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Abstract— Microservice architecture relies on message passing 

between services. Inter-service communication introduces an 

overhead to the applications’ overall performance. This 

overhead depends on the runtime placement of the services 

bundled in containers and it can be reduced by intelligently 

deploying the containers by considering the communication 

affinities between services. Researchers have attempted to 

colocate microservices and merge containers based on 

affinities. However, container merging has not been considered 

up to now. This study shows that the problem of service 

placement in a microservice application considering 

communication affinities, constrained by computational 

resources, can be mapped to an instance of the Binary 

Knapsack Problem. We propose a container colocation and 

merging mechanism based on a heuristic solution to the Binary 

Knapsack Problem. The proposed approach reduced the 

communication overhead of a benchmark application by 58.5% 

and as a result, execution time was reduced by approximately 

13.4% as well. 
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I. INTRODUCTION  

icroservice architecture is used to develop software 

applications as suites of independently deployable 

small services that interact with each other [1]. It is often 

used to decompose an existing system rather than to 

compose a system anew using services offered by different 

enterprises. Microservices are typically deployed in 

containers with each service contained in a dedicated 

container [2] which are then hosted in multiple hosts. Hence 

microservices of an application exchange a significant 

amount of data, creating communication affinities. Affinity 

is defined as a relation between two microservices [6] which 

in this study given by the total amount of data exchanged 

between those two services over time. To place services in 

different containers, function calls in the monolithic 

application should be converted to network calls between the 

containers in the microservice architecture. Those network 

calls add an extra layer of networking with expensive 

operations such as packet encapsulation, decapsulation, 

address translations [3], which ultimately increase the 

services’ request/response time [2], [4].  
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Therefore, the resulting communication overhead adversely 

impacts the overall performance of the microservice 

application (μApp) despite the benefits of the architecture. 

Hence what this paper focuses as the main research 

problem is that the degraded performance of μApps due to 

the communications between the services of the application. 

Container networks used to connect containers with each 

other play a major role in communication complexities of 

microservice architecture. Overlay networks are used for 

host-to-host communication when containers/services are 

deployed in different hosts whereas bridge networks are 

used when containers/services are deployed within the same 

host. Processes inside the same container communicate over 

the loopback interface. Overhead imposed by an overlay 

network is higher than the overhead imposed by a bridge 

network [3]. Loopback interface imposes the least overhead 

since it eliminates the intervention of bridge network as well. 

Therefore, placement of two services with high 

communication affinities in different physical nodes makes 

this situation worse [6]. Thus, it is evident that the container 

placement decisions of the μApps need to be taken carefully 

in the deployment time.  

As long as microservice architecture is used to design an 

application it is impossible to completely eliminate the 

communication overhead incurred at runtime. Because even 

if all the services are located inside a single machine there 

will still be communication across address spaces. A 

possible way of addressing the problem is by reducing the 

communication overhead to a certain extent by making the 

deployment decisions carefully. Further, if mapping of the 

exact same design decisions to runtime is not strictly 

necessary, then alterations may be applicable to further 

reduce the communication overhead. The motivation behind 

this study is to increase the performance of a μApp, by 

reducing the overhead of inter-service communication by 

carefully analysing the runtime behaviour of a μApp and 

containers. Therefore, our main objectives were to explore 

the impact of container networks on μApps, to discover the 

possibilities of reducing the communication overhead of a 

μApp without changing the design of the application and 

finally to measure up to what extent the performance can be 

increased from the proposed solution. 

In order to achieve these objectives, we present a novel 

mechanism of container colocation and container merging. 

Container colocation is defined as moving the services with 

high communication affinities into a single host. Colocation 

is constrained by the resources available on the hosts. We 

could map this problem to an instance of the Binary 

Knapsack Problem (BKP). Container merging is the process 

of executing services that are already colocated, in a single 

container. Through the colocation process the overlay 

network is reduced to a bridge network. Merging process 

reduces the bridge network to communications over the  
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container’s loopback interface. As a result, communication 

overhead is reduced, and the performance of the application 

is improved. Also, this might reduce the number of hosts 

needed to execute the μApp. 

The rest of this paper is organized as follows. Section II 

presents a review of the background related to the study. 

Section III presents the design and implementation of the 

solution. Results and the evaluation of the proposed 

approach are summarized in Section IV. Finally, Section V 

concludes and outlines some future directions. 

II. BACKGROUND AND RELATED WORK 

A. Performance Degradation of μApps and Container 

Networks 

With the inclination of the industry towards cloud-based 

infrastructure, microservice architecture has received 

massive attention from the academic community. Hence 

ample amount of studies which compare the μApps with 

monolithic applications show the performance penalty 

resulted when using μApps [2], [4], [8]. The performance of 

microservices in container-based and virtual machine (VM) 

based environments has also been studied by Salah et al. [9]. 

Amaral et al. [10] evaluated the performance impact of two 

models of implementing microservices in a container 

environment: master-slave and nested-containers. They 

mention that nested-container model is hardly adopted in 

real-world applications since there are some trade-offs in 

terms of network performance. 

Suo et al. [3] have done a thorough investigation on 

latency, throughput, scalability, and startup cost of various 

container networks on a single host and on multiple hosts in 

a virtualized environment. Out of four networking modes on 

a single host (none mode, bridge mode, container mode, host 

mode), bridge mode network incurred 18% and 30% 

throughput loss in upload and download respectively in 

facilitating each container to own an isolated network 

namespace, resulting all inter-container communications to 

go through the docker0 bridge. Out of four networking 

modes available on multiple hosts environments (host mode, 

NAT, Overlay network, Routing), both NAT and Routing 

incurred considerable performance degradation due to the 

overhead of address translation and packet routing. However, 

the overlay network caused a high-performance loss of 

82.8% throughput drop and a 55% latency increase 

compared to the host mode. They explain the reason for the 

performance degradation of μApps in terms of bridge 

network and overlay network which are used to connect the 

containers. This study has done a comparison between 

several container networks in a single host and multiple 

hosts separately. They have not compared the single host 

container networks with multi-host container networks. 

Further, they have conducted the experiment in VMs where 

an additional network overhead is introduced to containers 

through the virtualization. 

Yang et al. [11] have attempted to bridge the above gap 

by deploying the containers on both VM and bare-metal 

environments. The results confirm the overhead of VM 

environments with a throughput loss compared to bare-metal 

deployment. In all tests, the multi-hosts control group 

showed a significant throughput loss compared to the single 

host control group. Further, Kratzke [12] has analysed the 

performance impact of the overlay network in terms of 

encryption to HTTP-based and REST-like services. Even 

though these analyses show the impact of container 

networks on imposing communication overhead, they have 

only considered inter-container communications and none of 

these studies have considered intra-container 

communications. Hence, it is identified that intra-container 

communications should also take into consideration in order 

to further explore the ways of reducing the communication 

overhead. 

B. Container Placement Problem 

Based on the aforementioned studies, placement of the 

containers has been identified as one of the major reasons in 

creating these communication affinities. Hence, it is 

pertinent to explore the state of the art of container 

placement process in practice. However, identifying the best 

placement of containers is not an easy task. Existing 

container management tools implement several common 

placement strategies. Kubernetes [13] places a minimum 

number of microservices per host in the cluster [6]. This is 

called the Spread strategy. However, it can add latency to 

communication and lower the μApp’s performance. Also, 

this does not take resource optimization into consideration 

during the deployment. Some management tools use the 

Bin-pack strategy: deploying a μApp in a minimum number 

of hosts so that it avoids the cluster resource wastage. 

Besides these commonly used two strategies, the Random 

strategy is also used where the management tool selects a 

host to deploy a microservice randomly. All these three 

strategies are available in Docker Swarm [14]. Irrespective 

of the strategy, management tools only consider the 

instantaneous resource usage of the service when they place 

them on hosts and rarely try to find an optimal setting. 

However, they do not consider the communication affinities 

between services resulting in placing microservices with 

high communication affinities in different hosts. Eventually, 

the large amount of network traffic that takes place between 

two services over the network can hinder the overall 

performance of the application. 

Sampaio et al. [6] propose REMaP, a runtime 

microservices placement mechanism. They consider 

microservices’ resource usage and as well as their affinities 

when placing the microservices in hosts. This problem is 

modelled as an instance of the multi-dimensional bin-

packing problem. The objective of REMaP is to maximize 

the affinity score while deploying the microservices in a 

minimum number of hosts during the runtime. In solving the 

problem, they have used the First Fit as a heuristic in their 

approach since a runtime placement needs quick solutions. 

REMaP instruments the microservices to gather information 

required to take colocation decisions during the runtime. 

Though, we noticed the heavy cost of this instrumentation 

on the microservices. Hence, the benefits derived through 

colocation are negatively affected due to the instrumentation 

cost. Further, REMaP cannot handle data synchronization 

across different hosts after migrating a stateful microservice. 

Hence, the migration of stateful microservices may lead the 

μApp in an inconsistent state. In addition, runtime migration 

cost may not be justifiable compared to the benefits derived 

due to colocation. REMaP does not use the hints available in 

the configuration files about the resource usage or the 

relationships between microservices indicated in them. We 
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further noticed that REMaP does not consider container 

merging at all. 

Han et al. [15] propose a refinement framework for 

profiling-based microservices placement to identify and 

respond to workload characteristics. The resource 

requirements obtained through profiling has been fed into a 

greedy-based heuristic algorithm to make microservices 

placement. However, the main focus of this work is not a 

placement algorithm but a profiling-based framework for 

microservices deployment. Hence any placement algorithm 

can be adapted to their framework. Both aforementioned 

solutions depend on the data collected at run time. However, 

we have identified that some essential parameters that are 

required to take the placement decision are already available 

in configuration files even before the runtime of the μApp. 

C. VM Placement Problem 

Once the containers are mapped to VMs and 

communications between containers to the communications 

between VMs, virtual machine placement in physical 

machines (PMs) can be considered as the closest research 

area to the container placement problem. Tziritas et al. [7] 

propose a communication-aware graph-coloring algorithm, 

placing the VMs in the underlying system in an energy-

efficient manner while optimizing the network overhead due 

to the VM communication inter-dependencies. However, 

that VM selection process cannot be directly mapped into 

the container selection process as their study pre-defines the 

number of servers to place VMs and container placement 

may not necessarily give the number of host machines to 

place the containers as the problem is to optimize the 

placement of services, thus the algorithm itself should be 

able to identify the minimum number of hosts to locate the 

services. However, it is possible to map their VM 

communication graph to a container/service communication 

graph. 

Chen et al. [5] propose a different approach for the VM 

placement problem which is an affinity-aware grouping 

method for allocation of VMs into PMs based on a heuristic 

bin-packing algorithm. It groups the VMs based on the 

affinities among them and then allocates those identified 

VM groups into a minimum number of PMs using the bin 

packing strategy. One major limitation of this research is the 

generation of one large VM affinity group with total 

resource requests overstepping the PM resource limit. 

Sonnek et al. [16] present a decentralized affinity-aware 

migration technique that incorporates heterogeneity and VM 

communication cost to allocate VMs on the available 

physical resources. Their technique monitors network 

affinity between pairs of VMs periodically and triggers the 

migration if inter-server traffic exceeds intra-server traffic 

and uses a distributed bartering algorithm, to dynamically 

adjust VM placement such that communication overhead is 

minimized. Since the migration also has a cost, they refrain 

from migrating VMs if it results in only minor benefits. 

III. METHODOLOGY 

The proposed solution comprises of two phases:  

• Container colocation: moving containers that are 

initially deployed in different hosts into a single host. 

• Container merging: placing the services that are 

initially deployed in different containers inside a 

single container. 

Containers deployed in multiple hosts are connected 

through overlay networks and containers in the same host 

communicate through a bridge network. As mentioned 

before, overlay networks impose a higher overhead than 

bridge networks [3], [11], [12]. Hence during the colocation 

phase services with high communication affinities are 

identified to deploy on a single host. This is not a trivial task 

since the colocation is constrained by the processing 

resources available on the host. In this study, we propose a 

novel approach to solve the colocation problem by mapping 

it to an instance of the BKP.  

Current approaches to reduce the communication cost use 

only the container colocation process [6] which replaces the 

overlay network with bridge network. It is evident that the 

elimination of this bridge network should further reduce the 

overhead in inter-service communication. This study 

introduces a novel concept of merging the colocated 

containers to further reduce the communication overhead by 

eliminating the bridge network as well. Once two containers 

are merged, services deployed on them would execute on a 

single container as two processes. These two processes 

communicate over the container’s loopback interface. The 

merging process converts the inter-container 

communications into intra-container communications. 

Spread strategy deployment of Docker Swarm is 

considered as the baseline to this study. This deployment 

strategy distributes services evenly among the hosts, 

resulting in a minimum number of services per host. Thus, 

we consider the deployment of service instance per host as 

the baseline since there are not any optimizations present in 

that strategy. Change of the number of containers and hosts 

throughout the whole process of colocation and merging can 

be shown as in Table I.  

TABLE I 

CHANGE OF THE NUMBER OF CONTAINERS AND HOSTS THROUGH THE 

PROCESS 

Initial 

deployment 

After 

colocation 

After  

merging 

n services  n services  n services  

n containers  n containers  m containers (m<n) 

N hosts M hosts (M<N) M hosts (M<N) 

 

A. Container Colocation 

The purpose of the colocation phase is to identify the 

high-affinity containers and colocate them in a single host 

machine in order to change the overlay network to a bridge 

network to reduce the communication overhead. The amount 

of data exchanged between services, from the point of view 

of the application, does not change when the network type is 

changed. But the actual data volume exchanged between the 

services over the network, as seen from the network, 

contains an additional overhead and it depends on the type 

of the container network. Hence, in this study, affinity is 

referred to the actual data volume exchanged between the 

services. Let o, b, and l, denote overlay, bridge, and 

loopback networks respectively. If KN represents the 

overhead on communications by a specific container 

network type N, below inequality can be obtained from the 

facts that discussed in section I and II. 

 

          (1) 
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Hence the overhead added in inter-service communication 

is a variable which can be changed depending on the 

container placement. Thus, in this study, for a particular 

deployment, affinity is measured by the total traffic volume 

exchanged between the services, including the network 

encapsulation overheads, during the application execution 

time. Therefore the communication dependency between the 

two services, i and j is defined as the communication affinity 

of services i and j (Ai,j) and it is measured as the total data 

volume (volumei,j) exchanged between the two services. 

        (2) 

 

Note that Ai,j  consists of two components: application 

level data volume and the network encapsulation overheads. 

Application-level data volume does not change if the 

network type is changed. However, the encapsulation 

overhead depends on the container network type. Therefore, 

affinity reduction is possible by changing the network type 

from overlay to bridge and to loopback networks. This 

notion of affinity allows it to be estimated without 

instrumenting microservices. Volume of data exchanged can 

be passively observed by placing monitoring tools in the 

network. A host machine has its own limitations with respect 

to resources which limits the number of containers that can 

be colocated. In this study the researchers consider only the 

CPU usage as a constraint that limits the colocation. This 

colocation problem can be formally stated as below: 

Given a set of microservices as p1, p2, ..., pn and 

maximum CPU usage of each service as cpu(p1), cpu(p2), ..., 

cpu(pn) hosted in H1, H2, ..., Hn host machines according to 

Spread strategy (one service per host), where pi is linked to 

pj with the communication affinity Ai,j : 

Find a set of microservices PK; (K = 1, ..., v) to deploy in 

host Hl, such that APK is maximum and cpu(PK) ≤ cpu(Hl) 

where APK
 and cpu(PK) represents the total communication 

affinity and the total CPU usage of the set of PK 

microservices respectively. Hence ultimately find an integer 

number of hosts H m such that m ≤ n to deploy all the given 

p1, p2, ..., pn microservices. A solution is optimal if it has the 

minimal m and maximum affinity score (APK
) for all PK s. 

1)  Service Communication Graph:  In order to solve the 

above formally stated problem, the service communication 

graph should be generated.  REMaP [6] creates such a graph 

entirely based on the data collected at runtime by 

instrumenting the services. It is noted that the 

instrumentation overhead is significant. Therefore, the 

approach presented in this paper relies on passive 

observation of the network to collect the runtime data and 

the static information available in the configuration files. 

Static links between the services and the maximum CPU 

usage of each service can be extracted from the 

configuration files of the application. Since Docker [17] is 

used as the container runtime, the configuration file is a 

yaml file defining services, networks, and volumes for an 

application. Services that are defined to be in the same 

network can reach each other. Hence the “networks” tag 

which defines the networks for each service is used to 

extract the connections between services. This study only 

considers CPU usage as a constraint that limits the 

colocation of containers. It is noted that the runtime 

information about the CPU usage is heavily influenced by 

the other processes running on the host. Application 

developers are in a better position to estimate and provide 

hints on the CPU usage.  It is possible to set various 

constraints to limit a given container’s access to the host 

machine’s CPU cycles by setting the “--cpus” tag in the 

docker compose file. Hence docker-compose file is parsed to 

extract this information of each service. 

To measure the affinity between services (Ai,j), it is 

needed to monitor the application for a given time period 

and the total amount of data (bytes) transferred between 

container pairs, considered as the traffic volumei,j between 

the connected pair of services(i,j). Tcpdump packet analyzer 

tool [18] is used to passively record the network traffic 

transferred between containers without instrumenting the 

services. Therefore, this measure includes the network 

overheads as well. During this monitoring time, it is 

assumed that anomalies have not occurred and the general 

behaviour of the μApp is captured. From the gathered data, a 

communication graph (Fig. 1) is constructed where each 

node represents a service. The aggregate CPU usage of two 

adjacent vertices/services is the weight of an edge 

(maxcpu(A)+maxcpu(B) = WAB) and the communication affinity 

is the value of an edge (AA,B= VAB). 

 
Fig. 1. Example communication graph 

 

2)  A Knapsack Problem Based Heuristic: Given the 

communication graph, the colocation problem can be 

mapped to a Binary Knapsack Problem as follows: 

The set of edges are considered as objects and the 

communication affinities are considered as the object values. 

The total CPU consumption of the two services/nodes that it 

connects with represents the object weight. The host 

machine is the knapsack, and the CPU capacity is the weight 

limit of the knapsack. Place the objects in the knapsack to 

maximize the total value under the constraint that the total 

weight should not exceed the weight limit of the knapsack. 

A solution to this problem gives the set of edges with 

maximum communication affinity score such that the total 

CPU usage of the adjacent services to the selected edges do 

not exceed the CPU limit of the host machine. It is assumed 

that the CPU usage of each service is lesser than the CPU 

capacity of the host machine. By continuously applying this 

until all the services are allocated to a host machine, the 

process ends up grouping the services with high affinities 

together to be colocated in the given host. Since selecting 

fractions of objects (edges) is not possible, further this can 

be specified as a 0/1 or BKP. Hence the problem is mapped 
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to an NP-Hard problem. Also, since this process packs as 

much as services into a single knapsack(host), ultimately it 

may return the minimum number of hosts needed to deploy 

all the services. After applying this process, the resulting 

communication graph would appear as in Fig. 2 where each 

colour represents a host. In this example, the number of 

hosts needed to deploy the six services is reduced to three. 

 

 
Fig. 2. A derived communication graph 

Theoretical benefit or affinity reduction gained from a 

group of colocated services would be equal to the 

summation of the edge values of the colocated services. 

Note that in this study affinity is considered as the total 

volume of data exchanged and that includes the network 

type specific overhead as well. Considering the group of 

ACF in Fig. 2, theoretical affinity reduction is VAC+VCF. But 

the practical benefit would be less than the theoretical 

benefit since single host container networks (bridge) also 

add an overhead, but less than the overhead incurred by 

multi-host container networks (overlay). Therefore, an 

affinity reduction is guaranteed through this process. 

To solve the knapsack problem a dynamic programming-

based heuristic is used [23]. The time complexity of that 

approach is O(W*N) where W is the maximum weight the 

knapsack can carry which is mapped to the CPU limit of the 

host machine and N is the number of items which is the 

number of edges in this study. At the end of each iteration, 

this algorithm selects a better set of edges from the given 

edges (objects). Once an edge is selected that means the 

services that it connects with are eligible to deploy in that 

particular host. Hence in each iteration, it gives a better set 

of services which mostly reduces the communication 

overhead of the application to deploy in the host selected for 

that particular iteration. Selected edges in each iteration are 

removed from the initial set of edges. A selected edge 

carries two adjacent services which are to be deployed in the 

host selected for that particular iteration. All the other 

adjacent edges to those services which are selected to be 

placed in a host are also removed as considering those edges 

would have no point because the service is already allocated 

to a host. The iterations end when no edges are left to 

consider. As a result, there can be situations where services 

are left without being allocated to any host when all the 

adjacent edges to that particular service are removed (F and 

H services in Fig. 3). 

However, such services do not directly communicate with 

each other. Hence deploying them in the same host or 

 
Fig. 3. Example graph to represent the services left without allocating to 

any host 

separate hosts does not affect the overhead reduction. But 

considering one of the objectives of the study which is 

finding the minimum number of hosts to deploy the 

application, the Bin Packing algorithm is applied only to 

those remaining services that have not placed in any hosts. 

Bin is the host and items are the services left without 

allocating to any host. This is a one-dimensional bin packing 

problem since the only parameter it considers is the CPU 

usage of the service as the weight of the item. It is assumed 

that the host’s CPU capacity is greater than each service’s 

maximum CPU usage. 

The best-fit offline algorithm is used to solve the bin 

packing problem since the items are available upfront. The 

time complexity is O(N log N) where N is the number of 

services input. It returns the minimum number of bins/hosts 

required to deploy the remaining services. Note that the 

complexity of the bin packing algorithm is not counted into 

the complexity of the main objective of this study since the 

bin packing algorithm only assists the objective of finding 

the minimum number of hosts needed to deploy the μApp. 

The final output from the container colocation is the final 

service graph that represents all the decisions made from the 

above algorithms by using colour coded nodes where each 

colour represents a host. 

B. Container Merging 

Colocation reduces the overlay network to a bridge 

network. Communication overhead can be further reduced 

by merging containers to eliminate the bridge network as 

well. Merging two containers is in the sense of having two 

services inside the same container which were previously 

executed in two separate containers. Note that after merging, 

service granularity remains unchanged. Hence merging 

preserves the design time service separation of the 

application. Merging only changes the communication mode 

of the colocated services from bridge to loopback interface. 

Container merging eliminates the namespace isolation of 

the services that the containerization provides [24]. 

Therefore, containers are merged only if there is no 

requirement to execute the services in separate namespaces. 

Dependency conflicts between the services is another 

constraint on the container merging process. Having 

different versions of the same dependency is considered as a 

dependency conflict. Hence, before the container merging 

process, dependencies of the services to be merged are 

examined to ensure that there are no restrictions to execute 
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them in a single container. A dependency conflict checker 

takes the dependency files in XML format as the input and 

after parsing them, it outputs the capability of merging. 

To execute two services inside a single container it is 

essential to have one Dockerfile for both services. A script is 

used to combine the content of two Dockerfiles into a single 

Dockerfile. It is not possible to create a merged container 

from different base images. Therefore, both containers to be 

merged should extend from the same base image. Instead of 

directly executing the service from the ENTRYPOINT in 

Dockerfile, it is set to execute a shell script and that script 

starts the two services. Hence ultimately those services 

would execute in the same container as two processes. 

IV. RESULTS AND EVALUATION 

This section elaborates the obtained results, how the 

results are evaluated, and the success level of the proposed 

solution. 

A. Benchmark Application Selection 

Sock-Shop μApp provided by Weaveworks [19] is 

selected as the benchmark application to evaluate the 

proposed approach. This selection is based on a study by 

Aderaldo et al. [20]. Further many of the research in this 

area [21], [22] have used this as the benchmark for their 

evaluations. Microservices of this application are written in 

different languages and dependency files of these services 

are in different formats. A graph processing application 

which is used as a page rank analytics platform to rank the 

Twitter profiles is also selected for evaluation again based 

on the recommendations by Aderaldo et al. [20]. All the 

services in this application are implemented in Java 

programming language except the databases and servers. 

Hence all the dependency files are in XML format. 

Therefore, the colocation process is evaluated for both these 

applications and the merging process is evaluated only using 

the Page-Rank application. 

B. Evaluation of the Proposed Approach 

The selected benchmark applications were evaluated 

under the following deployment strategies. 

• Spreaded Deployment: Initial deployment which is the 

baseline. 

• Colocated Deployment: Deployment after colocation. 

• Merged Deployment: Deployment after merging. 

Encapsulation overhead is a component of the 

communication affinity. Therefore, affinity depends on the 

type of the network. Due to different encapsulations of data 

packets exchanged in the above three deployment strategies, 

inter-service communication affinities of the application 

comprise several components (Table II). 

TABLE II.  

COMPOSITION OF COMMUNICATION AFFINITIES UNDER DIFFERENT 

DEPLOYMENT STRATEGIES 

Spreaded 

deployment 

Colocated 

deployment 

Merged 

deployment 

Inter-host  

communication 

affinity 

Inter-host +  

Inter-container  

communication 

affinity 

Inter-host +  

Inter-container + 

Intra-container  

communication 

affinity 

 

1)  Colocation Process Evaluation: 

Service communication graphs generated by analysing the 

docker-compose files of the Sock-Shop and Page-Rank 

applications are in Fig. 4 and Fig. 5 respectively. The 

number above each node is the maximum CPU cores that 

service can take. 

 

 
Fig. 4. Initial service communication graph for Sock-Shop μApp 
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Fig. 5. Initial service communication graph for Page-Rank μApp 

Since baseline is the spread strategy deployment, initial 

monitoring was done deploying each service/container in a 

separate VM. Each communication link of this configuration 

was monitored using tcpdump to extract the affinity values 

to annotate the communication graph. Fig. 6 and Fig 7 

depicts the communication graphs of the Sock-Shop and 

Page-Rank applications respectively after this annotation. 

Each edge contains the total maximum CPU usage of 

adjacent services and the communication affinity between 

them. Hence this can be considered as the input to the 

knapsack method. 

Colocation decisions in Table III were made for the Sock-

Shop application for host machines with CPU cores 4,5,5, 

and 4. Table IV presents the colocation decisions for the 

Page-Rank application deployed over host machines with 

CPU cores 3,6,9, and 10. Fig. 8 and Fig. 9 are the final 

service graphs generated to depict the colocation decisions 

where each colour represents a host. From Fig. 4 to Fig. 9 

are the direct outputs of the implemented program. 

 

 

Fig. 6. Annotated service communication graph for Sock-Shop μApp 
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Fig. 7. Annotated service communication graph for Page-Rank μApp 

TABLE III.  

COLOCATION DECISIONS FOR SOCK-SHOP ΜAPP  

Host Machine Selected set of services to deploy 

CPU cores 4 front-end, user, user-db, catalogue, 

catalogue-db 

CPU cores 5 carts, carts-db, rabbitmq, shipping 

CPU cores 5 orders, payment 

CPU cores 4 orders-db, user-sim 

 

TABLE IV.  

COLOCATION DECISIONS FOR PAGE-RANK ΜAPP 

Host Machine Selected set of services to deploy 

CPU cores 3 discovery, config 

CPU cores 6 twitter-rank-web, twitter-rank-

crawler 

CPU cores 9 hdfs, graphdb 

CPU cores 10 rabbitmq, mazerunner 

 

 
Fig. 8. Final service communication graph for Sock-Shop μApp 
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Fig. 9. Final service communication graph for Page-Rank μApp 

After redeploying the applications according to the above 

deployment decisions, affinity values for the same 

connections were measured. To evaluate this process, results 

from the spread strategy deployment were compared with 

the results of the colocated deployment. Total 

communication affinity reduction from spreaded deployment 

to colocated deployment is shown in Fig. 10 and Fig. 11 for 

Sock-Shop and Page-Rank benchmarks respectively. As 

depicted in these figures, the total affinity reduction on 

communication over the overlay network to bridge network, 

are 57% and 52% for the two applications. 

 

 
Fig. 10. Sock-Shop: Comparison of total affinities between spreaded and 

colocated deployments 

 
Fig. 11. Page-Rank: Comparison of total affinities between spreaded and 

colocated deployments 

 

In spreaded deployment traffic is forwarded through the 

network interfaces of the hosts using an overlay network. 

This includes several layers of packet encapsulations, 

decapsulations, and address translations (Fig. 12). But in 

colocated deployment, traffic of the containers that are in the 

same host goes through a bridge network with less 

encapsulation overhead (Fig. 13). This is the reason for the 

affinity reduction in the colocated deployment. 
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Fig. 12. Underline packet transmission in spreaded deployment 

 

 
Fig. 13. Underline packet transmission of colocated containers 

 
Stacked charts in Fig. 14 and Fig. 15 depict the 

contribution of the inter-host communication affinity and 

inter-container communication affinity to the total 

communication affinity in the two deployments. It is clear 

that the inter-host communication affinity is reduced by a 

significant amount through the colocation process. After 

colocation, inter-service communication between the 

colocated services change from inter-host to inter-container 

communication. An inter-container overhead is always 

guaranteed to be less than the corresponding inter-host 

overhead. Hence from the colocation process, if service 

colocation takes place, approximately 50% of an affinity 

reduction is guaranteed. 

 

 
Fig. 14. Sock-Shop: Inter-host and inter-container components of the total 

communication affinity  

 

 
Fig. 15. Page-Rank: Inter-host and inter-container components of the total 

communication affinity  

2)  Merging Process Evaluation: 

The services of the Page-Rank application which are 

colocated in each host (Table IV) can be considered for 

merging. However, only the discovery service with the 

config service and the twitter-rank-web service with the 

twitter-rank-crawler service fulfilled the prerequisites for 

merging. After merging those service containers, affinity 

values for the same connections were again measured. As in 

Fig. 16, the total affinity reduction from colocated 

deployment to merged deployment is approximately 13%. In 

this scenario, the traffic returns back to the container from 

the loopback interface since both services are in the same 

container (Fig. 17). Therefore, further affinity reduction was 

possible. 
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Fig. 16. Page-Rank: Comparison of total affinities between colocated and 

merged deployments 

 

Fig. 17. Underline packet transmission of a merged container 

 

The stacked chart in Fig. 18 shows the contribution of the 

inter-host, inter-container, and intra-container 

communication affinities to the total communication affinity 

in the two deployments. By analysing that, it is noticed that 

both inter-host and inter-container affinities have reduced. 

But the merging process does not affect the inter-host 

communication at all. Hence it is not guaranteed that the 

inter-host communication affinity would reduce all the time. 

However, once the containers are merged, inter-service 

communication of the services in the merged containers 

changes from inter-container to intra-container 

communication. An intra-container overhead is always 

guaranteed to be less than the corresponding inter-container 

overhead and ultimately that affects the reduction of the total 

affinity. Hence from the merging process, an affinity 

reduction is guaranteed and approximately 13% of an 

affinity reduction is noticed. 

 
Fig. 18. Page-Rank: Inter-host, inter-container and intra-container 

components of the total communication affinity 

3)  Overall Evaluation: 

Evaluation of the complete solution has been done in 

terms of communication affinity and the execution time of 

the application. Fig. 19 shows the affinity reduction from the 

initial deployment to the final deployment in the Page-Rank 

μApp. Total affinity reduction from the proposed approach 

is approximately 58.5%. The contribution of each affinity 

component to the total affinity for different deployments is 

shown in Fig. 20. The ultimate impact of this 

communication affinity reduction to the μApp is the 

execution time reduction. In Page-Rank μApp, the execution 

time for one operation (to update the ranks on the dashboard) 

reduces from 1490 seconds to 1291 seconds as shown in 

Table V. This represents 13.4% reduction in the execution 

time per operation. 

 

 

Fig. 19. Total communication affinity comparison of 3 deployments 



Communication-Affinity Aware Colocation and Merging of Containers  44 

December 2022           International Journal on Advances in ICT for Emerging Regions 

 
Fig. 20. Contribution to total affinity from 3 communication affinity 

components 

TABLE V.  

EXECUTION TIME PER OPERATION IN PAGE-RANK ΜAPP 

Deployment Time (in seconds) 

Spreaded 1490 

Colocated 1358 

Merged 1291 

 

μApps used to evaluate the proposed solution are not 

biased and they are accepted among the research community 

in this domain, as good applications to represent and 

evaluate the microservice architecture [20]. Hence the 

results obtained can be generalized to a wider context. 

V. CONCLUSIONS 

The volume of data exchanged between two 

microservices is a good indicator of their affinity. Typically, 

microservices are deployed in their own containers and 

different networks such as overlay, bridge and loopback, are 

used to interconnect these containers. The application-level 

data volume exchanged remains the same irrespective of the 

type of network used to exchange the data. However, 

different networks add different encapsulation overheads to 

communication. This overhead is significant, and it can be 

reduced by changing the network by intelligently placing the 

containers in hosts based on the communication affinities 

between the services. Container placement is constrained by 

the resources available in the hosts. This study models this 

problem as an instance of the BKP which is in the 

complexity class NP-Hard. This paper presents a novel 

heuristic to solve this problem and deploy the containers to 

significantly reduce the total communication affinity of an 

application. The proposed approach goes beyond the 

colocation and merges containers where possible. To the 

best of our knowledge, this is the first work that merges 

containers to reduce the communication cost of μApps. This 

study demonstrates that, by employing the combined 

strategy of colocation and merging, it is possible to reduce 

the communication overhead up to 58.5%. Also, the 

execution time is reduced by 13.4%. 

The colocation process considers only the CPU 

consumption as a constraint on the colocation. But there are 

other constraints such as memory. There is a potential to 

improve these results by considering multiple such 

constraints. However, it is not a trivial extension to the 

current work. It requires extensive further study to address 

this problem. In this study the authors have not attempted 

runtime reconfiguration of the deployment. The application 

is redeployed after taking the colocation and merging 

decisions. Therefore, there can be a significant downtime 

during the redeployment. However, this strategy ensures the 

stability and the consistency of the services. Further, studies 

are required to safely reconfigure a deployment during the 

runtime. 

REFERENCES 

[1] "Microservices", martinfowler.com, 2021. [Online]. Available: 
https://martinfowler.com/articles/microservices.html. [Accessed: 28- 

Mar- 2021] 

[2] T. Ueda, T. Nakaike and M. Ohara, "Workload characterization for 
microservices, " IEEE International Symposium on Workload 

Characterization (IISWC), Providence, RI, pp. 1-10, doi: 

10.1109/IISWC.2016.7581269, 2016. 
[3] K. Suo, Y. Zhao, W. Chen and J. Rao, "An analysis and empirical 

study of container networks," IEEE INFOCOM 2018 - IEEE 

Conference on Computer Communications, 2018, pp. 189-197, doi: 
10.1109/INFOCOM.2018.8485865.  

[4] M. Villamizar et al., "Evaluating the monolithic and the microservice 

architecture pattern to deploy web applications in the cloud," 2015 
10th Computing Colombian Conference (10CCC), 2015, pp. 583-590, 

doi: 10.1109/ColumbianCC.2015.7333476. 

[5] J. Chen, K. Chiew, D. Ye, L. Zhu and W. Chen, "AAGA: Affinity-
aware grouping for allocation of virtual machines," 2013 IEEE 27th 

International Conference on Advanced Information Networking and 

Applications (AINA), 2013, pp. 235-242, doi: 
10.1109/AINA.2013.22. 

[6] A.Sampaio, J.Rubin, I. Beschastnikh and N. Rosa, "Improving 

microservice-based applications with runtime placement adaptation", 
Journal of Internet Services and Applications, vol. 10, no. 1, 2019. 

Available: 10.1186/s13174-019-0104-0. 

[7] N. Tziritas, T. Loukopoulos, S. Khan, C. Xu and A. Zomaya, "A 

Communication-Aware Energy-Efficient Graph-Coloring Algorithm 

for VM Placement in Clouds," 2018 IEEE SmartWorld, Ubiquitous 

Intelligence & Computing, Advanced & Trusted Computing, 
Scalable Computing & Communications, Cloud & Big Data 

Computing, Internet of People and Smart City Innovation, 

(SmartWorld/SCALCOM/UIC/ ATC/CBDCom/IOP/SCI), 2018, pp. 
1684-1691, doi: 10.1109/SmartWorld.2018.00286. 

[8] O. Al-Debagy and P. Martinek, "A Comparative Review of 

Microservices and Monolithic Architectures," 2018 IEEE 18th 
International Symposium on Computational Intelligence and 

Informatics (CINTI), 2018, pp. 000149-000154, doi: 
10.1109/CINTI.2018.8928192. 

[9] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri and Y. Al-

Hammadi, "Performance comparison between container-based and 
VM-based services," 2017 20th Conference on Innovations in Clouds, 

Internet and Networks (ICIN), 2017, pp. 185-190, doi: 

10.1109/ICIN.2017.7899408. 
[10] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar and M. 

Steinder, "Performance Evaluation of Microservices Architectures 

Using Containers," 2015 IEEE 14th International Symposium on 
Network Computing and Applications, Cambridge, MA, 2015, pp. 

27-34, doi: 10.1109/NCA.2015.49. 

[11] K. Sun, H. Yang, Y. Park, Y. Kim, and W. Lee, Considerations for 
Benchmarking Network Performance in Containerized 

Infrastructures, 2020 

[12] N. Kratzke, “About microservices, containers and their 
underestimated impact on network performance,” ArXiv171004049 

Cs, Sep. 2017. 

[13] "Production-Grade Container Orchestration", Kubernetes, 2020. 
[Online]. Available: https://kubernetes.io/. [Accessed: 07- Nov- 

2020]. 

[14] "Swarm mode overview", Docker Documentation, 2020. [Online]. 
Available: https://docs.docker.com/engine/swarm/. [Accessed: 08- 

Nov- 2020]. 

[15] J. Han, Y. Hong and J. Kim, "Refining microservices placement 
employing workload profiling over multiple Kubernetes clusters," in 



45   N. N. Wickramanayaka#1, C. I. Keppitiyagama*2, K. Thilakarathna# 

International Journal on Advances in ICT for Emerging Regions                 December 2022 

IEEE Access, vol. 8, pp. 192543-192556, 2020, doi: 
10.1109/ACCESS .2020.3033019. 

[16] J. Sonnek, J. Greensky, R. Reutiman and A. Chandra, "Starling: 

Minimizing Communication Overhead in Virtualized Computing 
Platforms Using Decentralized Affinity-Aware Migration," 2010 

39th International Conference on Parallel Processing, 2010, pp. 228-

237, doi: 10.1109/ICPP.2010.30. 
[17] "Empowering App Development for Developers | Docker", Docker, 

2020. [Online]. Available: https://www.docker.com/. [Accessed: 08- 

Nov- 2020]. 
[18] "TCPDUMP/LIBPCAP public repository", Tcpdump.org, 2020. 

[Online]. Available: https://www.tcpdump.org/. [Accessed: 08- Nov- 

2020].  
[19] "Microservices Demo: Sock Shop", Microservices-demo.github.io, 

2017. [Online]. Available: https://microservices-demo.github.io/. 

[Accessed: 19- Mar- 2021]. 
[20] C. M. Aderaldo, N. C. Mendonça, C. Pahl and P. Jamshidi, 

"Benchmark Requirements for Microservices Architecture 

Research," 2017 IEEE/ACM 1st International Workshop on 
Establishing the Community-Wide Infrastructure for Architecture-

Based Software Engineering (ECASE), 2017, pp. 8-13, doi: 

10.1109/ECASE.2017.4. 

[21] C. Nguyen, A. Mehta, C. Klein and E. Elmroth, "Why cloud 

applications are not ready for the edge (yet)", Proceedings of the 4th 

ACM/IEEE Symposium on Edge Computing, 2019. Available: 
10.1145/3318216.3363298 [Accessed: 19- Mar- 2021]. 

[22] J. Rahman and P. Lama, "Predicting the End-to-End Tail Latency of 

Containerized Microservices in the Cloud", 2019 IEEE International 
Conference on Cloud Engineering (IC2E), 2019. Available: 

10.1109/ic2e.2019.00034 [Accessed: 19- Mar- 2021]  

[23] A. Shaheen and A. Sleit, "Comparing between different approaches 
to solve the 0/1 Knapsack problem", International Journal of 

Computer Science and Network Security, vol. 16, no. 7, 2016. 

[Accessed: 19- Mar- 2021]. 
[24] N. AGARWAL, "Understanding the Docker Internals", Medium, 

2017. . 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 

 


