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Abstract 

In this paper, the linear system of Fredholm integral equations is solving using Open 
Newton-Cotes formula, which we use five different types of Open Newton-Cotes formula to 
solve this system.  

Compare the results of suggested method with the results of another method (closed 
Newton-Cotes formula)    

Finally, at the end of each method, algorithms and programs developed and written in 
MATLAB (version 7.0) and we give some numerical examples, illustrate suggested method. 

Keyword: Open Newton – Cotes formula, Closed Newton-Cotes formula, System of linear 
Fredholm integral equation.  

 

 Introduction 

The problem of Newton-Cotes formula arises when the integration cannot be carried out 
exactly or when the function is known only at a finite number of data. Furthermore, Newton-
Cotes rules are primary tool used by engineers and scientists to obtain approximate answers 
for definite integrals that cannot be solved analytically. [ 1 ] 

This paper is organized as follows: in Section 2, we introduce a brief introduction to the 
Open Newton-Cotes and some basic definitions for integral equation. In Section 3, we 
construct our methods to approximate the solution of linear system of Fredholm integral 
equations. Numerical examples are given in Section 4. 
 
1- Review and Background 
1.1 Some definitions of integral equation 
Definition 1-1: [ 2 ] 

Integral equation is an equation in which the unknown function appears under an integral 
sign. 

A general form of linear integral equations may be written as follows:  
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Where  h(x) and f(x)are given function of x,  t)k(x, is a function of two variables x and t 

called kernel of integral equation which are also known, while  u(x) is to be determined and 

  is a scalar parameter [in this paper we take 1  ].  

Definition 1-2: [ 2 ] 

If the function h(x) =1, then the linear integral equation (1) is said to be an equation of the 
second kind (i.e.) 
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Definition 1-3: [ 2 ]  

The integral equation (1) is called Fredholm integral equation (FIE) if    b b(x)  , where 

b is constant such that      ab   . Therefore, the integral equations 
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Represent the one-dimensional Fredholm integral equation of the first and second kind 
respectively.  

1.2 Open Newton-Cotes formula 

In numerical analysis, the Newton-Cotes (N-C) formulas are a group of formulas of 
numerical integration based on evaluating the integrand at equally- spaced points. They are 
named after Isaac Newton and Roger Cotes [ 3 ].  There are two types of N-C formulas: 

- The (closed) type which uses the function value at all point in the domain. 

- The (open) type which does not use the function value at the initial and end point of the 
domain . 

Numerical integration formulas of the form )()()()(
00

fExfwdxxfdxxf
b
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n
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where )( fE  is the error, niforhixxi ,...,1,0*0  ,  

and niwi ,...,1,0  are the weights, is called closed Newton-Cotes formulas  

Some of the common closed N-C formulas are as follows:  

- Trapezoidal rule , Simpson 1/3 rule and Simpson 3/8 rule 
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Numerical integration formulas of the form )()()()(
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where )( fE  is the error, 1,...,0,1*)1(0  niforhixxi ,    

  and niwi ,...,1,0  are the weights, is called open Newton-Cotes formulas.  

Some of the common open N-C formulas with their error terms are a follows: [ 1 ]  
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2- Solution of a system of linear Fredholm integral equations of the second kind Using 
Open N-C formulas 

In this section, we use the common formula of Open N-C to solve the system of linear 
Fredholm integral equations of the second kind. 

Consider the system of linear Fredholm integral equations of the second kind 
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where nsrkfNn rsr ,...,2,1,,,,   are assumed to be continuous function. 

Suppose that the interval [a, b] is divided into n+2 equal subintervals of length
2
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hbxn   and )( ir xu  for  nrni ,...,2,1,,...,1,0   can be determined by: 
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Thus, we are approximating each integral term by the open N-C formulas. 

2.1 Using Open N-C: with n=0 (Midpoint Rule) 

We replace the integral term that appeared in the right hand side of the above equation by the 
composite midpoint rule which illustrate in the following theorem: [ 4 ] 
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Theorem: Let ],[2 baCf  . With )22/()(  mabh  and hjαxj )1(   
12,...,0,1,  mj  

, the midpoint rule for n=2m subintervals is: 
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 for some  ),( ba . 

If the number of subinterval is even we apply open N-C with (n=1) rule. Therefore 
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  denote the numerical solution at   , m=n/2,  

Transform all the terms involving the solution  
ir

u
2

2/,,1,0,,,2,1, nminr     to left 

side of the equation (5) and 
irf 2
 to the right side. 
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Remark: equation (6) has unique solution if the determent of the matrix K not equal to zero    

Also, if the number of subintervals is odd, we get combination between open N-C: n=1 
and open N-C: n=0: Midpoint rules. 

Therefore mninru
ir

 )2(,,2,1,,,2,1,  where 2/)1(  nm  are obtained by 

solving the equations: 
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Transform all the terms involving the solution mninru
ir

 )2(,,2,1,,,2,1,   

where 2/)1(  nm  to left side of the equation (7) and 
ir
f  to the right side. 
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Finally, each of system in equations (6) and (7) can be written in matrix form as FKU   
where K is the matrix of the coefficients, U is the matrix of solution and F is the matrix of 

non-homogeneous part. To find the approximate solution nru
ir

,,2,1,  we  find 

FKU 1 . 

The Algorithm of Numerical Solution of a S ystem of linear Fredholm Integral Equations 
Using Open N-C: {n=0} (SONCn0) 

Step 1:  compute  
2



n

ab
h  , Nn  

Step 2:  

 Compute  2/,,1,0,,,2,1,
2

nminru
ir

   , using equation (6) when the number of 

subintervals is even. 

 Compute mninru
ir

 )2(,,2,1,,,2,1,  where 2/)1(  nm  , using equation 

(7) when the number of subintervals is odd. 
 
Step 3:  solve the resulting system by multiplication it with K-1. 

2.2 Using Open N-C: n=1 Rule 

By the same steps of condition on equation (4), use the open N-C where n=1 formula to 
approximate each integral term in equation (4). If the number of subintervals is (a multiple of 
three). 

Therefore mninru
ir

 )2(,,2,1,,,2,1,  where 3/)2(  nm    are obtained by 

solving the equations:   

we apply open N-C with (n=1). Therefore nru
ir

,,2,1,   mni  )2(,,2,1,  , 

where 3/)2(  nm are obtained by solving the equations: where 3/)2(  nm  
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where 
ir
u  denote the numerical solution at  , 

3/)2(  nmwhere  

Transform all the terms involving the solution  m-2)+(n,…1,2,=i,,,2,1, nru
ir

   to left 

side of the equation (8) and 
i
fr  to the right side. 
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Also, if the number of subintervals is (a multiple of three +1), we get combination between 
open N-C : n=0 Midpoint and open N-C: n=1 rules. 

Therefore mninru
ir

 )1(,,2,1,,,2,1,    where 3/)1(  nm  are obtained by 

solving the equation:  
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Transform all the terms involving the solution   mninru
ir

 )1(,,2,1,,,2,1,   , 

where 3/)1(  nm  to left side of the equation (10) and 
ir
f  to the right side. 

if the number of subintervals is (a multiple of three +2), we get combination between open N-
C : n=0 (Midpoint method) and open N-C : n=1 rules. 

Therefore mninru
ir

 )1(,,2,1,,,2,1,  , where 3/nm  are obtained by solving 

the equation:  
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Transform all the terms involving the solution mninru
ir

 )1(,,2,1,,,2,1,   where 

3/nm  to left side of the equation (11) and 
ir
f  to the right side. 

Finally, each system in equations (9), (10) and (11) can be written in a matrix form as 
FKU   where K is the matrix of the coefficients, U is the matrix of solution and F is the 

matrix of non-homogeneous part. To find the approximate solution nrur
i

,,2,1,  we find  

FKU 1  

The Algorithm of Open N-C {n=1} (SONCn1) 
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Step 1:  compute  
2



n

ab
h  , Nn  

Step 2:  

 Compute  m-2)+(n,…1,2,=i,,,2,1, nru
ir

  where  3/)2(  nm  , using equation 

(9) when the number of subintervals is (a multiple of 3). 
 Compute  mninru

ir
 )1(,,2,1,,,2,1,    where 3/)1(  nm  , using equation 

(10) when the number of subintervals is (a multiple of 3 +1). 

 Compute  mninru
ir

 )1(,,2,1,,,2,1,    where 3/nm  , using equation (11) 

when the number of subintervals is (a multiple of 3 +2). 
Step 3:  solve the resulting system by multiplication it with K

-1. 

2.3 Using Open N-C: n=2 Rule 

The open N-C: n=2 formula can be used to approximate equation (4) such that: 

If the number of subintervals is (a multiple of four), we apply the open N-C: n=2 formula to 
each integral term in equation (4) as the form: 
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Transform all the terms involving the solution m-2)+(n,…1,2,=i,,,2,1, nru
ir

  where 

4/)2(  nm  to the left side of the equation (12) and 
ir
f  to the right side. 

Also, if the number of subintervals (n+2) is (a multiple of four +1), we get combination 
between open N-C: n=0, open N-C: n=1 and open N-C: n=2 rules and 

mnimru
ir

 )1(,2,1,,,2,1,    where 4/)1(  nm  are obtained by solving the system of 

equations:  
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Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

4/)1(  nm  to the left side of the equation (13) and 
ir
f  to the right side. 

If the number of subintervals (n+2) is (a multiple of four +2), we get combination between 

open N-C: n=0 and open N-C: n=2 rules and mnimru
ir

 )1(,2,1,,,2,1,   , where 

4/nm  are obtained by solving the system of equations.  
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Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

  where 

4/nm   to the left side of the equation (14) and 
ir
f  to the right side.
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]Also, if the number of subintervals (n+2) is (a multiple of four +3) we get combination 

between open N-C: n=1 and open N-C: n=2 rules and mnimru
ir

 )1(,2,1,,,2,1,  , 

where 4/)1(  nm  are obtained by solving the system of equations.  
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 …..….(15) 

Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

  where 

4/)1(  nm  to the left side of the equation (15) and 
ir
f  to the right side. 

Finally, each system in equations (12), (13), (14) and (15) can be written in a matrix form as 
FKU  , where K is the matrix of the coefficients, U is the matrix of solution and F is the 

matrix of non-homogeneous part. To find the approximate solution nru
ir

,,2,1,  , we find  

FKU 1  

The Algorithm of Open N-C:{n=2} (SONCn2) 

Step 1:  compute  
2



n

ab
h  , Nn  

Step 2:  

 Compute  m-2)+(n,…1,2,=i,,,2,1, nru
ir

  where  4/)2(  nm  , using equation 

(12) when the number of subintervals is (a multiple of 4). 

 Compute  mninru
ir

 )1(,,2,1,,,2,1,    where 4/)1(  nm  , using equation 

(13) when the number of subintervals is (a multiple of 4 +1). 
 Compute  mninru

ir
 )1(,,2,1,,,2,1,    where 4/nm   , using equation 

(14) when the number of subintervals is (a multiple of 4 +2). 

 Compute  mninru
ir

 )1(,,2,1,,,2,1,    where 4/)1(  nm  , using equation 

(15) when the number of subintervals is (a multiple of 4 +3). 
 
Step 3:  solve the resulting system by multiplication it with K

-1
. 

2.4 Using Open N-C: n=3 Rule 

The open N-C: n=3 formula can be used to approximate equation (4) such that: 

If the number of subintervals is (a multiple of five) we apply the open N-C: n=3 formula to 
each integral term in equation (4) as the form: 
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Transform all the terms involving the solution m-2)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

5/)2(  nm  to the left side of the equation (16) and 
ir
f  to the right side. 
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Also, if the number of subintervals (n+2) is (a multiple of five +1) we get combination 

between open N-C: n=1 and open N-C: n=3 rules and mnimru
ir

 )1(,2,1,,,2,1,  , 

where 5/)1(  nm  are obtained by solving the system of equations.  
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Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

5/)1(  nm  to the left side of the equation (17) and 
ir
f  to the right side. 

If the number of subintervals (n+2) is (a multiple of five +2) we get combination between 

open N-C: n=0 and open N-C: n=3 rules and mnimru
ir

 )1(,2,1,,,2,1,   , where 

5/nm  are obtained by solving the system of equations.  
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Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

  where 

5/nm   to the left side of the equation (18) and 
ir
f  to the right side.

 Also, if the number of subintervals (n+2) is (a multiple of five +3) we get combination 
between open N-C: n=1 and open N-C: n=3 rules and mnimru

ir
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where 5/)1(  nm  are obtained by solving the system of equations.  
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Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

5/)1(  nm  to the left side of the equation (19) and 
ir
f  to the right side. 

And, if the number of subintervals (n+2) is (a multiple of five +4) we get combination 
between open N-C: n=2 and open N-C: n=3 rules and mnimru

ir
 )1(,2,1,,,2,1,  , 

where 5/)2(  nm  are obtained by solving the system of equations.  
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Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

5/)2(  nm  to the left side of the equation (20) and 
ir
f  to the right side. 

Finally, each system in equations (16), (17), (18), (19) and (20) can be written in a matrix 

form as FKU   where K is the matrix of the coefficients, U is the matrix of solution and F  
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is the matrix of non-homogeneous part. To find the approximate solution nru
ir

,,2,1,   we 

find  FKU 1  

The Algorithm of Open N-C {n=3} (SONCn3) 

Step 1:  compute  
2



n

ab
h  , Nn  

Step 2:  

 Compute  m-2)+(n,…1,2,=i,,,2,1, nru
ir

  where  5/)2(  nm  , using equation 

(16) when the number of subintervals is (a multiple of 5). 
 Compute  mninru

ir
 )1(,,2,1,,,2,1,    where 5/)1(  nm  , using equation 

(17) when the number of subintervals is (a multiple of 5 +1). 

 Compute  mninru
ir

 )1(,,2,1,,,2,1,    where 5/nm  , using equation (18) 

when the number of subintervals is (a multiple of 5 +2). 
 Compute  mninru

ir
 )1(,,2,1,,,2,1,    where 5/)1(  nm  , using equation 

(19) when the number of subintervals is (a multiple of 5 +3). 

 Compute  mninru
ir

 )1(,,2,1,,,2,1,    where 5/)2(  nm  , using equation 

(20) when the number of subintervals is (a multiple of 5 +4). 
 
Step 3:  solve the resulting system by multiplication it with K

-1. 

2.4 Using Open N-C: n=4 Rule 

The open N-C: n=4 formula can be used to approximate equation (4) such that: 

If the number of subintervals is (a multiple of six) we apply the open N-C: n=4 formula to 
each integral term in equation (4) as the form: 

 
6/)2()2(,,2,1,,,2,1,,,2,1

11141114261411
10

3
)2())2(()1())1((5544332211






nmwheremninsnrfor

ukukukukukukuk
h

fu
mnmnimnmniiiiiiii srssrssrssrssrssrssrsrr




….(21) 

Transform all the terms involving the solution m-2)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

6/)2(  nm  to the left side of the equation (21) and 
ir
f  to the right side. 

Also, if the number of subintervals (n+2) is (a multiple of six +1) we get combination 
between open N-C: n=0, open N-C: n=3, and open N-C: n=4 rules and 

mnimru
ir

 )1(,2,1,,,2,1,  ,  where 6/)1(  nm  are obtained by solving the system of 

equations.  

5/)1()1(,,2,1,,,2,1,,,2,1

]111411[
10

3
1111[

24

5
2

)1())1(()(665544332211 ]






nmwheremninsnrfor

ukukuk
h

ukukukuk
h

uhkfu
mnmnimnmniiiiiiiii srssrssrssrssrssrssrssrsrr





....(22)                                                                                                                     

Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

6/)1(  nm  to the left side of the equation (22) and 
ir
f  to the right side. 
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If the number of subintervals (n+2) is (a multiple of six +2) we get combination between open 

N-C: n=0 and open N-C: n=4 rules and mnimru
ir

 )1(,2,1,,,2,1,    where 6/nm  
are obtained by solving the system of equations.  

6/)1(,,2,1,,,2,1,,,2,1

]1114261411[
10

3
2

)1())1(()(44332211

nmwheremninsnrfor

ukukukukuk
h

uhkfu
mnmnimnmniiiiiii srssrssrssrssrssrsrr










  .….(23) 

Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

6/nm   to the left side of the equation (23) and 
ir
f  to the right side.

 Also, if the number of subintervals (n+2) is (a multiple of six +3) we get combination 

between open N-C: n=1 and open N-C: n=4 rules and mnimru
ir

 )1(,2,1,,,2,1,  , 

where 6/)1(  nm  are obtained by solving the system of equations.  

6/)1()1(,,2,1,,,2,1,,,2,1

]11141411[
10

3

2

3

2

3
)1())1(()(44332211






nmwheremninsnrfor

ukukukuk
h

uk
h

uhk
h

fu
mnmnimnmniiiiiii srssrssrssrssrssrsrr





….(24) 

Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

  where 

6/)1(  nm  to the left side of the equation (24) and 
ir
f  to the right side. 

If the number of subintervals (n+2) is (a multiple of six +4) we get combination between open 
N-C: n=2 and open N-C: n=4 rules and mnimru

ir
 )1(,2,1,,,2,1,  , where 6/)2(  nm  

are obtained by solving the system of equations.  

6/)2()1(,,2,1,,,2,1,,,2,1

]111411[
10

3
]22[

3

4
)1())1(()(44332211






nmwheremninsnrfor
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h

ukukuhk
h

fu
mnmnimnmniiiiiii srssrssrssrssrssrsrr





….(25) 

Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

6/)2(  nm  to the left side of the equation (25) and ifr  to the right side. 

Also, if the number of subintervals (n+2) is (a multiple of six +5) we get combination 
between open N-C: n=3 and open N-C: n=4 rules and mnimru

ir
 )1(,2,1,,,2,1,  , 

where 6/)3(  nm  are obtained by solving the system of equations.  

6/)3()1(,,2,1,,,2,1,,,2,1

]111411[
10

3
]1111[

24

5
)1())1(()(5544332211
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h
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....(26) 

Transform all the terms involving the solution m-1)+(n,…1,2,=i,,,2,1, nru
ir

 , where 

6/)3(  nm  to the left side of the equation (26) and 
ir
f  to the right side. 

Finally, each system in equations (21), (22), (23), (24), (25) and (26) can be written in a 

matrix form as FKU  where K is the matrix of the coefficients, U is the matrix of solution  
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and F is the matrix of non-homogeneous part. To find the approximate solution 
nru

ir
,,2,1,   we find  FKU 1  

The Algorithm of Open N-C {n=4} (SONCn4) 

Step 1:  compute  
2



n

ab
h  , Nn  

Step 2:  

 Compute  m-2)+(n,…1,2,=i,,,2,1, nru
ir

  where  6/)2(  nm  , using equation 

(21) when the number of subintervals is (a multiple of 6). 
 Compute  mninru

ir
 )1(,,2,1,,,2,1,    where 6/)1(  nm  , using equation 

(22) when the number of subintervals is (a multiple of 6 +1). 

 Compute  mninru
ir

 )1(,,2,1,,,2,1,    where 5/nm  , using equation (23) 

when the number of subintervals is (a multiple of 6 +2). 
 Compute  mninru

ir
 )1(,,2,1,,,2,1,    where 6/)1(  nm  , using equation 

(24) when the number of subintervals is (a multiple of 6 +3). 

 Compute  mninru
ir

 )1(,,2,1,,,2,1,   where 6/)2(  nm  , using equation 

(25) when the number of subintervals is (a multiple of 6 +4). 
 Compute  mninru

ir
 )1(,,2,1,,,2,1,   where 6/)2(  nm  , using equation 

(26) when the number of subintervals is (a multiple of 6 +5). 
Step 3:  solve the resulting system by multiplication it with K

-1. 

3- Numerical Examples 

In this section, we test some of the numerical examples performed to solving this linear 
system of Fredholm integral equations. The exact solution is used only to show the accuracy 
of the numerical solution which obtained with our method. 

Example (1):   Consider the problem:    
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  which is a system of two linear FIE's, with exact solution is [5]: 1)(,1)( 2
21  xxuxxu  

     Tables (1) and (2) present a comparison between the exact and numerical solution of four 
types of Open Newton – Cotes and two types of Closed Newton – Cotes for u1 and u2 
respectively depending on least square error and running time with h=1/16. 

Example (2): Consider the problem:    
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which is a system of three linear FIE's, with exact solution is 2
3

2
2

2
1 1)(,)(,)( xxuxxxuxxu     

Tables (3)- (5) present a comparison between the exact and numerical solution of four 
types of Open Newton – Cotes and three types of Closed Newton – Cotes for u1, u2 and u3 
respectively depending on least square error and running time with h= 0.1    

Example (3): Consider the problem:    
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2
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1
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which is a system of two linear FIE's, with exact solution is [6 ]: 4
2

2
1 )(,1)( xxuxxu   

     Tables (6) and (7) present a comparison between the exact and numerical solution of four 
types of Open Newton – Cotes and two types of Closed Newton – Cotes for u1 and u2 
respectively depending on least square error and running time with h=1/18 

 

Conclusion 

In this paper we suggest open N-C formula to solve system of linear Fredholm integral 
equations of the second kind and we obtain the following results: 

1- The results obtained using open N-C formulas are more accurate than the results obtained  
using closed N-C formulas in general. 
2- Open N-C formulas are more efficient than closed N-C formulas since the open N-C 
formulas have most results than closed N-C with fewer nodes in the open N-C formulas. 
3- The results obtained in open N-C formula when n=4 or multiple of four is most of the 
results in a short time in other open N-C formulas. 
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Table (1) A comparison between the exact and numerical solution of 4 types of Open N – 
C and 2 types of Closed N– C for u1 

Table (2) A comparison between the exact and numerical solution of 4 types of Open N – 
C and 2 types of Closed N– C for u2 

 

 

 

 

 

Closed N-C 
Simp. 3/8 

Closed N-C 
Trap. 

Open N-C 
n=4 

Open N-C 
n=3 

Open N-C 
n=2 

Open N-C 
n=1 

Open N-C 
n=0 

Exact u1 x 

1.06254649 1.06408126 1.0625000 1.06135355 1.06250000 1.05802317 61.0593592 1.0625000 0.62500 

1.12505018 1.12668959 1.1250000 1.12376887 01.1250000   1.1250000 0.12500 

1.31256126 1.31451459 1.3750000  1.37500000 1.36899583  1.3750000 0.37500 

1.50007234 1.50233959 1.5000000 1.49826084  1.49338489  1.5000000 0.50000 

1.75008711 1.75277293 1.7500000 1.74792216  1.74216302  1.7500000 0.75000 

1.87509449 1.87798960 1.8750000 1.87275281  1.86655208  1.8750000 0.87500 

1.038e-008 1.028e-005 1.972e-031 e-0065.437  e-0311.972 e-0057.662 e-0053.789 L.S.E. 

0.297000 0.31200 0.18800 0.172000 0.203000 0.12500 0.07800 Time  

Closed N-C 
Simp. 3/8 

Closed N-C 
Trap. 

Open N-C 
n=4 

Open N-C 
n=3 

Open N-C 
n=2 

Open N-C 
n=1 

Open N-C 
n=0 

Exact u2 x 

1.00391427 1.00418242 1.00390625 1.00370716 1.00390625 1.00312412 1.00335774 1.0039062 0.62500 

1.01564105 1.01617734 1.0156250 1.01522683 1.01562500   1.0156250 0.12500 

1.14067315 1.14228204 1.1406250  1.14062500 1.13593222  1.1406250 0.37500 

1.25006420 1.25220939 1.2500000 1.24840733  1.24374297  1.2500000 0.50000 

1.56259630 1.56581408 1.5625000 1.56011100  1.55311445  1.5625000 0.75000 

1.76573735 1.76949143 1.7656250 1.76283783 1.76562500 1.75467520  1.7656250 0.87500 

1.648e-008 1.952e-005 0 e-0068.917  e-0324.930  e-0041.376 e-0056.769  L.S.E. 

0.297000 0.31200 0.18800 0.172000 0.203000 0.12500 0.07800 Time  
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Table (3) A comparison between the exact and numerical solution of 4 types of Open N – 
C and 2 types of Closed N– C for u1 

Table (4) A comparison between the exact and numerical solution of 4 types of Open N – 
C and 2 types of Closed N– C for u2 

  

  

  

  

  

 

Closed N-C 
Simp. 3/8 

Closed N-C 
Trap. 

Open N-C 
n=4 

Open N-C 
n=3  

Open N-C 
n=2 

Open N-C 
n=1 

Open N-C 
n=0 

Exact u1 x 

0.00853472 -0.0123549 0.00985664 0.00939200 0.01634641 0.07564343 0.05805579 0.010000 0.1 

0.08810184 0.06074898 0.08980885 0.08918933 0.09823966 0.17608013 0.15296328 0.090000 0.3 

0.24766898 0.21385289 0.24976106  0.26013291 0.35651683 0.32787077 0.250000 0.5 

0.48723610 0.44695676 0.48971327 0.48878400 0.50202615  0.58277826 0.490000 0.7 

0.80680323 0.76006071 0.80966549 0.80858133 0.82391940 0.95739024 0.91768575 0.810000 0.9 

1.16e-005 0.00285 1.118 e-007 2.012 e-006 1.937 e-004 0.02172388 0.01159622 L.S.E. 

1.172 1.188 0.15600 0.1710000 0.110000 0.110000 0.078000 Time  

Closed N-C 
Simp. 3/8 

Closed N-C 
Trap. 

Open N-C 
n=4 

Open N-C 
n=3 

Open N-C 
n=2 

Open N-C 
n=1 

Open N-C 
n=0 Exact u2 x 

0.11102031 0.12946933 0.11008521 0.11036142 0.10543206 0.05300473 0.06875521 0.11000 0.1 

0.39105674 0.40942113 0.39010194 0.39043235 0.38528876 0.33304139 0.34870102 0.39000 0.3 

0.75092003 0.76661449 0.75009955  0.74590276 0.70125273 0.71460984 0.75000 0.5 

1.19061016 1.20104942 1.19007805 1.19033102 1.18727406  1.16648165 1.19000 0.7 

1.71012715 1.71272591 1.71003743 1.71015875 1.70940265 1.70219946 1.70431646 1.71000 0.9 

3.214e-008 6.102e-006 1.401 e-009 2.520 e-008 3.568 e-007 6.084 e-005 3.230 e-005 L.S.E. 

1.172 1.188 0.15600 0.1710000 0.110000 0.110000 0.078000 Time  
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Table (5) A comparison between the exact and numerical solution of 4 types of Open N – 
C and 2 types of Closed N– C for u3 

Table (6) A comparison between the exact and numerical solution of 4 types of Open N – 
C and 2 types of Closed N– C for u1 

 

 

 

 

 

 

Closed N-C 
Simp. 3/8 

Closed N-C 
Trap. 

Open N-C 
n=4 

Open N-C 
n=3 

Open N-C 
n=2 

Open N-C 
n=1 

Open N-C 
n=0 

Exact u3 x 

0.99026659 0.99687951 0.98996416 0.98984800 0.98878499 0.97099871 0.99000000 0.99000 0.1 

0.90969268 0.90749750 0.90989248 0.90954400 0.91131067 0.91867773 0.91000000 0.91000 0.3 

0.74911876 0.73811548 0.74982080  0.75383634 0.78635675 0.75000000 0.75000 0.5 

0.50854484 0.51000000 0.50974912 0.50893600 0.51636201  0.51000000 0.51000 0.7 

0.18797093 0.19000000 0.18967744 0.18863200 0.19888768 0.28171479 0.19000000 0.19000 0.9 

5.36e-006 0.0012 1.040 e-007 1.871 e-006 7.899 e-005 0.00841160 0.00450909 L.S.E. 

1.172 1.188 0.15600 0.17100 0.11000 0.1100 0.07800 Time  

Closed N-C 
Simp. 3/8 

Closed N-C 
Trap. 

Open N-C 
n=4 

Open N-C 
n=3 

Open N-C 
n=2 

Open N-C 
n=1 

Open N-C 
n=0 Exact u1 x 

1.00308849 1.00439048 1.00308641 1.00286469 1.00299173 0.99935102 1.00056628 1.0030864 0.05556 

1.04939139 1.05476199 1.04938271 1.04847428 1.04899455 1.03397239  1.0493827 0.22222 

1.15125043 1.16093361 1.15123456 1.14960709 1.15053877 1.12344622 1.13248750 1.1512345 0.38889 

1.30866561 1.32290534 1.30864197 1.30626312  1.26777251  1.3086419 0.55556 

1.52163693 1.54067718 1.52160493  1.52025143 1.46695127 1.48473476 1.5216049 0.72222 

1.79016439 1.81424913 1.79012345 1.78614486 1.78841988 1.72098248  1.7901234  0.88889  

2.229e-009 7.634e-004 4.146e-029 e-0051.812 e-0063.324 0.00549471 0.00250056 L.S.E. 

0.391000 0.359000 0.281000 0.203000 0.188000 0.157000 0.11000 Time  
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Table (7) A comparison between the exact and numerical solution of 4 types of Open N – 
C and 2 types of Closed N– C for u2 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Closed N-C 
Simp. 3/8 

Closed N-C 
Trap. 

Open N-C 
n=4 

Open N-C 
n=3 

Open N-C 
n=2 

Open N-C 
n=1 

Open N-C 
n=0 

Exact u2 x 

0.00000979 0.00031686 0.00000952 0.00004540- 0.00001319- 0.00086507- 0.0005813- 0.0000095 0.05556 

0.00243999 0.00387053 0.00243865 0.00219055 0.00233587 0.00164220-  0.0024386 0.22222 

0.02287473 0.02573211 0.02287189 0.02238811 0.02267126 0.01471108 0.01736184 0.0228718 0.38889 

0.09526463 0.09985221 0.09525986 0.09449787  0.08214541  0.0952598 0.55556 

0.27207881 0.27869997 0.27207171  0.27162193 0.25312991 0.25928723 0.2720717 0.72222 

0.62430494 0.63326303 0.62429507 0.62284907 0.62369401 0.59865224  0.6242950  0.88889  

1.425e-010 1.144e-004 8.985e-030 e-0062.485 e-0074.296 e-0047.879 e-0043.588 L.S.E. 

0.391000 0.359000 0.281000 0.203000 0.188000 0.157000 0.094000 Time  



 

 

 2011) 2(  24والتطبیقیة               المجلدمجلة ابن الھیثم للعلوم الصرفة 

صیغ  عمالمنظومة معادلات فریدهوم التكاملیة الخطیة من النوع الثاني  باستحل 

  كوتس المفتوحة –نیوتن 

  

  غادة حسن إبراهیم

  جامعة بغداد، أبن الهیثم  –كلیة التربیة ، قسم الریاضیات 

  

 2010، تشرین الأول، 27: استلم البحث في

  ,2011شباط ، 28: قبل البحث في

  

  الخلاصة

 اذ ،كوتس المفتوحـة –صیغ نیوتن  عمالالبحث حل منظومة من معادلات فریدهوم التكاملیة الخطیة باست هذا یتضمن      

  . لحل هذا النظام كوتس المفتوحة  –من صیغ نیوتن  خمس صیغ مختلفة عملنااست

  .كوتس المغلقة  –ق نیوتن ائق أخرى مثل طر ائالبحث مع نتائج طر  كذلك قارنا نتائج الطریقة المقترحة في هذا

أیضا )  MATLAB (version 7.0)( را في نهایة كل طریقة ذكرنا الخوارزمیة وبرنامج للطریقة المقترحة للحل وبلغة أخی

  .وضحنا الطریقة المقترحة من خلال الأمثلة العددیة 

كوتس المغلقة ، منظومة معادلات فریـدهولم التكاملیـة  –كوتس المفتوحة ، صیغ نیوتن  –صیغ نیوتن  :الكلمات المفتاحیة 

  .الخطیة


