{H}^{\mathrm{c}} \subseteq$ pre-
 which means H is an ()$-s p-c$.

Proposition 3.4

The union of any collection of $(\omega)-s p-o$ sets is an $(\omega)-s p-o$ set.

Proof:

Let $\left\{\mathrm{G}_{\alpha}, \alpha \in \Lambda\right\}$ be any family of ()$-\mathrm{sp}-\mathrm{o}$ sets. Then there exists an ()$-\mathrm{p}-\mathrm{o}$ set H_{α} for each $\mathrm{G}_{\alpha}, \alpha \in \Lambda$ such that $\mathrm{H}_{\alpha} \subseteq \mathrm{G}_{\alpha} \subseteq \operatorname{pre}-\mathrm{cl}_{()} \mathrm{H}_{\alpha}$, so $\mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Lambda} \mathrm{G}_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Lambda}$ pre $\mathrm{cl}_{()} \mathrm{H}_{\alpha}$, but $\mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$ is an ()$-\mathrm{p}-\mathrm{o}$ set by Theorem 2.3, and $\mathrm{U}_{\alpha \in \Lambda}$ pre $-\mathrm{cl}_{()} \mathrm{H}_{\alpha} \subseteq$ pre$\mathrm{cl}_{())} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$ by Proposition 2.8. Now we get $\mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha} \subseteq \mathrm{U}_{\alpha \in \Lambda} \mathrm{G}_{\alpha} \subseteq \operatorname{pre-cl}_{()} \mathrm{U}_{\alpha \in \Lambda} \mathrm{H}_{\alpha}$. Hence $U_{\alpha \in \Lambda} G_{\alpha}$ is an ()$-s p-o$ set.

Corollary 3.5

The intersection of any collection of ()$-s p-c$ sets is an ()$-s p-c$ set.

Proof:

Let $\left\{\mathrm{F}_{\alpha}: \alpha \in \Lambda\right\}$ be any family of ()$-\mathrm{sp}-\mathrm{c}$ subsets of Z . we have to show that $\bigcap_{\alpha \in \Lambda} \mathrm{F}_{\alpha}$ is an $(\mathrm{G})-\mathrm{sp}-\mathrm{c}$ set, we know that $\mathrm{Z}-\bigcap_{\alpha \in \Lambda} \mathrm{F}_{\alpha}=\mathrm{U}_{\alpha \in_{\Lambda}}\left(\mathrm{Z}-\mathrm{F}_{\alpha}\right)$ (De Morgan's laws). But $\mathrm{U}_{\alpha \in \Lambda}\left(\mathrm{Z}-\mathrm{F}_{\alpha}\right)$ is an $(\mathrm{G})-\mathrm{sp}-\mathrm{c}$ set, so $\mathrm{Z}-\bigcap_{\alpha \in \Lambda} \mathrm{F}_{\alpha}$ is an $(\mathrm{g})-\mathrm{sp}-\mathrm{o}$ set. Hence $\bigcap_{\alpha \in \Lambda} \mathrm{F}_{\alpha}$ is an () $-\mathrm{sp}-\mathrm{c}$.

Remark 3.6

The intersection of two $(\mathcal{)}$ - $\mathrm{sp}-\mathrm{o}$ sets need not to be an $(\mathrm{g})-\mathrm{sp}-\mathrm{o}$ set, as we show in the following example:

Example

Let $Z=\{a, b, c, d\},()=\{Z, \emptyset,\{a\},\{d\},\{a, d\}\}$,
$(\mathrm{c})-\mathrm{PO}(\mathrm{Z})=\{\mathrm{Z}, \emptyset,\{\mathrm{a}\},\{\mathrm{d}\},\{\mathrm{a}, \mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\}$, and
(0) $\operatorname{SPO}(Z)=$
$\{Z, \emptyset,\{a\},\{d\},\{a, b\},\{a, c\},\{a, d\},\{b, d\},\{c, d\},\{a, b, c\},\{a, b, d\},\{b, c, d\},\{a, c, d\}\}$. Let $\quad H=$ $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\mathrm{G}=\{\mathrm{b}, \mathrm{d}\}, \mathrm{H}$ and G are G$)-\mathrm{sp}-\mathrm{o}$ sets, but $\mathrm{H} \cap \mathrm{G}=\{\mathrm{b}\}$ which is not an G$)-$ $\mathrm{sp}-\mathrm{o}$ set because there is not $(\mathrm{l})-\mathrm{p}-\mathrm{o}$ set $\mathrm{V}_{(\mathrm{l})}$, therefore $\mathrm{V} \subseteq\{\mathrm{b}\} \subseteq \operatorname{pre}^{\mathrm{cl}}(\mathrm{l}) \mathrm{V}$.

Remark 3.7

If H and G are two $(\mathrm{y})-\mathrm{sp}-\mathrm{c}$ sets, then $\mathrm{H} \cup \mathrm{T}$ need not $\mathrm{be}(\mathrm{g})-\mathrm{sp}-\mathrm{c}$ as we show in the following example:

Example

From the example of Remark 3.7 Let $\mathrm{H}=\{\mathrm{d}\}$ and $\mathrm{G}=\{\mathrm{a}, \mathrm{c}\}$.
H and G are $(\mathrm{g})-\mathrm{sp}-\mathrm{c}$ set, but $\mathrm{H} \cup \mathrm{G}=\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}$ is not an $(\mathrm{v})-\mathrm{sp}-\mathrm{c}$ set because $Z-\{a, c, d\}=\{b\}$ is not an $(v)-s p-o$ set.

The following diagram illustrates the relation among $(\mathcal{)}$-open, $(\mathcal{)}$-pre-open, and ())-semi-p-open set

Definition 3.8

1. The union of all $(\mathrm{O})-\mathrm{sp}-\mathrm{o}$ sets contained in H is called the $(\mathrm{y}$-semi-p-interior of H , denoted by s-p-int ${ }_{(\omega)}(\mathrm{H})$.
2. The intersection of all ()$-s p-c$ sets containing H is called the () -semi-p-closure of H, denoted by s-p-cl ${ }_{(\omega)}(\mathrm{H})$.

Proposition 3.9

Let H and T be two subsets of (Z, G)). Then, the following properties are true:

1. $\mathrm{H} \subseteq \mathrm{s}-\mathrm{p}-\mathrm{cl}_{(\mathrm{g})} \mathrm{H}$.
2. If $\mathrm{H} \subseteq \mathrm{G}$, then $\mathrm{s}-\mathrm{p}-\mathrm{cl}_{(\mathrm{c})} \mathrm{H} \subseteq \mathrm{s}-\mathrm{p}-\mathrm{cl}_{(\mathrm{c})} \mathrm{T}$.
3. $\mathrm{s}-\mathrm{p}-\mathrm{cl}_{())} \mathrm{H} \cup \mathrm{s}-\mathrm{p}-\mathrm{cl}_{()} \mathrm{G} \subseteq \mathrm{s}-\mathrm{p}-\mathrm{cl}_{()}(\mathrm{H} \cup \mathrm{T})$.
4. $\mathrm{s}-\mathrm{p}-\mathrm{cl}_{(\mathrm{G})}(\mathrm{H} \cap \mathrm{G}) \subseteq \mathrm{s}-\mathrm{p}-\mathrm{cl}_{()} \mathrm{H} \cap \mathrm{s}-\mathrm{p}-\mathrm{cl}_{()} \mathrm{G}$.

Proof:

1. It is clear from Definition 3.14(2).
2. Let $\mathrm{H} \subseteq \mathrm{T}$, from (1) we have $\mathrm{T} \subseteq \mathrm{s}-\mathrm{p}-\mathrm{cl}_{()} \mathrm{G}$, so $\mathrm{H} \subseteq \mathrm{s}-\mathrm{p}-\mathrm{cl}_{()} \mathrm{G}$ which is ()$-\mathrm{sp}-\mathrm{c}$ set, but $\mathrm{s}-\mathrm{p}-\mathrm{cl}_{(\mathrm{G})} \mathrm{H}$ is the smallest $(\mathrm{G})-\mathrm{sp}-\mathrm{c}$ set containing H , thus $\mathrm{s}-\mathrm{p}-\mathrm{cl}_{()} \mathrm{H} \subseteq \mathrm{s}-\mathrm{p}-\mathrm{cl}_{()} \mathrm{G}$.
3. Since $\mathrm{H} \subseteq \mathrm{H} \cup \mathrm{T}$ and $\mathrm{G} \subseteq \mathrm{H} \cup \mathrm{T}$, it follows from (1) that $s-p-\mathrm{cl}_{(\omega)} \mathrm{H} \subseteq s-$ $p-\mathrm{cl}_{())}(\mathrm{H} \cup \mathrm{T})$ and $s-p-\mathrm{cl}_{(\mathrm{l})} \mathrm{T} \subseteq s-p-\mathrm{cl}_{()}(\mathrm{H} \cup \mathrm{T})$, therefore $s-p-\mathrm{cl}_{(\omega)} \mathrm{H}$ $\cup s-p-\mathrm{cl}_{()} \mathrm{G} \subseteq s-p-\mathrm{cl}_{(\mathrm{G})}(\mathrm{H} \cup \mathrm{G})$.
4. Since $(\mathrm{H} \cap \mathrm{G}) \subseteq \mathrm{H}$ and $(\mathrm{H} \cap \mathrm{G}) \subseteq \mathrm{G}$, so semi-p-cl$(\mathrm{H})(\mathrm{H} \cap \mathrm{G}) \subseteq$ semi- $\mathrm{cl}_{()} \mathrm{H}$ and $s-p-\mathrm{cl}_{(\omega)}(\mathrm{H} \cap \mathrm{T}) \subseteq s-p-\mathrm{cl}_{())} \mathrm{U}$, thus $s-p-\mathrm{cl}_{(\mathrm{G})}(\mathrm{H} \cap \mathrm{G}) \subseteq s-p-\mathrm{cl}_{(\mathrm{c})} \mathrm{H} \cap$ $s-p-\mathrm{cl}_{()} \mathrm{T}$.

Theorem 3.10

H is $(\mathrm{y})-\mathrm{sp}-\mathrm{c}$ set $\Leftrightarrow \mathrm{H}=s-p-\mathrm{cl}_{() \mathrm{H}} \mathrm{H}$.
Proof: Is clear.

Corollary 3.11

$s-p-\mathrm{cl}_{()} \mathrm{Z}=\mathrm{Z}$.

Theorem 3.12

Let H and T be two subsets of (Z, N)). Then the following properties are true:

1. $s-p-\operatorname{int}_{()} \mathrm{H} \subseteq \mathrm{H}$.
2. If $\mathrm{H} \subseteq \mathrm{G}$, then $s-p-\operatorname{int}_{(\omega)} \mathrm{H} \subseteq s-p-\operatorname{int}_{(\omega)} \mathrm{G}$.
3. $s-p-\operatorname{int}_{(\omega)}(\mathrm{H} \cap \mathrm{G}) \subseteq s-p-\operatorname{int}_{(1)} \mathrm{H} \cap s-p-\operatorname{int}_{()} \mathrm{U}$
4. $\left.s-p-\operatorname{int}_{(1)} \mathrm{H} \cup s-p-\operatorname{int}_{(1)} \mathrm{G} \subseteq s-p-\operatorname{int}_{(1)} \mathrm{H} \cup \mathrm{U}\right)$.

Proof:

1. Clear.
2. Let $\mathrm{H} \subseteq \mathrm{T}$, from (1) we have $s-p-\operatorname{int}_{(\omega)} \mathrm{H} \subseteq \mathrm{H}$, so $s-p-\operatorname{int}_{()} \mathrm{H} \subseteq \mathrm{G}$ where $s-$ $p-\operatorname{int}_{()} \mathrm{H}$ is $(\mathrm{V})-\mathrm{sp}-\mathrm{o}$ set, but $s-p-\operatorname{int}_{()} \mathrm{T}$ is the $\operatorname{largest}(\mathrm{G})-\mathrm{sp}-\mathrm{o}$ set contained in T , hence $s-p-\operatorname{int}_{(1)} \mathrm{H} \subseteq s-p-\operatorname{int}_{()} \mathrm{G}$.
3. Since $(\mathrm{H} \cap \mathrm{T}) \subseteq \mathrm{H}$ and $(\mathrm{H} \cap \mathrm{T}) \subseteq \mathrm{T}$, so $s-p-\operatorname{int}_{()}(\mathrm{H} \cap \mathrm{T}) \subseteq s-p-$ $\operatorname{int}_{()} \mathrm{H}$ and $s-p-\operatorname{int}_{(\omega)}(\mathrm{H} \cap \mathrm{U}) \subseteq s-p-\operatorname{int}_{(\omega)} \mathbf{T}$, so $s-p-\operatorname{int}_{())}(\mathrm{H} \cap \mathrm{T}) \subseteq s-$ $p-\operatorname{int}_{()} \mathrm{H} \cap s-p-\operatorname{int}_{(\omega)} \mathrm{U}$.
4. Since $\mathrm{H} \subseteq \mathrm{H} \cup \mathrm{G}$ and $\mathrm{G} \subseteq \mathrm{H} \cup \mathrm{T}$, then $s-p-\operatorname{int}_{(\omega)} \mathrm{H} \subseteq s-p-\operatorname{int}_{(\omega)}(\mathrm{H} \cup \mathrm{G})$ and $s-p-\operatorname{int}_{()} \mathbf{T} \subseteq s-p-\operatorname{int}_{()}(\mathrm{H} \cup \mathrm{G})$. Thus $s-p-\operatorname{int}_{(1)} \mathrm{H} \cup s-p-\operatorname{int}_{()} \mathrm{T} \subseteq s-p-$ $\operatorname{int}_{()}(\mathrm{H} \cup \mathrm{G})$.

Theorem 3.13

H is an G$)-\mathrm{sp}-\mathrm{o} \quad \operatorname{set} \Leftrightarrow \mathrm{H}=s-p-\operatorname{int}_{()} \mathrm{H}$.
Proof: Is Clear.

Corollary 3.14

$s-p-\operatorname{int}_{(\omega)} \emptyset=\emptyset$
4. $\left.(G)_{1},()_{2}\right)$-semi-p-continuous function

Definition 4.1:[8]

Let $\left(Z,()_{1}\right)$ and $\left(Y,()_{2}\right)$ be two GTS's. A function $f: Z \rightarrow Y$ is said to be $\left(\mathrm{V}_{1},()_{2}\right)$-continuous function if the inverse image of any ()$_{2}$-open subset of Y is an ()$_{1}$-open set in Z.

Definition 4.2:[9]

A function $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ is called $\left(\mathrm{O}_{1},()_{2}\right)$-M- pre-open function if the direct image of any ()$_{1}$ - pre-open set in Z is an ()$_{2}$ - pre-open set in Y.

Definition 4.3:

A function $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ is called $\left(\mathrm{G}_{1},()_{2}\right)$-M-semi-p-open $\left((\mathrm{G})_{1},()_{2}\right)$-M-semi-pclosed) function if the direct image of any ()$_{1}$-semi-p-open $\left(\mathcal{V}_{1}\right.$-semi-p-closed) set in Z is an ()$_{2}$-semi-p-open $\left(\mathrm{O}_{2}\right.$-semi-p-closed) set in Y.

Definition 4.4

A function $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ is said to be $\left(\mathrm{O}_{1},()_{2}\right)$-semi-p-continuous function if the inverse image of any ()$_{2}$-open set in Y is an ()$_{1}$-semi-p-open set in Z.

Theorem 4.5

A function $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ is an $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-continuous function \Leftrightarrow the inverse image of any ()$_{2}$-closed set in Y is an ()$_{1}$-semi-p-closed set in Z.

Proof:

The 'if' part. Let F be any ()$_{2}$-closed set in Y, thus $(Y-F)$ is an ()$_{2}$-open set in Y, then $f^{-1}(Y-$ $F)$ is an ()$_{1}$-semi-p-open set in $Z\left(\right.$ since f is an $\left.(G)_{1},()_{2}\right)$-semi-p-continuous function), but $f^{-1}(Y-F)=Z-f^{-1}(F)$, then $f^{-1}(F)$ is an ()$_{1}$-semi-p-closed set.

The 'only if' part. Let H be any ()$_{2}$-open set in Y , thus $(\mathrm{Y}-\mathrm{H})$ is an ()$_{2}$-closed set in Y , then $\mathrm{f}^{-1}(\mathrm{Y}-\mathrm{H})$ is an ()$_{1}$-semi-p-closed set in Z (by hypothesis) but $\mathrm{f}^{-1}(\mathrm{Y}-\mathrm{H})=\mathrm{Z}-\mathrm{f}^{-1}(\mathrm{H})$, then $f^{-1}(H)$ is an ()$_{1}$-semi-p-open set in Z, therefore f is an $\left.(G)_{1},()_{2}\right)$-semi-p-continuous function.

Definition 4.6

A function $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ is said to be $\left.\left(\mathrm{O}_{1}, \mathrm{G}\right)_{2}\right)$-semi-p-irresolute function if the inverse image of any ()$_{2}$-semi-p-open set in Y is an ()$_{1}$-semi-p-open set in Z

Theorem 4.7

A function $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ is an $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-irresolute function \Leftrightarrow the inverse image of each ()$_{2}$-semi-p-closed set in Y is an ()$_{1}$-semi-p-closed set in Z.

Proof:

The "if" part. Let F be any ()$_{2}$-semi-p-closed set in Y, thus $(Y-F)$ is an ()$_{2}$-semi-p-open set in Y, then $f^{-1}(Y-F)$ is an ()$_{1}$-semi-p-open set in Z (since f is an $\left.(G)_{1},()_{2}\right)$-semi-p-irresolute function), but $f^{-1}(Y-F)=Z-f^{-1}(F)$, therefore $f^{-1}(F)$ is an ()$_{1}$-semi-p-closed set.

The 'only if' part . Let H be any ()$_{2}$-semi-p-open set in Y, thus $(Y-H)$ is an ()$_{1}$-semi-p-closed set in Y then $\mathrm{f}^{-1}(\mathrm{Y}-\mathrm{H})$ is an ()$_{1}$-semi-p-closed set in Z (by hypothesis), but $\mathrm{f}^{-1}(\mathrm{Y}-\mathrm{H})=\mathrm{Z}-$ $f^{-1}(H)$, then $f^{-1}(H)$ is an ()$_{1}$-semi-p-open set in Z, therefore f is an $\left.\left.(G)_{1}, G\right)_{2}\right)$-semi-p-irresolute function.

Proposition 4.8

Every $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-irresolute function is an $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-continuous function.

Proof:

Let f be any $\left(\mathcal{O}_{1},()_{2}\right)$-semi-p-irresolute function from $\left(\mathrm{Z},()_{1}\right)$ into $\left(\mathrm{Y},()_{2}\right)$. Let H by any ()$_{2^{-}}$open in Y, thus H is an ()$_{2}$-semi-p- open set (Corollary 3.11), then $f^{-1}(H)$ is an ()$_{1}$-semi-p-open set in Z (since f is $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-irresolute function), therefore f is an $\left.(G)_{1},()_{2}\right)$-semi-pcontinuous function.

Remark 4.9

The reverse of Proposition 4.7 is not correct in general as we show in the following example:

Example

Let $Z=\{1,2,3,4\},()_{1}=\{Z, \emptyset,\{1\},\{4\},\{1,4\}\}$,
()$_{1}-\mathrm{PO}(\mathrm{Z})=\{\mathrm{Z}, \emptyset,\{1\},\{4\},\{1,4\},\{1,2,4\},\{1,3,4\}\}$, and
$\mathrm{O}_{1}-\mathrm{SPO}(Z)=()_{1}-\operatorname{PO}(Z) \cup\{\{1,2\},\{1,3\},\{2,4\},\{3,4\},\{1,2,3\},\{1,2,4\},\{2,3,4\}\}.$,
Let $\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},()_{2}=\{\varnothing,\{\mathrm{b}, \mathrm{d}\}\},()_{2}-\mathrm{PO}(\mathrm{Y})=\{\varnothing,\{\mathrm{b}, \mathrm{d}\},\{\mathrm{b}\},\{\mathrm{d}\}\}$,
$\mathrm{H}_{2}-\mathrm{SPO}(\mathrm{Y})=\mathbb{P}(\mathrm{Y})$ (The power set of Y$)$.
Define $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ such that $f(1)=f(2)=\{d\}, f(3)=\{b\}$
f is an $\left.(G)_{1},()_{2}\right)$-semi-p-continuous function. But not $\left.\left(\mathrm{G}_{1}, \mathrm{G}\right)_{2}\right)$-semi-p-irresolute function, since $\{b\}$ is an ()$_{2}$-semi-p-open set in Y, but $f^{-1}(\{b\})=\{3\}$ is not an ()$_{1}$-semi-p-open set in Z.

Proposition 4.10

Every $\left(\mathrm{G}_{1},()_{2}\right)$-continuous function is an $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-continuous function.

Proof:

Let f be any $\left(\mathrm{G}_{1},()_{2}\right)$ - continuous function from $\left(\mathrm{Z},()_{1}\right)$ into $\left.(\mathrm{Y}, \mathrm{O})_{2}\right)$. Let H by any ()$_{2}$-open in Y, it follows from Definition 4.1 that $f^{-1}(H)$ is an $)_{1^{-}}$- open set in Z, but every ()$_{1}$ - open set is an ()$_{1}$-semi-p -open. Therefore f is an $\left.(G)_{1},()_{2}\right)$-semi-p-continuous function.

Remark 4.11

The reverse of Remark 4.9 is not correct in general as we show in the following example:

Example

Let $Z=\{1,2,3\},()_{1}=\{\varnothing,\{1\},\{2\},\{1,2\}\}$, and $\mathrm{G}_{1}-\mathrm{PO}(Z)=\{\varnothing,\{1\},\{2\},\{1,2\}\}$,
$\mathrm{G}_{1}-\mathrm{SPO}(\mathrm{Z})=\mathbb{P}(Z)$ (The power set of Z).
Let $\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\},()_{2}=\{\varnothing,\{\mathrm{b}, \mathrm{d}\}\}, \mathrm{G}_{2}-\mathrm{PO}(\mathrm{Y})=\{\varnothing,\{\mathrm{b}, \mathrm{d}\},\{\mathrm{b}\},\{\mathrm{d}\}\}$,
$\mathrm{G}_{2}-\mathrm{SPO}(\mathrm{Y})=\mathbb{P}(\mathrm{Y})$ (The power set of Y$)$.
Define $f:\left(\mathrm{Z},\left(\mathrm{V}_{1}\right) \rightarrow\left(\mathrm{Y}, \mathrm{O}_{2}\right)\right.$ such that $f(1)=f(2)=\{a\}, f(3)=\{b\}$,
f is an $\left.(G)_{1},()_{2}\right)$-semi-p-continuous function, but it is not an $\left(G_{1},()_{2}\right)$-continuous function, since $\{b, d\}$ is an \mathcal{V}_{2}-open set in Y, but $f^{-1}(\{b, d\})=\{3\}$ is not an \mathcal{V}_{1}-open set in Z.

Proposition 4.12

The composition of $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-irresolute function and $\left(\mathrm{G}_{2},()_{3}\right)$-semi-p-irresolute function is an $\left.(G)_{1},()_{3}\right)$-semi-p- irresolute function.

Proof

Let $\mathrm{f}:\left(\mathrm{Z},\left(\mathrm{V}_{1}\right) \rightarrow(\mathrm{Y}, \mathrm{G})_{2}\right)$ be $\left.(\mathrm{G})_{1},()_{2}\right)$-semi-p-irresolute function and $\mathrm{g}:\left(\mathrm{Y},\left(\mathrm{V}_{2}\right) \rightarrow(\mathrm{W}, \mathrm{G})_{3}\right)$ be $\left(\mathrm{G}_{2},(\mathrm{G})_{3}\right)$-semi-p-irresolute functions, we have to show that $\left.\left.\mathrm{g} \circ \mathrm{f}:(\mathrm{Z}, \mathrm{G})_{1}\right) \rightarrow(\mathrm{W}, \mathrm{G})_{3}\right)$ is an $\left(()_{1},()_{3}\right)$-semi-p-irresolute function. Let H be any ()$_{3}$-semi-p-open set in W , then $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{H})=$ $\mathrm{f}^{-1} \circ \mathrm{~g}^{-1}(\mathrm{H})=\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{H})\right)$, but $\mathrm{g}^{-1}(\mathrm{H})$ is an ()$_{2}$-semi-p-open set in Y (since g is an $\left.(G)_{2},()_{3}\right)$-semi-p-irresolute function), and $f^{-1}\left(g^{-1}(H)\right)$ is an ()$_{1}$-semi-p-open set in Z (since f is an $\left.(G)_{1},()_{2}\right)$-semi-p-irresolute functions), therefore $g \circ f$ is an $\left.(G)_{1},()_{3}\right)$-semi-p-irresolute functions.

Remark 4.13

The composition of $\left(()_{1},()_{2}\right)$-semi-p-continuous function and $\left.(G)_{2},()_{3}\right)$-semi-p-continuous function need not to be $\left(\mathrm{G}_{1},()_{3}\right)$-semi-p-continuous function as we show in the following example:

Example

Let $Z=\{1,2,3\},()_{1}=\{Z, \emptyset,\{1,2\}\}$,
$\mathrm{Y}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}, \quad()_{2}=\{\mathrm{Y}, \emptyset,\{\mathrm{a}, \mathrm{b}\}\}$,
$\mathrm{W}=\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}, \quad()_{3}=\{\mathrm{W}, \emptyset,\{\mathrm{i}, \mathrm{k}\}\}$,
()$_{1}-\mathrm{PO}(\mathrm{Z})=\{\mathrm{Z}, \emptyset,\{1\},\{2\},\{1,2\},\{1,3\},\{2,3\}\}=()_{1}-\mathrm{SPO}(\mathrm{Z})$
$\mathrm{G}_{2}-\mathrm{PO}(\mathrm{Y})=\{\mathrm{Y}, \emptyset,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}=()_{2}-\mathrm{SPO}(\mathrm{Y})$, and
()$_{3}-\mathrm{PO}(\mathrm{W})=\{\mathrm{W}, \emptyset,\{\mathrm{i}\},\{\mathrm{k}\},\{\mathrm{i}, \mathrm{j}\},\{\mathrm{i}, \mathrm{k}\},\{j, \mathrm{k}\}\}=()_{3}-\mathrm{SPO}(\mathrm{W})$

Define $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ by $\mathrm{f}(1)=\mathrm{f}(3)=\{\mathrm{b}\}, \mathrm{f}(2)=\{\mathrm{c}\}$.

And $\left.\left.g:(\mathrm{Y}, \mathrm{G})_{2}\right) \rightarrow(\mathrm{W}, \mathrm{G})_{3}\right)$ by $\mathrm{g}(\mathrm{a})=\mathrm{g}(\mathrm{c})=\{\mathrm{j}\}, \mathrm{g}(\mathrm{b})=\{\mathrm{k}\}$.
Then $g \circ f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{W},()_{3}\right)$ is defined by:
$g \circ f(1)=g(f(1))=g(b)=\{k\}$,
$\mathrm{g} \circ \mathrm{f}(2)=\mathrm{g}(\mathrm{f}(2))=\mathrm{g}(\mathrm{c})=\{\mathrm{j}\}$,
$g \circ f(3)=g(f(3))=g(b)=\{k\}$,
f is an $\left(\mathrm{G}_{1},()_{2}\right)$-semi-p-continuous function and g is an $\left(\mathrm{G}_{2},()_{3}\right)$-semi-p-continuous function. But $g \circ f$ is not an $\left.(G)_{1},()_{3}\right)$-semi-p-continuous function, since $\{i, k\}$ is an ()$_{3}$-semi-p-open set in W , but $\mathrm{f}^{-1}(\{\mathrm{i}, \mathrm{k}\})=\{3\}$ is not ()$_{1}$-semi-p-open set in Z .

Proposition 4.14

The composition of an $\left(\mathrm{V}_{1},()_{2}\right)$-semi-p-continuous function and $\left(\mathrm{G}_{2},()_{3}\right)$ - continuous function is an $\left(\mathrm{G}_{1},()_{3}\right)$-semi-p-continuous function.

Proof:

Let $\mathrm{f}:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ be any $\left.(\mathrm{G})_{1},()_{2}\right)$-semi-p-continuous function and $\mathrm{g}:\left(\mathrm{Y},\left(\mathrm{O}_{2}\right) \rightarrow\right.$ $\left(\mathrm{W},()_{3}\right)$ be any $\left.(\mathrm{G})_{2},()_{3}\right)$ - continuous function. We have to show that $\mathrm{g} \circ \mathrm{f}:\left(\mathrm{Z},()_{1}\right) \rightarrow$ $\left.(\mathrm{W}, \mathrm{G})_{3}\right)$ is an $\left(\mathrm{G}_{1},()_{3}\right)$-semi-p- continuous function. Let H be any ()$_{3}$ - open set in W . Then, $\mathrm{g}^{-1}(\mathrm{H})$ is an ()$_{2}$-open set in Y (since g is an $\left(\mathrm{G}_{2},()_{3}\right)$-continuous function), so $\mathrm{f}^{-1}\left(\mathrm{~g}^{-1}(\mathrm{H})\right.$ is an ()$_{1}$-semi-p-open set in Z (since f is an $\left.\left(\mathrm{G}_{1}, \mathrm{G}\right)_{2}\right)$-semi-continuous function), but $(\mathrm{g} \circ \mathrm{f})^{-1}(\mathrm{H})=$ $f^{-1} \circ g^{-1}(H)=f^{-1}\left(g^{-1}(H)\right.$. Hence $g \circ f$ is an $\left(G_{1},()_{3}\right)$-semi-p-continuous function.

Theorem 4.15

Let $f:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ be an onto function, then f is an $\left(\mathrm{O}_{1},()_{2}\right)$-M-semi-p-open function if and only if it is an $\left(()_{1},()_{2}\right)$-M-semi-p-closed function.

Proof:

The "if" part. Let F be any ()$_{1}$-semi-p-closed set, so $(Z-F)$ is an ()$_{1}$-semi-p-open set, then $f(\mathrm{Z}-\mathrm{F})$ is an ()$_{2}$-semi-p-open set (since f is an $\left(\mathrm{G}_{1},()_{2}\right)$-M-semi-p-open function), but $f(\mathrm{Z}-\mathrm{F})=\mathrm{Y}-f(\mathrm{~F})$, therefore $f(\mathrm{~F})$ is an ()$_{2}$-semi-p-closed. Hence f an $\left(\mathrm{G}_{1},()_{2}\right)$-M-semip -closed function.

The 'only if" part. Let H be any ()$_{1}$-semi-p-open set, so $(\mathrm{Z}-\mathrm{H})$ is an ()$_{1}$-semi-p-closed set, then $f(\mathrm{Z}-\mathrm{H})$ is an ()$_{2}$-semi-p-closed set (since f is an $\left(\mathrm{G}_{1},()_{2}\right)$-M-semi-p-closed function), but $\mathrm{f}(\mathrm{Z}-\mathrm{H})=\mathrm{Y}-f(\mathrm{H})$, therefore $f(\mathrm{H})$ is an ()$_{2}$-semi-p-open. Hence f an $\left(\mathrm{O}_{1},()_{2}\right)$-M-semip -closed function.

Theorem 4.16

Let $f:\left(\mathrm{Z},\left(\mathrm{G}_{1}\right) \rightarrow\left(\mathrm{Y},\left(\mathrm{V}_{2}\right)\right.\right.$ be a bijective function, then f is an $\left(\mathrm{V}_{1},()_{2}\right)$-M-semi-p-open function, $\Leftrightarrow f^{-1}:\left(\mathrm{Y},()_{2}\right) \rightarrow\left(\mathrm{Z},()_{1}\right)$ is an $\left(\mathrm{O}_{1},()_{2}\right)$-semi-p-irresolute function.

Proof

The 'if' part. Suppose that f is an $\left(\mathrm{V}_{1},()_{2}\right)$-M-semi-p-open function, to show that f^{-1} is an $\left.(\mathrm{G})_{1},()_{2}\right)$-semi-p-irresolute function. Let H be any ()$_{1}$-semi-p-open set in Z , then $\left(\mathrm{f}^{-1}\right)^{-1}(\mathrm{H})=$
$f(H)$ is an ()$_{2}$-semi-p-open set in Y (since f is an $\left(G_{1},()_{2}\right)$-M-semi-p-open function), so f^{-1} is an $\left.(G)_{1},()_{2}\right)$-semi-p- irresolute function.

The "only if" part. Suppose that f^{-1} is an $\left(\mathcal{G}_{1},()_{2}\right)$-semi-p-irresolute function, to show that f is an $\left(\mathcal{V}_{1},()_{2}\right)$-M-semi-p-open function. Let H be any ()$_{1}$-semi-p-open set in Z, then $\left(f^{-1}\right)^{-1}(H)=f(H)$ is an ()$_{2}$-semi-p-open set in $\left.Y\left(\text { since } f^{-1} \text { is an }(G)_{1}, G\right)_{2}\right)$-semi-p-irresolute function), so f is an $\left(\mathrm{G}_{1},()_{2}\right)$-M-semi-p-open function.

Definition 4.17

A bijection function $\mathrm{f}:\left(\mathrm{Z},()_{1}\right) \rightarrow\left(\mathrm{Y},()_{2}\right)$ is called $\left.(\mathrm{G})_{1},()_{2}\right)$-semi-p-homeomorphism function if f is both $\left.(G)_{1},()_{2}\right)$-semi-p-irresolute function and $\left.(G)_{1},()_{2}\right)$-M-semi-p-open function.

References

1.Engelking, R., General Topology, Sigma Ser. Pure Math. 6, Heldermann Verlag Berlin, 1989. 2.Mashhour, A.S. ; Abd El-Monsef, M.E. ; El-Deeb, S.N. On Pre-Topological Spaces Sets, Bull. Math. Dela Soc. R.S. de Roumanie, 1984,28(76), 39-45.
3.Navalagi G.B.Definition Bank in General Topology, Internet 2000.
4.Sharma, L.J.N.Topology, Krishna Prakashan Media (P) Ltd, India, Twenty Fifth Edition, 2000.
5.Al-Khazraji,R.B., On Semi-P-Open Sets, M.Sc. Thesis, University of Baghdad, 2004.
6.Dhana Balan, A.P. ; Padma, P. Separation Spaces in Generalized Topology, International Journal of Mathematics Research, 2017, 9, 1, 65-74. ISSN 0976-5840 .
7.Suaad, G. Gasim ;Muna L. Abd Ul Ridha, New Open Set on Topological Space with Generalized Topology, Journal of Discrete Mathematical Sciences and Cryptography, to appear.
8.Basdouria, I.; Messaouda, R.; Missaouia, A. Connected and Hyperconnected Generalized Topological Spaces, Journal of Linear and Topological Algebra, 2016, 05, 04,229-234
9.Suaad, G. Gasim ; Mohanad, N. Jaafar , New Normality on Generalized Topological Spaces, Journal of Physics: Conference Series, 2021.

