
International Journal on Advances in ICT for Emerging Regions 2022 15 (3):

December 2022 International Journal on Advances in ICT for Emerging Regions

Communication-Affinity Aware Colocation and

Merging of Containers
Nishadi N. Wickramanayaka, Chamath I. Keppitiyagama, Kenneth Thilakarathna

Abstract— Microservice architecture relies on message passing

between services. Inter-service communication introduces an

overhead to the applications’ overall performance. This

overhead depends on the runtime placement of the services

bundled in containers and it can be reduced by intelligently

deploying the containers by considering the communication

affinities between services. Researchers have attempted to

colocate microservices and merge containers based on

affinities. However, container merging has not been considered

up to now. This study shows that the problem of service

placement in a microservice application considering

communication affinities, constrained by computational

resources, can be mapped to an instance of the Binary

Knapsack Problem. We propose a container colocation and

merging mechanism based on a heuristic solution to the Binary

Knapsack Problem. The proposed approach reduced the

communication overhead of a benchmark application by 58.5%

and as a result, execution time was reduced by approximately

13.4% as well.

Keywords— Affinity, Binary Knapsack, Colocation, Container

Networks, Communication Overhead, Docker Containers,

Microservices, Microservice Architecture, Inter-service

Communication

I. INTRODUCTION

icroservice architecture is used to develop software

applications as suites of independently deployable

small services that interact with each other [1]. It is often

used to decompose an existing system rather than to

compose a system anew using services offered by different

enterprises. Microservices are typically deployed in

containers with each service contained in a dedicated

container [2] which are then hosted in multiple hosts. Hence

microservices of an application exchange a significant

amount of data, creating communication affinities. Affinity

is defined as a relation between two microservices [6] which

in this study given by the total amount of data exchanged

between those two services over time. To place services in

different containers, function calls in the monolithic

application should be converted to network calls between the

containers in the microservice architecture. Those network

calls add an extra layer of networking with expensive

operations such as packet encapsulation, decapsulation,

address translations [3], which ultimately increase the

services’ request/response time [2], [4].

Correspondence: Nishadi N. Wickramanayaka #1 (E-mail:

nishadinuwa1995@gmail.com) Received: 24-12-2021

Revised:26-08-2022 Accepted: 30-08-2022

Nishadi N. Wickramanayaka, Chamath I. Keppitiyagama and Kenneth

Thilakarathna are from University of Colombo School of Computing, Sri
Lanka. (e-mail: nishadinuwa1995@gmail.com, chamath@ucsc.cmb.ac.lk,

kmt@ucsc.cmb.ac.lk).

DOI: http://doi.org/10.4038/icter.v15i3.7251

© 2022 International Journal on Advances in ICT for Emerging Regions

Therefore, the resulting communication overhead adversely

impacts the overall performance of the microservice

application (μApp) despite the benefits of the architecture.

Hence what this paper focuses as the main research

problem is that the degraded performance of μApps due to

the communications between the services of the application.

Container networks used to connect containers with each

other play a major role in communication complexities of

microservice architecture. Overlay networks are used for

host-to-host communication when containers/services are

deployed in different hosts whereas bridge networks are

used when containers/services are deployed within the same

host. Processes inside the same container communicate over

the loopback interface. Overhead imposed by an overlay

network is higher than the overhead imposed by a bridge

network [3]. Loopback interface imposes the least overhead

since it eliminates the intervention of bridge network as well.

Therefore, placement of two services with high

communication affinities in different physical nodes makes

this situation worse [6]. Thus, it is evident that the container

placement decisions of the μApps need to be taken carefully

in the deployment time.

As long as microservice architecture is used to design an

application it is impossible to completely eliminate the

communication overhead incurred at runtime. Because even

if all the services are located inside a single machine there

will still be communication across address spaces. A

possible way of addressing the problem is by reducing the

communication overhead to a certain extent by making the

deployment decisions carefully. Further, if mapping of the

exact same design decisions to runtime is not strictly

necessary, then alterations may be applicable to further

reduce the communication overhead. The motivation behind

this study is to increase the performance of a μApp, by

reducing the overhead of inter-service communication by

carefully analysing the runtime behaviour of a μApp and

containers. Therefore, our main objectives were to explore

the impact of container networks on μApps, to discover the

possibilities of reducing the communication overhead of a

μApp without changing the design of the application and

finally to measure up to what extent the performance can be

increased from the proposed solution.

In order to achieve these objectives, we present a novel

mechanism of container colocation and container merging.

Container colocation is defined as moving the services with

high communication affinities into a single host. Colocation

is constrained by the resources available on the hosts. We

could map this problem to an instance of the Binary

Knapsack Problem (BKP). Container merging is the process

of executing services that are already colocated, in a single

container. Through the colocation process the overlay

network is reduced to a bridge network. Merging process

reduces the bridge network to communications over the

M

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits nrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited

mailto:nishadinuwa1995@gmail.com
mailto:nishadinuwa1995@gmail.com
mailto:chamath@ucsc.cmb.ac.lk
http://doi.org/10.4038/icter.v15i3.7251

Communication-Affinity Aware Colocation and Merging of Containers 34

December 2022 International Journal on Advances in ICT for Emerging Regions

container’s loopback interface. As a result, communication

overhead is reduced, and the performance of the application

is improved. Also, this might reduce the number of hosts

needed to execute the μApp.

The rest of this paper is organized as follows. Section II

presents a review of the background related to the study.

Section III presents the design and implementation of the

solution. Results and the evaluation of the proposed

approach are summarized in Section IV. Finally, Section V

concludes and outlines some future directions.

II. BACKGROUND AND RELATED WORK

A. Performance Degradation of μApps and Container

Networks

With the inclination of the industry towards cloud-based

infrastructure, microservice architecture has received

massive attention from the academic community. Hence

ample amount of studies which compare the μApps with

monolithic applications show the performance penalty

resulted when using μApps [2], [4], [8]. The performance of

microservices in container-based and virtual machine (VM)

based environments has also been studied by Salah et al. [9].

Amaral et al. [10] evaluated the performance impact of two

models of implementing microservices in a container

environment: master-slave and nested-containers. They

mention that nested-container model is hardly adopted in

real-world applications since there are some trade-offs in

terms of network performance.

Suo et al. [3] have done a thorough investigation on

latency, throughput, scalability, and startup cost of various

container networks on a single host and on multiple hosts in

a virtualized environment. Out of four networking modes on

a single host (none mode, bridge mode, container mode, host

mode), bridge mode network incurred 18% and 30%

throughput loss in upload and download respectively in

facilitating each container to own an isolated network

namespace, resulting all inter-container communications to

go through the docker0 bridge. Out of four networking

modes available on multiple hosts environments (host mode,

NAT, Overlay network, Routing), both NAT and Routing

incurred considerable performance degradation due to the

overhead of address translation and packet routing. However,

the overlay network caused a high-performance loss of

82.8% throughput drop and a 55% latency increase

compared to the host mode. They explain the reason for the

performance degradation of μApps in terms of bridge

network and overlay network which are used to connect the

containers. This study has done a comparison between

several container networks in a single host and multiple

hosts separately. They have not compared the single host

container networks with multi-host container networks.

Further, they have conducted the experiment in VMs where

an additional network overhead is introduced to containers

through the virtualization.

Yang et al. [11] have attempted to bridge the above gap

by deploying the containers on both VM and bare-metal

environments. The results confirm the overhead of VM

environments with a throughput loss compared to bare-metal

deployment. In all tests, the multi-hosts control group

showed a significant throughput loss compared to the single

host control group. Further, Kratzke [12] has analysed the

performance impact of the overlay network in terms of

encryption to HTTP-based and REST-like services. Even

though these analyses show the impact of container

networks on imposing communication overhead, they have

only considered inter-container communications and none of

these studies have considered intra-container

communications. Hence, it is identified that intra-container

communications should also take into consideration in order

to further explore the ways of reducing the communication

overhead.

B. Container Placement Problem

Based on the aforementioned studies, placement of the

containers has been identified as one of the major reasons in

creating these communication affinities. Hence, it is

pertinent to explore the state of the art of container

placement process in practice. However, identifying the best

placement of containers is not an easy task. Existing

container management tools implement several common

placement strategies. Kubernetes [13] places a minimum

number of microservices per host in the cluster [6]. This is

called the Spread strategy. However, it can add latency to

communication and lower the μApp’s performance. Also,

this does not take resource optimization into consideration

during the deployment. Some management tools use the

Bin-pack strategy: deploying a μApp in a minimum number

of hosts so that it avoids the cluster resource wastage.

Besides these commonly used two strategies, the Random

strategy is also used where the management tool selects a

host to deploy a microservice randomly. All these three

strategies are available in Docker Swarm [14]. Irrespective

of the strategy, management tools only consider the

instantaneous resource usage of the service when they place

them on hosts and rarely try to find an optimal setting.

However, they do not consider the communication affinities

between services resulting in placing microservices with

high communication affinities in different hosts. Eventually,

the large amount of network traffic that takes place between

two services over the network can hinder the overall

performance of the application.

Sampaio et al. [6] propose REMaP, a runtime

microservices placement mechanism. They consider

microservices’ resource usage and as well as their affinities

when placing the microservices in hosts. This problem is

modelled as an instance of the multi-dimensional bin-

packing problem. The objective of REMaP is to maximize

the affinity score while deploying the microservices in a

minimum number of hosts during the runtime. In solving the

problem, they have used the First Fit as a heuristic in their

approach since a runtime placement needs quick solutions.

REMaP instruments the microservices to gather information

required to take colocation decisions during the runtime.

Though, we noticed the heavy cost of this instrumentation

on the microservices. Hence, the benefits derived through

colocation are negatively affected due to the instrumentation

cost. Further, REMaP cannot handle data synchronization

across different hosts after migrating a stateful microservice.

Hence, the migration of stateful microservices may lead the

μApp in an inconsistent state. In addition, runtime migration

cost may not be justifiable compared to the benefits derived

due to colocation. REMaP does not use the hints available in

the configuration files about the resource usage or the

relationships between microservices indicated in them. We

35 N. N. Wickramanayaka#1, C. I. Keppitiyagama*2, K. Thilakarathna#

International Journal on Advances in ICT for Emerging Regions December 2022

further noticed that REMaP does not consider container

merging at all.

Han et al. [15] propose a refinement framework for

profiling-based microservices placement to identify and

respond to workload characteristics. The resource

requirements obtained through profiling has been fed into a

greedy-based heuristic algorithm to make microservices

placement. However, the main focus of this work is not a

placement algorithm but a profiling-based framework for

microservices deployment. Hence any placement algorithm

can be adapted to their framework. Both aforementioned

solutions depend on the data collected at run time. However,

we have identified that some essential parameters that are

required to take the placement decision are already available

in configuration files even before the runtime of the μApp.

C. VM Placement Problem

Once the containers are mapped to VMs and

communications between containers to the communications

between VMs, virtual machine placement in physical

machines (PMs) can be considered as the closest research

area to the container placement problem. Tziritas et al. [7]

propose a communication-aware graph-coloring algorithm,

placing the VMs in the underlying system in an energy-

efficient manner while optimizing the network overhead due

to the VM communication inter-dependencies. However,

that VM selection process cannot be directly mapped into

the container selection process as their study pre-defines the

number of servers to place VMs and container placement

may not necessarily give the number of host machines to

place the containers as the problem is to optimize the

placement of services, thus the algorithm itself should be

able to identify the minimum number of hosts to locate the

services. However, it is possible to map their VM

communication graph to a container/service communication

graph.

Chen et al. [5] propose a different approach for the VM

placement problem which is an affinity-aware grouping

method for allocation of VMs into PMs based on a heuristic

bin-packing algorithm. It groups the VMs based on the

affinities among them and then allocates those identified

VM groups into a minimum number of PMs using the bin

packing strategy. One major limitation of this research is the

generation of one large VM affinity group with total

resource requests overstepping the PM resource limit.

Sonnek et al. [16] present a decentralized affinity-aware

migration technique that incorporates heterogeneity and VM

communication cost to allocate VMs on the available

physical resources. Their technique monitors network

affinity between pairs of VMs periodically and triggers the

migration if inter-server traffic exceeds intra-server traffic

and uses a distributed bartering algorithm, to dynamically

adjust VM placement such that communication overhead is

minimized. Since the migration also has a cost, they refrain

from migrating VMs if it results in only minor benefits.

III. METHODOLOGY

The proposed solution comprises of two phases:

• Container colocation: moving containers that are

initially deployed in different hosts into a single host.

• Container merging: placing the services that are

initially deployed in different containers inside a

single container.

Containers deployed in multiple hosts are connected

through overlay networks and containers in the same host

communicate through a bridge network. As mentioned

before, overlay networks impose a higher overhead than

bridge networks [3], [11], [12]. Hence during the colocation

phase services with high communication affinities are

identified to deploy on a single host. This is not a trivial task

since the colocation is constrained by the processing

resources available on the host. In this study, we propose a

novel approach to solve the colocation problem by mapping

it to an instance of the BKP.

Current approaches to reduce the communication cost use

only the container colocation process [6] which replaces the

overlay network with bridge network. It is evident that the

elimination of this bridge network should further reduce the

overhead in inter-service communication. This study

introduces a novel concept of merging the colocated

containers to further reduce the communication overhead by

eliminating the bridge network as well. Once two containers

are merged, services deployed on them would execute on a

single container as two processes. These two processes

communicate over the container’s loopback interface. The

merging process converts the inter-container

communications into intra-container communications.

Spread strategy deployment of Docker Swarm is

considered as the baseline to this study. This deployment

strategy distributes services evenly among the hosts,

resulting in a minimum number of services per host. Thus,

we consider the deployment of service instance per host as

the baseline since there are not any optimizations present in

that strategy. Change of the number of containers and hosts

throughout the whole process of colocation and merging can

be shown as in Table I.

TABLE I

CHANGE OF THE NUMBER OF CONTAINERS AND HOSTS THROUGH THE

PROCESS

Initial

deployment

After

colocation

After

merging

n services n services n services

n containers n containers m containers (m<n)

N hosts M hosts (M<N) M hosts (M<N)

A. Container Colocation

The purpose of the colocation phase is to identify the

high-affinity containers and colocate them in a single host

machine in order to change the overlay network to a bridge

network to reduce the communication overhead. The amount

of data exchanged between services, from the point of view

of the application, does not change when the network type is

changed. But the actual data volume exchanged between the

services over the network, as seen from the network,

contains an additional overhead and it depends on the type

of the container network. Hence, in this study, affinity is

referred to the actual data volume exchanged between the

services. Let o, b, and l, denote overlay, bridge, and

loopback networks respectively. If KN represents the

overhead on communications by a specific container

network type N, below inequality can be obtained from the

facts that discussed in section I and II.

 (1)

Communication-Affinity Aware Colocation and Merging of Containers 36

December 2022 International Journal on Advances in ICT for Emerging Regions

Hence the overhead added in inter-service communication

is a variable which can be changed depending on the

container placement. Thus, in this study, for a particular

deployment, affinity is measured by the total traffic volume

exchanged between the services, including the network

encapsulation overheads, during the application execution

time. Therefore the communication dependency between the

two services, i and j is defined as the communication affinity

of services i and j (Ai,j) and it is measured as the total data

volume (volumei,j) exchanged between the two services.

 (2)

Note that Ai,j consists of two components: application

level data volume and the network encapsulation overheads.

Application-level data volume does not change if the

network type is changed. However, the encapsulation

overhead depends on the container network type. Therefore,

affinity reduction is possible by changing the network type

from overlay to bridge and to loopback networks. This

notion of affinity allows it to be estimated without

instrumenting microservices. Volume of data exchanged can

be passively observed by placing monitoring tools in the

network. A host machine has its own limitations with respect

to resources which limits the number of containers that can

be colocated. In this study the researchers consider only the

CPU usage as a constraint that limits the colocation. This

colocation problem can be formally stated as below:

Given a set of microservices as p1, p2, ..., pn and

maximum CPU usage of each service as cpu(p1), cpu(p2), ...,

cpu(pn) hosted in H1, H2, ..., Hn host machines according to

Spread strategy (one service per host), where pi is linked to

pj with the communication affinity Ai,j :

Find a set of microservices PK; (K = 1, ..., v) to deploy in

host Hl, such that APK is maximum and cpu(PK) ≤ cpu(Hl)

where APK
 and cpu(PK) represents the total communication

affinity and the total CPU usage of the set of PK

microservices respectively. Hence ultimately find an integer

number of hosts H m such that m ≤ n to deploy all the given

p1, p2, ..., pn microservices. A solution is optimal if it has the

minimal m and maximum affinity score (APK
) for all PK s.

1) Service Communication Graph: In order to solve the

above formally stated problem, the service communication

graph should be generated. REMaP [6] creates such a graph

entirely based on the data collected at runtime by

instrumenting the services. It is noted that the

instrumentation overhead is significant. Therefore, the

approach presented in this paper relies on passive

observation of the network to collect the runtime data and

the static information available in the configuration files.

Static links between the services and the maximum CPU

usage of each service can be extracted from the

configuration files of the application. Since Docker [17] is

used as the container runtime, the configuration file is a

yaml file defining services, networks, and volumes for an

application. Services that are defined to be in the same

network can reach each other. Hence the “networks” tag

which defines the networks for each service is used to

extract the connections between services. This study only

considers CPU usage as a constraint that limits the

colocation of containers. It is noted that the runtime

information about the CPU usage is heavily influenced by

the other processes running on the host. Application

developers are in a better position to estimate and provide

hints on the CPU usage. It is possible to set various

constraints to limit a given container’s access to the host

machine’s CPU cycles by setting the “--cpus” tag in the

docker compose file. Hence docker-compose file is parsed to

extract this information of each service.

To measure the affinity between services (Ai,j), it is

needed to monitor the application for a given time period

and the total amount of data (bytes) transferred between

container pairs, considered as the traffic volumei,j between

the connected pair of services(i,j). Tcpdump packet analyzer

tool [18] is used to passively record the network traffic

transferred between containers without instrumenting the

services. Therefore, this measure includes the network

overheads as well. During this monitoring time, it is

assumed that anomalies have not occurred and the general

behaviour of the μApp is captured. From the gathered data, a

communication graph (Fig. 1) is constructed where each

node represents a service. The aggregate CPU usage of two

adjacent vertices/services is the weight of an edge

(maxcpu(A)+maxcpu(B) = WAB) and the communication affinity

is the value of an edge (AA,B= VAB).

Fig. 1. Example communication graph

2) A Knapsack Problem Based Heuristic: Given the

communication graph, the colocation problem can be

mapped to a Binary Knapsack Problem as follows:

The set of edges are considered as objects and the

communication affinities are considered as the object values.

The total CPU consumption of the two services/nodes that it

connects with represents the object weight. The host

machine is the knapsack, and the CPU capacity is the weight

limit of the knapsack. Place the objects in the knapsack to

maximize the total value under the constraint that the total

weight should not exceed the weight limit of the knapsack.

A solution to this problem gives the set of edges with

maximum communication affinity score such that the total

CPU usage of the adjacent services to the selected edges do

not exceed the CPU limit of the host machine. It is assumed

that the CPU usage of each service is lesser than the CPU

capacity of the host machine. By continuously applying this

until all the services are allocated to a host machine, the

process ends up grouping the services with high affinities

together to be colocated in the given host. Since selecting

fractions of objects (edges) is not possible, further this can

be specified as a 0/1 or BKP. Hence the problem is mapped

37 N. N. Wickramanayaka#1, C. I. Keppitiyagama*2, K. Thilakarathna#

International Journal on Advances in ICT for Emerging Regions December 2022

to an NP-Hard problem. Also, since this process packs as

much as services into a single knapsack(host), ultimately it

may return the minimum number of hosts needed to deploy

all the services. After applying this process, the resulting

communication graph would appear as in Fig. 2 where each

colour represents a host. In this example, the number of

hosts needed to deploy the six services is reduced to three.

Fig. 2. A derived communication graph

Theoretical benefit or affinity reduction gained from a

group of colocated services would be equal to the

summation of the edge values of the colocated services.

Note that in this study affinity is considered as the total

volume of data exchanged and that includes the network

type specific overhead as well. Considering the group of

ACF in Fig. 2, theoretical affinity reduction is VAC+VCF. But

the practical benefit would be less than the theoretical

benefit since single host container networks (bridge) also

add an overhead, but less than the overhead incurred by

multi-host container networks (overlay). Therefore, an

affinity reduction is guaranteed through this process.

To solve the knapsack problem a dynamic programming-

based heuristic is used [23]. The time complexity of that

approach is O(W*N) where W is the maximum weight the

knapsack can carry which is mapped to the CPU limit of the

host machine and N is the number of items which is the

number of edges in this study. At the end of each iteration,

this algorithm selects a better set of edges from the given

edges (objects). Once an edge is selected that means the

services that it connects with are eligible to deploy in that

particular host. Hence in each iteration, it gives a better set

of services which mostly reduces the communication

overhead of the application to deploy in the host selected for

that particular iteration. Selected edges in each iteration are

removed from the initial set of edges. A selected edge

carries two adjacent services which are to be deployed in the

host selected for that particular iteration. All the other

adjacent edges to those services which are selected to be

placed in a host are also removed as considering those edges

would have no point because the service is already allocated

to a host. The iterations end when no edges are left to

consider. As a result, there can be situations where services

are left without being allocated to any host when all the

adjacent edges to that particular service are removed (F and

H services in Fig. 3).

However, such services do not directly communicate with

each other. Hence deploying them in the same host or

Fig. 3. Example graph to represent the services left without allocating to

any host

separate hosts does not affect the overhead reduction. But

considering one of the objectives of the study which is

finding the minimum number of hosts to deploy the

application, the Bin Packing algorithm is applied only to

those remaining services that have not placed in any hosts.

Bin is the host and items are the services left without

allocating to any host. This is a one-dimensional bin packing

problem since the only parameter it considers is the CPU

usage of the service as the weight of the item. It is assumed

that the host’s CPU capacity is greater than each service’s

maximum CPU usage.

The best-fit offline algorithm is used to solve the bin

packing problem since the items are available upfront. The

time complexity is O(N log N) where N is the number of

services input. It returns the minimum number of bins/hosts

required to deploy the remaining services. Note that the

complexity of the bin packing algorithm is not counted into

the complexity of the main objective of this study since the

bin packing algorithm only assists the objective of finding

the minimum number of hosts needed to deploy the μApp.

The final output from the container colocation is the final

service graph that represents all the decisions made from the

above algorithms by using colour coded nodes where each

colour represents a host.

B. Container Merging

Colocation reduces the overlay network to a bridge

network. Communication overhead can be further reduced

by merging containers to eliminate the bridge network as

well. Merging two containers is in the sense of having two

services inside the same container which were previously

executed in two separate containers. Note that after merging,

service granularity remains unchanged. Hence merging

preserves the design time service separation of the

application. Merging only changes the communication mode

of the colocated services from bridge to loopback interface.

Container merging eliminates the namespace isolation of

the services that the containerization provides [24].

Therefore, containers are merged only if there is no

requirement to execute the services in separate namespaces.

Dependency conflicts between the services is another

constraint on the container merging process. Having

different versions of the same dependency is considered as a

dependency conflict. Hence, before the container merging

process, dependencies of the services to be merged are

examined to ensure that there are no restrictions to execute

Communication-Affinity Aware Colocation and Merging of Containers 38

December 2022 International Journal on Advances in ICT for Emerging Regions

them in a single container. A dependency conflict checker

takes the dependency files in XML format as the input and

after parsing them, it outputs the capability of merging.

To execute two services inside a single container it is

essential to have one Dockerfile for both services. A script is

used to combine the content of two Dockerfiles into a single

Dockerfile. It is not possible to create a merged container

from different base images. Therefore, both containers to be

merged should extend from the same base image. Instead of

directly executing the service from the ENTRYPOINT in

Dockerfile, it is set to execute a shell script and that script

starts the two services. Hence ultimately those services

would execute in the same container as two processes.

IV. RESULTS AND EVALUATION

This section elaborates the obtained results, how the

results are evaluated, and the success level of the proposed

solution.

A. Benchmark Application Selection

Sock-Shop μApp provided by Weaveworks [19] is

selected as the benchmark application to evaluate the

proposed approach. This selection is based on a study by

Aderaldo et al. [20]. Further many of the research in this

area [21], [22] have used this as the benchmark for their

evaluations. Microservices of this application are written in

different languages and dependency files of these services

are in different formats. A graph processing application

which is used as a page rank analytics platform to rank the

Twitter profiles is also selected for evaluation again based

on the recommendations by Aderaldo et al. [20]. All the

services in this application are implemented in Java

programming language except the databases and servers.

Hence all the dependency files are in XML format.

Therefore, the colocation process is evaluated for both these

applications and the merging process is evaluated only using

the Page-Rank application.

B. Evaluation of the Proposed Approach

The selected benchmark applications were evaluated

under the following deployment strategies.

• Spreaded Deployment: Initial deployment which is the

baseline.

• Colocated Deployment: Deployment after colocation.

• Merged Deployment: Deployment after merging.

Encapsulation overhead is a component of the

communication affinity. Therefore, affinity depends on the

type of the network. Due to different encapsulations of data

packets exchanged in the above three deployment strategies,

inter-service communication affinities of the application

comprise several components (Table II).

TABLE II.

COMPOSITION OF COMMUNICATION AFFINITIES UNDER DIFFERENT

DEPLOYMENT STRATEGIES

Spreaded

deployment

Colocated

deployment

Merged

deployment

Inter-host

communication

affinity

Inter-host +

Inter-container

communication

affinity

Inter-host +

Inter-container +

Intra-container

communication

affinity

1) Colocation Process Evaluation:

Service communication graphs generated by analysing the

docker-compose files of the Sock-Shop and Page-Rank

applications are in Fig. 4 and Fig. 5 respectively. The

number above each node is the maximum CPU cores that

service can take.

Fig. 4. Initial service communication graph for Sock-Shop μApp

International Journal on Advances in ICT for Emerging Regions 2022 15 (3):

December 2022 International Journal on Advances in ICT for Emerging Regions

Fig. 5. Initial service communication graph for Page-Rank μApp

Since baseline is the spread strategy deployment, initial

monitoring was done deploying each service/container in a

separate VM. Each communication link of this configuration

was monitored using tcpdump to extract the affinity values

to annotate the communication graph. Fig. 6 and Fig 7

depicts the communication graphs of the Sock-Shop and

Page-Rank applications respectively after this annotation.

Each edge contains the total maximum CPU usage of

adjacent services and the communication affinity between

them. Hence this can be considered as the input to the

knapsack method.

Colocation decisions in Table III were made for the Sock-

Shop application for host machines with CPU cores 4,5,5,

and 4. Table IV presents the colocation decisions for the

Page-Rank application deployed over host machines with

CPU cores 3,6,9, and 10. Fig. 8 and Fig. 9 are the final

service graphs generated to depict the colocation decisions

where each colour represents a host. From Fig. 4 to Fig. 9

are the direct outputs of the implemented program.

Fig. 6. Annotated service communication graph for Sock-Shop μApp

Communication-Affinity Aware Colocation and Merging of Containers 40

December 2022 International Journal on Advances in ICT for Emerging Regions

Fig. 7. Annotated service communication graph for Page-Rank μApp

TABLE III.

COLOCATION DECISIONS FOR SOCK-SHOP ΜAPP

Host Machine Selected set of services to deploy

CPU cores 4 front-end, user, user-db, catalogue,

catalogue-db

CPU cores 5 carts, carts-db, rabbitmq, shipping

CPU cores 5 orders, payment

CPU cores 4 orders-db, user-sim

TABLE IV.

COLOCATION DECISIONS FOR PAGE-RANK ΜAPP

Host Machine Selected set of services to deploy

CPU cores 3 discovery, config

CPU cores 6 twitter-rank-web, twitter-rank-

crawler

CPU cores 9 hdfs, graphdb

CPU cores 10 rabbitmq, mazerunner

Fig. 8. Final service communication graph for Sock-Shop μApp

International Journal on Advances in ICT for Emerging Regions 2022 15 (3):

December 2022 International Journal on Advances in ICT for Emerging Regions

Fig. 9. Final service communication graph for Page-Rank μApp

After redeploying the applications according to the above

deployment decisions, affinity values for the same

connections were measured. To evaluate this process, results

from the spread strategy deployment were compared with

the results of the colocated deployment. Total

communication affinity reduction from spreaded deployment

to colocated deployment is shown in Fig. 10 and Fig. 11 for

Sock-Shop and Page-Rank benchmarks respectively. As

depicted in these figures, the total affinity reduction on

communication over the overlay network to bridge network,

are 57% and 52% for the two applications.

Fig. 10. Sock-Shop: Comparison of total affinities between spreaded and

colocated deployments

Fig. 11. Page-Rank: Comparison of total affinities between spreaded and

colocated deployments

In spreaded deployment traffic is forwarded through the

network interfaces of the hosts using an overlay network.

This includes several layers of packet encapsulations,

decapsulations, and address translations (Fig. 12). But in

colocated deployment, traffic of the containers that are in the

same host goes through a bridge network with less

encapsulation overhead (Fig. 13). This is the reason for the

affinity reduction in the colocated deployment.

Communication-Affinity Aware Colocation and Merging of Containers 42

December 2022 International Journal on Advances in ICT for Emerging Regions

Fig. 12. Underline packet transmission in spreaded deployment

Fig. 13. Underline packet transmission of colocated containers

Stacked charts in Fig. 14 and Fig. 15 depict the

contribution of the inter-host communication affinity and

inter-container communication affinity to the total

communication affinity in the two deployments. It is clear

that the inter-host communication affinity is reduced by a

significant amount through the colocation process. After

colocation, inter-service communication between the

colocated services change from inter-host to inter-container

communication. An inter-container overhead is always

guaranteed to be less than the corresponding inter-host

overhead. Hence from the colocation process, if service

colocation takes place, approximately 50% of an affinity

reduction is guaranteed.

Fig. 14. Sock-Shop: Inter-host and inter-container components of the total

communication affinity

Fig. 15. Page-Rank: Inter-host and inter-container components of the total

communication affinity

2) Merging Process Evaluation:

The services of the Page-Rank application which are

colocated in each host (Table IV) can be considered for

merging. However, only the discovery service with the

config service and the twitter-rank-web service with the

twitter-rank-crawler service fulfilled the prerequisites for

merging. After merging those service containers, affinity

values for the same connections were again measured. As in

Fig. 16, the total affinity reduction from colocated

deployment to merged deployment is approximately 13%. In

this scenario, the traffic returns back to the container from

the loopback interface since both services are in the same

container (Fig. 17). Therefore, further affinity reduction was

possible.

43 N. N. Wickramanayaka#1, C. I. Keppitiyagama*2, K. Thilakarathna#

International Journal on Advances in ICT for Emerging Regions December 2022

Fig. 16. Page-Rank: Comparison of total affinities between colocated and

merged deployments

Fig. 17. Underline packet transmission of a merged container

The stacked chart in Fig. 18 shows the contribution of the

inter-host, inter-container, and intra-container

communication affinities to the total communication affinity

in the two deployments. By analysing that, it is noticed that

both inter-host and inter-container affinities have reduced.

But the merging process does not affect the inter-host

communication at all. Hence it is not guaranteed that the

inter-host communication affinity would reduce all the time.

However, once the containers are merged, inter-service

communication of the services in the merged containers

changes from inter-container to intra-container

communication. An intra-container overhead is always

guaranteed to be less than the corresponding inter-container

overhead and ultimately that affects the reduction of the total

affinity. Hence from the merging process, an affinity

reduction is guaranteed and approximately 13% of an

affinity reduction is noticed.

Fig. 18. Page-Rank: Inter-host, inter-container and intra-container

components of the total communication affinity

3) Overall Evaluation:

Evaluation of the complete solution has been done in

terms of communication affinity and the execution time of

the application. Fig. 19 shows the affinity reduction from the

initial deployment to the final deployment in the Page-Rank

μApp. Total affinity reduction from the proposed approach

is approximately 58.5%. The contribution of each affinity

component to the total affinity for different deployments is

shown in Fig. 20. The ultimate impact of this

communication affinity reduction to the μApp is the

execution time reduction. In Page-Rank μApp, the execution

time for one operation (to update the ranks on the dashboard)

reduces from 1490 seconds to 1291 seconds as shown in

Table V. This represents 13.4% reduction in the execution

time per operation.

Fig. 19. Total communication affinity comparison of 3 deployments

Communication-Affinity Aware Colocation and Merging of Containers 44

December 2022 International Journal on Advances in ICT for Emerging Regions

Fig. 20. Contribution to total affinity from 3 communication affinity

components

TABLE V.

EXECUTION TIME PER OPERATION IN PAGE-RANK ΜAPP

Deployment Time (in seconds)

Spreaded 1490

Colocated 1358

Merged 1291

μApps used to evaluate the proposed solution are not

biased and they are accepted among the research community

in this domain, as good applications to represent and

evaluate the microservice architecture [20]. Hence the

results obtained can be generalized to a wider context.

V. CONCLUSIONS

The volume of data exchanged between two

microservices is a good indicator of their affinity. Typically,

microservices are deployed in their own containers and

different networks such as overlay, bridge and loopback, are

used to interconnect these containers. The application-level

data volume exchanged remains the same irrespective of the

type of network used to exchange the data. However,

different networks add different encapsulation overheads to

communication. This overhead is significant, and it can be

reduced by changing the network by intelligently placing the

containers in hosts based on the communication affinities

between the services. Container placement is constrained by

the resources available in the hosts. This study models this

problem as an instance of the BKP which is in the

complexity class NP-Hard. This paper presents a novel

heuristic to solve this problem and deploy the containers to

significantly reduce the total communication affinity of an

application. The proposed approach goes beyond the

colocation and merges containers where possible. To the

best of our knowledge, this is the first work that merges

containers to reduce the communication cost of μApps. This

study demonstrates that, by employing the combined

strategy of colocation and merging, it is possible to reduce

the communication overhead up to 58.5%. Also, the

execution time is reduced by 13.4%.

The colocation process considers only the CPU

consumption as a constraint on the colocation. But there are

other constraints such as memory. There is a potential to

improve these results by considering multiple such

constraints. However, it is not a trivial extension to the

current work. It requires extensive further study to address

this problem. In this study the authors have not attempted

runtime reconfiguration of the deployment. The application

is redeployed after taking the colocation and merging

decisions. Therefore, there can be a significant downtime

during the redeployment. However, this strategy ensures the

stability and the consistency of the services. Further, studies

are required to safely reconfigure a deployment during the

runtime.

REFERENCES

[1] "Microservices", martinfowler.com, 2021. [Online]. Available:
https://martinfowler.com/articles/microservices.html. [Accessed: 28-

Mar- 2021]

[2] T. Ueda, T. Nakaike and M. Ohara, "Workload characterization for
microservices, " IEEE International Symposium on Workload

Characterization (IISWC), Providence, RI, pp. 1-10, doi:

10.1109/IISWC.2016.7581269, 2016.
[3] K. Suo, Y. Zhao, W. Chen and J. Rao, "An analysis and empirical

study of container networks," IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications, 2018, pp. 189-197, doi:
10.1109/INFOCOM.2018.8485865.

[4] M. Villamizar et al., "Evaluating the monolithic and the microservice

architecture pattern to deploy web applications in the cloud," 2015
10th Computing Colombian Conference (10CCC), 2015, pp. 583-590,

doi: 10.1109/ColumbianCC.2015.7333476.

[5] J. Chen, K. Chiew, D. Ye, L. Zhu and W. Chen, "AAGA: Affinity-
aware grouping for allocation of virtual machines," 2013 IEEE 27th

International Conference on Advanced Information Networking and

Applications (AINA), 2013, pp. 235-242, doi:
10.1109/AINA.2013.22.

[6] A.Sampaio, J.Rubin, I. Beschastnikh and N. Rosa, "Improving

microservice-based applications with runtime placement adaptation",
Journal of Internet Services and Applications, vol. 10, no. 1, 2019.

Available: 10.1186/s13174-019-0104-0.

[7] N. Tziritas, T. Loukopoulos, S. Khan, C. Xu and A. Zomaya, "A

Communication-Aware Energy-Efficient Graph-Coloring Algorithm

for VM Placement in Clouds," 2018 IEEE SmartWorld, Ubiquitous

Intelligence & Computing, Advanced & Trusted Computing,
Scalable Computing & Communications, Cloud & Big Data

Computing, Internet of People and Smart City Innovation,

(SmartWorld/SCALCOM/UIC/ ATC/CBDCom/IOP/SCI), 2018, pp.
1684-1691, doi: 10.1109/SmartWorld.2018.00286.

[8] O. Al-Debagy and P. Martinek, "A Comparative Review of

Microservices and Monolithic Architectures," 2018 IEEE 18th
International Symposium on Computational Intelligence and

Informatics (CINTI), 2018, pp. 000149-000154, doi:
10.1109/CINTI.2018.8928192.

[9] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri and Y. Al-

Hammadi, "Performance comparison between container-based and
VM-based services," 2017 20th Conference on Innovations in Clouds,

Internet and Networks (ICIN), 2017, pp. 185-190, doi:

10.1109/ICIN.2017.7899408.
[10] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar and M.

Steinder, "Performance Evaluation of Microservices Architectures

Using Containers," 2015 IEEE 14th International Symposium on
Network Computing and Applications, Cambridge, MA, 2015, pp.

27-34, doi: 10.1109/NCA.2015.49.

[11] K. Sun, H. Yang, Y. Park, Y. Kim, and W. Lee, Considerations for
Benchmarking Network Performance in Containerized

Infrastructures, 2020

[12] N. Kratzke, “About microservices, containers and their
underestimated impact on network performance,” ArXiv171004049

Cs, Sep. 2017.

[13] "Production-Grade Container Orchestration", Kubernetes, 2020.
[Online]. Available: https://kubernetes.io/. [Accessed: 07- Nov-

2020].

[14] "Swarm mode overview", Docker Documentation, 2020. [Online].
Available: https://docs.docker.com/engine/swarm/. [Accessed: 08-

Nov- 2020].

[15] J. Han, Y. Hong and J. Kim, "Refining microservices placement
employing workload profiling over multiple Kubernetes clusters," in

45 N. N. Wickramanayaka#1, C. I. Keppitiyagama*2, K. Thilakarathna#

International Journal on Advances in ICT for Emerging Regions December 2022

IEEE Access, vol. 8, pp. 192543-192556, 2020, doi:
10.1109/ACCESS .2020.3033019.

[16] J. Sonnek, J. Greensky, R. Reutiman and A. Chandra, "Starling:

Minimizing Communication Overhead in Virtualized Computing
Platforms Using Decentralized Affinity-Aware Migration," 2010

39th International Conference on Parallel Processing, 2010, pp. 228-

237, doi: 10.1109/ICPP.2010.30.
[17] "Empowering App Development for Developers | Docker", Docker,

2020. [Online]. Available: https://www.docker.com/. [Accessed: 08-

Nov- 2020].
[18] "TCPDUMP/LIBPCAP public repository", Tcpdump.org, 2020.

[Online]. Available: https://www.tcpdump.org/. [Accessed: 08- Nov-

2020].
[19] "Microservices Demo: Sock Shop", Microservices-demo.github.io,

2017. [Online]. Available: https://microservices-demo.github.io/.

[Accessed: 19- Mar- 2021].
[20] C. M. Aderaldo, N. C. Mendonça, C. Pahl and P. Jamshidi,

"Benchmark Requirements for Microservices Architecture

Research," 2017 IEEE/ACM 1st International Workshop on
Establishing the Community-Wide Infrastructure for Architecture-

Based Software Engineering (ECASE), 2017, pp. 8-13, doi:

10.1109/ECASE.2017.4.

[21] C. Nguyen, A. Mehta, C. Klein and E. Elmroth, "Why cloud

applications are not ready for the edge (yet)", Proceedings of the 4th

ACM/IEEE Symposium on Edge Computing, 2019. Available:
10.1145/3318216.3363298 [Accessed: 19- Mar- 2021].

[22] J. Rahman and P. Lama, "Predicting the End-to-End Tail Latency of

Containerized Microservices in the Cloud", 2019 IEEE International
Conference on Cloud Engineering (IC2E), 2019. Available:

10.1109/ic2e.2019.00034 [Accessed: 19- Mar- 2021]

[23] A. Shaheen and A. Sleit, "Comparing between different approaches
to solve the 0/1 Knapsack problem", International Journal of

Computer Science and Network Security, vol. 16, no. 7, 2016.

[Accessed: 19- Mar- 2021].
[24] N. AGARWAL, "Understanding the Docker Internals", Medium,

2017. .

