
International Journal on Advances in ICT for Emerging Regions 2021 14(2):

March 2021 International Journal on Advances in ICT for Emerging Regions

Tool Support for Distributed Workflow
Management with Task Clustering

Ayesh Weerasinghe1*, Kalana Wijethunga2*, Randika Jayasekara#3*, Indika Perera4*, Anuradha Wickramarachchi5Ϯ

Abstract— When in need for executing complex sets of
interrelated calculations on High-Performance Computing
(HPC) environments the obvious choice is to use scientific
workflows. As workload management software do not support
the execution of interrelated tasks, workflow management
systems have been introduced to execute workflows on HPC
environments. Recently, a new distributed architectural model
that offers dynamic workflow execution capabilities to workflow
management systems is introduced. It executes workflows on a
per-task basis. While this approach facilitates dynamic
workflows, it adds a considerable overhead to workflows
substantially increasing their makespans. As most workflows are
static, task-wise execution of workflows degrades the
performance of most workflows. In this paper, we introduce a
distributed workflow management system, SwarmForm that
introduces task clustering to the new architectural model.
SwarmForm is open source and offers better performance than
existing distributed workflow management systems by clustering
workflow tasks to reduce overheads while allowing the users to
choose between task-wise and cluster-wise execution of
workflows depending on the workflow nature. The paper proves
that SwarmForm enables the use of all the features introduced
with the new architectural model while providing better
makespans for scientific workflows.

Keywords— Task Clustering, Workflow Management Systems,
Scientific Workflows.

I. INTRODUCTION
Almost every scientific domain such as Astrophysics, Bio

and health informatics, Physics, and Bio-Sciences use
workflows to express complex sets of tasks that are dependent
on one another using Scientific workflows. These workflows
are executed in High-Performance Computing (HPC)
environments as they need a lot of computing power to
execute. Workload management software like PBS Pro [1],

SLURM [2], TORQUE [3] are installed on these HPC
environments to manage the computing resources of the
environment. However, they do not support workflow
scheduling but only support the execution of independent jobs.
Given the complexity of real-world workflows, the execution
becomes cumbersome as the users have to manage a large
number of individual job execution files. Therefore, Workflow
Management Systems (WMS) have been introduced to execute
scientific workflows on HPC environments.

A workflow management system is able to get a workflow
consisting of a series of interrelated tasks as input and submit
them as separate jobs to a workload management software
while maintaining the dependencies between the tasks in order
to be executed in an HPC environment. WMSs executes
workflows either by executing each task as a job and passing
its results to other tasks (Chained Jobs) or by executing the
whole workflow as a single job (Pilot Job). Running a
workflow as a pilot job results in better makespan with poor
resource utilization of the execution environment whereas
running a workflow as chained jobs results in better resource
utilization with poor makespan.

Distributed WMSs execute workflows as chained jobs with
a separate job for each task whereas centralized WMSs execute
workflows as pilot jobs. Therefore, centralized WMSs have
better makespan with poor resource utilization while
distributed WMSs have better resource utilization with poor
makespan. Although centralized WMSs minimize this issue by
clustering the tasks in the workflow and submitting them as
few chained jobs, they fail to provide many features available
in distributed WMSs like dynamic workflows, concurrent
execution of multiple workflows, failure detection and
correction, etc. Therefore, it is observed that distributed WMSs
offer much more important functions than centralized WMSs.
Scheduling a job on an HPC environment consists of a
considerable overhead [4]. Thus, scheduling of jobs using a
distributed WMS causes a significant increase in the makespan
of the workflow as they execute each task as a separate job.
The advantages offered by distributed WMSs can be retained
while reducing the makespan of workflows by introducing task
clustering to distributed WMSs. This is clearly demonstrated
in Fig. 1(a) where the jobs are scheduled in the chained fashion
resulting in a longer makespan and Fig. 1(b) where the jobs are
executed within a much shorter makespan with somewhat of a
compromise on the resource utilization. However, there is a
significant potential to improve the resource utilization while

Correspondence: R. Jayasekara#3 (E-mail: rpjayasekara.16@cse.mrt.ac.lk)
Received: 20-12-2020 Revised: 14-02-2021 Accepted: 10-03-2021

This paper is an extended version of the paper “SwarmForm: A Distributed
Workflow Management System with Task Clustering” presented at the
ICTer 2020 conference.

A. Weerasinghe1*, K. Wijethunga2*, R. Jayasekara#3*, I. Perera4*are from the
Department of Computer Science & Engineering, University of Moratuwa,
Sri Lanka. {ayeshweerasinghe.16, kalana.16, rpjayasekara.16,
indika}@cse.mrt.ac.lk

Anuradha Wickramarachchi5Ϯ is from the Australian National University,
Australia. (anuradha.wickramarachchi@anu.edu.au)

DOI: http://doi.org/10.4038/icter.v14i2.7223
© 2021 International Journal on Advances in ICT for Emerging Regions

Tool Support for Distributed Workflow Management with Task Clustering 2

International Journal on Advances in ICT for Emerging Regions March 2021

having pilot jobs in a chained fashion to make a near optimal
balance of trades.

The paper presents the following contributions to the
domain of workflow scheduling:

• The research introduces SwarmForm [5] a new open
source distributed workflow management system
with task clustering capabilities.

• The research introduces an extension to the existing
Workflow and Platform Aware Clustering algorithm
[6] to improve its performance

• The research implements the Resource Aware
Clustering (RAC) algorithm [7] in SwarmForm to
maximize the resource utilization of the clustered
workflows that are executed through SwarmForm

The rest of the paper is arranged as follows. Section II
presents a review of the existing literature and background of
the study. Section III presents the work proposed in the study.
Section IV evaluates the performance improvement introduced
by the proposed work and Section V concludes the paper with
an overview on the future work in Section VI.

II. RELATED WORK
Liu et al. [8] show that the functional architecture of a WMS

consists of 5 layers - Workflow Execution Plan (WEP)
generation, WEP execution, Presentation, User services, and
Infrastructure. According to how these layers are managed,
existing WMSs can be categorized as centralized WMSs and
distributed WMSs. In WMSs like Pegasus [9], Taverna [10],
etc. all these functional layers are managed by a single
program and all the computing nodes in the HPC environment
are managed by a single or a few instances of the WMS which
makes them centralized WMSs. WMSs like eHive [11],
FireWorks [12] consist of a set of programs that manages
different functional layers and they have independent instances
of the WMS per each computing node of the HPC environment
which makes them distributed WMSs. Each instance of the

distributed WMSs can be associated with a different database
which eliminates the need to have a single central queue for all
the jobs that are expecting to be run in the HPC environment.

Centralized WMSs such as Pegasus [9], Taverna [10],
Kepler [13] have been used for over a decade for executing
workflows in many high-performance computing
environments all around the world. They include features such
as workflow submission, special CLI tools for workflow
design and management, ability to store provenance data, etc.
that are key requirements when executing a scientific
workflow. Taverna and Kepler include a versatile workbench
that allows fully graphical workflow design, which is
extremely helpful in designing new scientific workflows.
These systems are much more effective in executing scientific
workflows than using workload management software for
scientific workflow execution. The inability to execute
dynamic workflows can be seen as the major drawback of the
centralized WMSs. All these systems need the workflows to
be defined at the beginning of the workflow and they do not
allow modifying the workflow while it is being executed. In
addition to that, most of them run workflows as a single pilot
job. As explained by Rodrigo et al. [14] executing a workflow
as a single pilot job causes a huge resource wastage as many
of the resources of the HPC environment are idle most of the
time. Furthermore, they do not support concurrent execution
of workflows as they are submitted as pilot jobs.

The above issues have been addressed in eHive [11] and
FireWorks [12] using a new architectural model. They follow
a blackboard-based architecture with 3 main components: a
central database that holds details of each workflow submitted
by the users, a set of clients that pull tasks from the database
and execute them on the backend and a client manager that
handles spawning, killing, and managing of the clients. All
three components work as independent programs and that
provides a distributed architectural model to these systems.
The distributed architecture resolves the single point of failure
in the existing centralized systems by having different
programs control different layers in workflow management. In
addition to that, these systems support concurrent execution of
multiple workflows and the system manages the scheduling of
tasks across workflows. Distributed WMSs submit workflows
as chained jobs with each task packed as a single job. This
allows the workflows to change its structure at the runtime
while resulting in a substantial increase in resource utilization
of the execution environment as only the required resources
are obtained per each job. It also makes sure that the failure of
one job does not affect the execution of other jobs.

Three major overheads are present when executing a job on
an HPC environment: i.e., Scheduling overhead (Time taken
to schedule the job on a specific node), Queue Delay (Time a
job must wait in the queue until it gets the opportunity to be
executed) and Communication Overhead (Time taken to
transfer the results of parent job to its children). Therefore,

Fig. 1(b) Running a workflow as a Pilot job

Fig. 1(a) Running a workflow as a set of Chained jobs

3 A. Weerasinghe1*, K. Wijethunga2*, R. Jayasekara#3*, I. Perera4*, A. Wickramarachchi5Ϯ

March 2021 International Journal on Advances in ICT for Emerging Regions

executing each task of a workflow as separately chained jobs
will cause a substantial increase in the makespan [14] as
executing each job adds a considerable overhead to the total
runtime of the workflow.

While distributed WMSs offer a lot of features that are not
available in centralized WMSs, the increased makespan of
workflows due to the execution of each task as a chained job
raises a major concern. Even though this adds support for
dynamic workflows, executing both static and dynamic
workflows as individually chained jobs cause an unnecessary
overhead. A better approach to this problem would be to
introduce task clustering to distributed WMSs and allow the
user to decide whether he needs clustering or not depending
upon the application. This will reduce the makespan of
workflows in distributed WMSs while ensuring that all the
advantages offered by distributed WMSs are preserved.

To address this issue, we introduce a new distributed
workflow management system SwarmForm which includes
task clustering to reduce the makespan of workflows. Using
SwarmForm, we intend to deliver all the advantages of a
distributed WMS to users while maintaining the optimum
balance between the makespan of workflows and the resource
utilization of the environments.

Task clustering is already implemented in some of the
centralized WMSs like Pegasus [9] and in some Grid
middleware management systems like Xavantes [15]; we
intend to use those techniques to provide better makespans for
workflows executed using distributed WMSs.

Different researches have introduced different clustering
techniques. In the related literature, Horizontal Runtime
Balancing, Horizontal Impact Factor Balancing and
Horizontal Distance Balancing algorithms introduced by Chen
et al. [16] are being used as the baseline for workflow task
clustering. Kaur et al. [17] has introduced a new clustering
technique called Hybrid Balanced Task Clustering Algorithm
that clusters tasks both vertically and horizontally. Chen et al.
[16] has introduced a Balanced clustering technique for
horizontal clustering and Sahni et al. [6] has introduced the
Workflow and Platform Aware task clustering (WPA)
Algorithm. Zhang et al. [18] has introduced a new metric
called Dependency Correlation to cluster tasks in their
Dependency Balance Clustering Algorithm. Dependency
Balancing Clustering Algorithm cluster tasks based on the
similarity of their dependencies. WPA Algorithm uses the
knowledge about the structure of the workflow and the
execution environment to cluster tasks such that there is the
least possible ineffective parallelism as possible. Hybrid
Balanced Task Clustering Algorithm combines all three
baseline algorithms to present a novel approach to cluster tasks
both vertically and horizontally. A novel approach to cluster
tasks considering both execution time of tasks and resource
requirements has been introduced by RAC algorithm [7]. This
algorithm tries to cluster the tasks that are most similar in the

resource requirements while trying to ensure that all the
created clusters have near similar runtimes. It makes sure that
the resource wastage is minimized, and all the tasks in
clustered jobs are released nearly at the same time when tasks
in a workflow are clustered together to reduce the makespan.
None of the existing task clustering algorithms except the RAC
algorithm take resource requirements of tasks into account
when clustering. Considering the pros and cons of each
algorithm, we implemented an extended version of the WPA
algorithm and RAC algorithm to carry out task clustering in
SwarmForm while giving the privilege to the user to choose
which algorithm he wants to use.

III. METHODOLOGY
A distributed WMS called SwarmForm has been developed,

which offers task clustering, to address the drawbacks in
existing WMSs explained above. Task clustering will play a
key role in reducing the makespan of a workflow in the new
WMS.

A. WPA Algorithm
A workflow is represented as a Directed Acyclic Graph

(DAG) with nodes of the graph representing tasks and edges
between the nodes representing the dependencies between the
tasks. The WPA algorithm only clusters the tasks at the same
level of the workflow DAG where the level of a task is defined
as the longest distance from root node task(s) to task node.
While this improves the makespan of a workflow, it causes a
dependency imbalance in the workflow. It also does not reduce
the communication overhead caused when transferring the
output of the parent task to the child tasks as children and
parents are not clustered together. To address these issues, we
introduce a new technique to cluster the workflows both
horizontally and vertically as follows.

Under the proposed technique, first, the tasks with single-

child single-parent relationships are clustered together and
then the resulting tasks are clustered horizontally using the
WPA algorithm. The WPA algorithm takes the available
number of computing nodes as an input. Since in most of the
HPC environments we cannot get the exact number of
resources available at the time of execution, we have proposed
a slight modification to the WPA algorithm along with the
addition of our vertical clustering approach. The modified
pseudocode of the WPA algorithm is given in algorithm 1.

Tool Support for Distributed Workflow Management with Task Clustering 4

International Journal on Advances in ICT for Emerging Regions March 2021

Fig. 2 illustrates the significance of this task clustering
approach. Fig. 2(a) depicts an example workflow with 5 levels
and the number on each node states the execution time of the
task. First, the tasks are being clustered vertically considering
their single-parent single-child relationships (Fig. 2(b)). Fig.
2(c) shows the result of the proposed vertical clustering
technique on the example workflow of Fig. 2(a). Then the
resulting workflow tasks are clustered horizontally using the
WPA algorithm (Fig. 2(c)). Fig. 2(d) shows the result of our
proposed extended WPA clustering algorithm.

The algorithm 2 explains the pseudocode of the proposed

vertical clustering technique. The algorithm takes a workflow
as the input. It begins with the first level of the workflow and
iterates to the depth of the workflow (Line 3). It selects the
tasks at each level (Line 4) and iterates the tasks, one by one
(Line 5). If the task only has a single child and that child task
has no other parents (single-parent single-child relationship),
both the task and its child task are grouped into a cluster. This

process is repeated in a depth-first manner until there are no
more single-parent single-child relationships for the selected
task (Line 7-10). Finally, the workflow is updated if a selected
task is clustered with its children (Line 13).
B. SwarmForm Workflow Management System

1) SwarmForm Architecture: SwarmForm distributed
WMS is developed on top of FireWorks [12] distributed WMS
which is the state-of-the-art system in the domain of
distributed WMSs. FireWorks is used as an open source library
in the implementation of SwarmForm. SwarmForm ensures
that all the functionalities of FireWorks are available to the
user while offering additional functionalities for workflow
management. SwarmForm is highly decoupled from
FireWorks and this approach provides the ability to develop
FireWorks and SwarmForm independently ensuring fast and
easy adaptations to any update to FireWorks.

The architecture of SwarmForm bears a close resemblance
to FireWorks with some additional improvements. In
SwarmForm, a workflow is referred to as a SwarmFlow. A
SwarmFlow can be represented as a Directly Acyclic Graph
(DAG) and these SwarmFlows can be defined by the Python
interface, command-line interface or by directly loading a
JSON or YAML SwarmFlow definition. SwarmForm adapts
the workflow definition format introduced by FireWorks for
defining SwarmFlows as this format helps to define workflows
in a more easy and readable way in contrast to the existing
DAX format.

A SwarmFlow consists of one or more individual tasks that
are called Fireworks (FWs). These FWs represent the nodes in
the SwarmFlow definition DAG whereas the edges of the
DAG represent dependencies between FWs. A Firework can
have a sequence of one or more atomic tasks that are called
FireTasks. These FireTasks are separate Python functions that
can call shell scripts, transfer files, read/write files or call other
Python functions. FireTasks can return FWActions that can
modify the SwarmFlow dynamically at runtime based on the
computational conditions which give the dynamic behaviour
to the system. SwarmPad is another key part of the
SwarmForm WMS that is used to store all the details of
SwarmFlows, FWs, provenance data and other data related to
execution of SwarmFlows. SwarmPad is a NoSQL database
which is built using MongoDB. FireWorkers are the clients
who pull FWs from the SwarmPad and execute. It launches
unique agents called Rockets to pull and execute each FW.
Workflow management is handled by the SwarmPad and
workflow execution is handled by Rockets and FireWorkers
which provides the distributed behaviour to the SwarmForm
WMS.

Fig. 3 shows the architecture of the SwarmForm WMS. The
FlowParser takes the input workflow and passes it to the
SwarmFormer. SwarmFormer clusters the SwarmFlow and
adds it to the database. Optionally, the FlowParser can save the
SwarmFlows directly to the database without clustering, based
on the user requirement. The SwarmFormer takes a
SwarmFlow as the input and clusters the tasks in the
SwarmFlow and saves the clustered SwarmFlow in the
database. Later, the FireWorkers can pull tasks using Rockets
and execute clustered Fireworks in HPC environments as
shown in Fig. 3.

Fig. 2(a) Initial workflow Fig. 2(b) Cluster nodes
with single-parent single-
child relationships

Fig. 2(c) Horizontally
cluster the resultant
workflow

Fig. 2(d) Clustered
workflow

5 A. Weerasinghe1*, K. Wijethunga2*, R. Jayasekara#3*, I. Perera4*, A. Wickramarachchi5Ϯ

March 2021 International Journal on Advances in ICT for Emerging Regions

2) SwarmForm Features: As we have described above, the
overhead in executing a job is a critical factor which results in
increasing the makespan of a workflow. Even the state-of-the-

Fig. 3 SwarmForm Architecture

art distributed workflow management system does not address
this issue as it executes each task in a workflow as a separately
chained job. As a solution to the aforementioned problem, we
introduce task clustering to SwarmForm which reduces the
makespan of the workflows by minimizing the overheads in
the execution of a workflow. In section IV, we have proven
that SwarmForm outperforms the state-of-the-art distributed
WMS FireWorks [12] when task clustering is enabled.

In SwarmForm, workflows which are referred to as
SwarmFlows are treated as primary entities and Fireworks are
considered as secondary entities. This considerably eases the
process of managing workflows when executing workflow
operations like task clustering. In addition to that, SwarmFlow
can accept and process multiple task parameters like cost,
execution time, resource requirements of the task etc. These
parameters can be used for making better scheduling decisions
and workflow management decisions like how the tasks will
be clustered which increases the performance of the system.
The support to these parameters is added in such a way that a
user can easily extend the parameter set by easily adding new
parameters. The WMS takes cost parameters like execution
time, required number of cores per task as inputs through
_queueadapter identifier in the workflow definition.
Therefore, users will be able to define new parameters like
memory required, wall time etc. which can be used in further
workflow management decisions.

Initially, SwarmForm was only equipped with the WPA
clustering algorithm, which did not consider the resource
requirements when making task clustering decisions. Later, we
implemented the RAC algorithm [7] which takes both
execution time and resource requirements into consideration
when making task clustering decisions. We integrated the

RAC algorithm [7] to the system in such a way that
SwarmForm WMS could use any task clustering algorithm
based on the user requirement, without limiting to a single task
clustering algorithm. With this modification, a developer can
easily implement new task clustering algorithms and use them
without modifying the core components of the WMS.

With the integration of these task clustering algorithms, we
introduce a new feature to express the estimated resource
wastage due to task clustering. Because of this feature, users
can see the resource wastage that could be occurred due to
clustering of the workflow before executing workflows in
HPC environments. This can be used to make decisions for
selecting suitable task clustering algorithms without executing
workflows in resource intensive environments. Resource
wastage of a single cluster containing l tasks (Wj) and total
resource wastage of the workflow containing k clusters (Wt)
can be calculated as in (1) and (2) respectively.

As the workflow definition format used in FireWorks and
SwarmForm is a novel format, the users have to put an extra
effort to convert their existing workflows to the new format.
To ease out this process we introduce a Workflow Generator
which can be easily used to generate workflows by inputting
the minimum parameters possible. In addition to that, it
supports converting DAX files directly to the new workflow
definition format with no user intervention at all.
C. RAC Algorithm

RAC algorithm [7] is chosen for this due to its ability to
minimize resource wastage in the execution environment. It
uses a novel metric called Resource Aware Clustering
coefficient to identify the most suitable tasks that should be
assigned to the same cluster. Although the RAC algorithm
does not always outperform the existing task clustering
algorithms in makespan reduction of workflows, it
outperforms all the existing task clustering algorithms in
maximizing resource utilization while providing competitive
makespan reductions in workflows. Therefore, RAC algorithm
[7] is implemented in SwarmForm to maximize the resource
utilization of the execution environment while minimizing the
makespan of the workflow.

Since the scientific workflow is represented as a directed
acyclic graph (DAG), we have defined our data structure to
model the workflow in SwarmForm which we referred to as
DAG model. That DAG model is used to implement the WPA
algorithm. The same approach is followed when implementing

Tool Support for Distributed Workflow Management with Task Clustering 6

International Journal on Advances in ICT for Emerging Regions March 2021

the RAC algorithm. The algorithm takes the workflow
represented using the DAG object and number of clusters per
horizontal level(R) as the inputs and returns a DAG object
which represents the workflow with clustered tasks. The
algorithm traverses the DAG following a level-by-level
approach, starting from level one. It takes the tasks at each
level and clusters the tasks at level only if the number of tasks
at level is greater than the number of clusters per level. In each
level, first it creates R number of empty clusters and iterates
the tasks in the level task by task. In each iteration in the inner
loop the resource aware clustering factor is calculated for the
task respective to the clusters created for that level. Then it
selects the cluster with the minimum factor value since
resource-aware clustering factor gives the smallest value with
the cluster that the considering task fits best and checks
whether the cluster has not exceeded the number of tasks that
it can hold. If it does not exceed, the task is put into that cluster.
This process is repeated for each task in each level. After
populating the clusters by tasks for each layer workflow DAG
is updated as it needs to preserve the dependencies. First, it
removes the task in the considering level from the workflow
DAG and adds the new clusters to the workflow. Then updates
the parent-child relationships appropriately as the updated
workflow DAG needs to preserve the dependencies between
tasks.

IV. RESULTS
In this section, we evaluate the performance of SwarmForm

WMS. As FireWorks is the state-of-the-art in distributed
workflow management systems, WPA task clustering enabled
SwarmForm WMS is compared and evaluated against the
FireWorks WMS. To have the same evaluation setup for both
systems, we have evaluated both WMSs on standard
benchmark workflows CyberShake (Fig. 4), LIGO (Fig. 5) and
SIPHT (Fig. 6) presented by Bharathi et al. [19].

The workflow definitions of CyberShake 100 job workflow,
LIGO 100 job workflow, and SIPHT 97 job workflow
provided by Pegasus workflow generator are used for the
evaluation [20]. We use a workflow simulation setup for
evaluating the performance of the systems. This is a widely
used approach since reserving an HPC environment for
evaluation purposes is highly costly. The simulation setup
consists of 5 rockets with each rocket acting as a computing
node with a single core. Each rocket pulls a job from the
database and executes it. We have added a constant delay after
completion of each job to represent the communication
overhead incurred when transferring the output of a parent job
to its children jobs. Only the considered workflow is present
in the database throughout the evaluation.

Initially, two sets of the same workflows in DAX format are
taken and converted into SwarmForm/Firework readable
format using the SwarmForm workflow generator. Then, a set
of workflows are clustered and executed using the
SwarmForm WMS and the other set of workflows are directly
executed using the FireWorks WMS. Makespan of each

workflow is measured in both systems and the Performance
Gain (3) is calculated.

Fig. 4 CyberShake workflow structure

 Fig. 5 LIGO workflow structure

 Fig. 6 SIPHT workflow structure

From Fig. 7, it can be observed that the makespan of each

workflow has been reduced when executed using SwarmForm
than with FireWorks. This proves that executing workflows
with task clustering enabled in SwarmForm reduces the
makespan of each workflow considerably than executing it in
FireWorks.

7 A. Weerasinghe1*, K. Wijethunga2*, R. Jayasekara#3*, I. Perera4*, A. Wickramarachchi5Ϯ

March 2021 International Journal on Advances in ICT for Emerging Regions

The Performance Gain shows the percentage improvement
in the makespan of each workflow executed in SwarmForm
compared to FireWorks. From the results of the experiments

Fig. 7 Comparison of the makespan of each workflow executed using
FireWorks and SwarmFlow with task clustering enabled.

(Fig. 8), it can be observed that SwarmForm shows a 10.19%
improvement in the makespan of CyberShake, 24.36%
improvement in the makespan of LIGO and 9.41%
improvement in the makespan of SIPHT workflows. Further,
it should be noted that the performance gain of each workflow
is positive which shows that SwarmForm outperforms
FireWorks when task clustering is enabled.

Fig. 8 Comparison of the average performance gain in executing each
workflow in SwarmForm and Fireworks

In this evaluation, we have considered only the
communication delay between tasks and the queue delay
among jobs in the same workflow as the overhead. Clustering
related tasks together eliminate the communication overhead
between those tasks as they are executed in the same node
under the same job. The improvement shown in the evaluation
mainly results from the reduction of communication overhead
between the tasks. However, in real environments, there are
many more overheads like scheduling overhead and queue
delays due to the competition for limited resources by a large
number of jobs from multiple workflows. Among them, queue
delay can increase the makespan by a substantial amount as the
delay increases considerably with the increase of the job
submissions. These overheads are reduced when tasks are
clustered. Therefore, we expect that SwarmForm will perform

even better when used with real workflows in HPC
environments.

V. DISCUSSIONS
This paper presents SwarmForm, a new distributed

workflow management system with task clustering
capabilities. SwarmForm is built using FireWorks which is an
open source library and offers useful features such as support
for dynamic workflows, concurrent workflow execution, and
failure detection and correction that are not available in the
existing centralized WMSs. SwarmForm introduces task
clustering to increase the performance of existing distributed
WMSs, a DAX workflow importer and a workflow generator
that can be used for workflow simulation purposes.

As another contribution, the research has introduced an
extension to the WPA algorithm which improves its
performance. The extension of the WPA algorithm is to
introduce a hybrid clustering approach, which clusters the
tasks both vertically and horizontally. We implement the
updated clustering algorithm in SwarmForm and evaluate
SwarmForm with FireWorks and prove that execution of
workflows in SwarmForm yields better makespans than
executing them in the existing state-of-the-art distributed
WMS due to the introduction of task clustering.

Finally, we implement the RAC algorithm as the primary
clustering algorithm in SwarmForm to introduce resource
management capabilities to SwarmForm. None of the existing
WMSs consider minimizing resource wastage when clustering
tasks. Therefore, executing workflows using SwarmForm by
clustering their tasks with RAC algorithm significantly
reduces the resource wastage of the execution environment
while providing a considerable improvement in the makespan
of the workflow. Further, the users are given the opportunity
to choose any of the task clustering algorithms depending on
the requirement for clustering their workflows while providing
the developers with the ability to implement any required task
clustering algorithm and use them without having to change
any core components of SwarmForm. The estimated resource
wastage after clustering of workflows with each clustering
algorithm is also shown to the users which allows them to
choose the algorithm that gives them the best resource
utilization and the makespan.

VI. FUTURE WORK
Task clustering is done to achieve different objectives along

with reducing makespan like minimizing resource wastage,
minimizing dependency imbalance, achieving QoS
requirements etc. Currently, SwarmForm contains only two
task clustering algorithms which are capable of solving
resource imbalance and runtime imbalance problems. We plan
to implement a few more task clustering algorithms in
SwarmForm thus allowing the user to choose the suitable

Tool Support for Distributed Workflow Management with Task Clustering 8

International Journal on Advances in ICT for Emerging Regions March 2021

algorithm depending on the use case from a variety of task
clustering algorithms.

We plan to improve our workflow generator to generate
actual workflows and to import actual workflows defined in
DAX format into SwarmForm workflow definition format. It
will later be extended to support Common Workflow
Language [21] as well. Further, we plan to introduce a GUI to
SwarmForm to easily define new workflows graphically as the
existing distributed WMSs consist of Graphical User
Interfaces (GUI) only for reporting.

REFERENCES
[1] J. Nabrzyski, J. M. Schopf and J. and Węglarz, “PBS Pro: Grid

Computing and Scheduling Attributes,” in Grid resource management,
Boston, Kluwer Academic Publishers, 2004, pp. 183-190.

[2] A. B. Yoo, M. A. Jette and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in Job scheduling strategies for
parallel processing, Berlin, Springer, 2003, pp. 44-60.

[3] D. Klusáček, V. Chlumský and H. Rudová, "Planning and Optimization
in TORQUE Resource Manager", Proceedings of the 24th
International Symposium on High-Performance Parallel and
Distributed Computing, pp. 203-206, 2015.

[4] W. Chen and E. Deelman, "Workflow overhead analysis and
optimizations", Proceedings of the 6th workshop on Workflows in
support of large-scale science - WORKS '11, pp. 11-20, 2011.
Available: 10.1145/2110497.2110500.

[5] "SwarmForm/SwarmForm", GitHub, 2020. [Online]. Available:
https://github.com/SwarmForm/SwarmForm.

[6] J. Sahni and D. P. Vidyarthi, “Workflow-and-Platform Aware task
clustering for scientific workflow execution in Cloud environment,”
Futur. Gener. Comput. Syst., vol. 64, pp. 61–74, 2016, doi:
10.1016/j.future.2016.05.008

[7] A. Weerasinghe, K. Wijethunga, R. Jayasekara, I. Perera and A.
Wickramarachchi, "Resource Aware Task Clustering for Scientific
Workflow Execution in High Performance Computing Environments",
in 22nd IEEE International Conference on High Performance
Computing and Communication, Fiji, 2020.

[8] J. Liu, E. Pacitti, P. Valduriez and M. Mattoso, "A Survey of Data-
Intensive Scientific Workflow Management", Journal of Grid
Computing, vol. 13, no. 4, pp. 457-493, 2015. Available:
10.1007/s10723-015-9329-8.

[9] E. Deelman et al., "Pegasus: A Framework for Mapping Complex
Scientific Workflows onto Distributed Systems", Scientific
Programming, vol. 13, no. 3, pp. 219-237, 2005. Available:
10.1155/2005/128026.

[10] D. Turi, P. Missier, C. Goble, D. D. Roure and T. Oinn, "Taverna
Workflows: Syntax and Semantics," in Third IEEE International
Conference on e-Science and Grid Computing (e-Science 2007),
Bangalore, 2007, pp. 441-448.

[11] J. Severin et al., "eHive: An Artificial Intelligence workflow system for
genomic analysis", BMC Bioinformatics, vol. 11, no. 1, p. 240, 2010.
Available: 10.1186/1471-2105-11-240.

[12] A. Jain et al., "FireWorks: a dynamic workflow system designed for
high-throughput applications", Concurrency and Computation:
Practice and Experience, vol. 27, no. 17, pp. 5037-5059, 2015.
Available: 10.1002/cpe.3505.

[13] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher and S. Mock,
"Kepler: an extensible system for design and execution of scientific

workflows," Proceedings. 16th International Conference on Scientific
and Statistical Database Management, 2004., Santorini Island, Greece,
2004, pp. 423-424.

[14] E. Elmroth, P. Östberg, L. Ramakrishnan and G. P. Rodrigo, "Enabling
Workflow-Aware Scheduling on HPC Systems", in HPDC '17: The
26th International Symposium on High-Performance Parallel and
Distributed Computing, Washington DC USA, 2017, pp. 3 - 14.

[15] L. Bittencourt and E. Madeira, "A dynamic approach for scheduling
dependent tasks on the Xavantes grid middleware", in Middleware06:
7th International Middleware Conference, Melbourne, Australia, 2006.

[16] W. Chen, R. F. Da Silva, E. Deelman, and R. Sakellariou, “Balanced
task clustering in scientific workflows,” Proc. - IEEE 9th Int. Conf. e-
Science, e-Science 2013, pp. 188–195, 2013, doi:
10.1109/eScience.2013.40.

[17] A. Kaur, P. Gupta, and M. Singh, “Hybrid balanced task clustering
algorithm for scientific workflows in cloud computing,” Scalable
Comput., vol. 20, no. 2, pp. 237–258, 2019.

[18] L. Zhang, D. Yu, and H. Zheng, “Optimization of cloud workflow
scheduling based on balanced clustering,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics),
vol. 10581 LNCS, pp. 352–366, 2017.

[19] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M. Su and K. Vahi,
"Characterization of scientific workflows," 2008 Third Workshop on
Workflows in Support of Large-Scale Science, Austin, TX, 2008, pp.
1-10.

[20] "WorkflowGenerator - Pegasus - Pegasus Workflow Management
System", Confluence.pegasus.isi.edu, 2014. [Online]. Available:
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub.

[21] B. Chapman et al., Common Workflow Language, v1.0. United States:
figshare, 2016.

https://github.com/SwarmForm/SwarmForm
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub

