
Abstract: Structural design of an artificial neural network
(ANN) is a very important phase in the construction of
such a network. The selection of the optimal number
of hidden layers and hidden nodes has a significant
impact on the performance of a neural network, though
typically decided in an adhoc manner. In this paper, the
structure of a neural network is adaptively optimised by
determine the number of hidden layers and hidden nodes
that give the optimal performance in a given problem
domain. Two optimisation approaches have been
developed based on the Particle Swarm Optimisation
(PSO) algorithm, which is an evolutionary algorithm
which uses a cooperative approach. These approaches
have been applied on two well known case studies in the
classification domain, namely the Iris data classification
and the Ionosphere data classification.

The obtained results and comparisons done with
past research work has clearly shown that this method
of optimisation is by far, the best approach for adaptive
structural optimisation of ANNs.

Keywords: neural networks, particle swarm optimization,
weight adjestment, hidden layer adjestment.

INTRODUCTION

Artificial Neural Networks (ANNs) which have been
inspired by biological neural networks, are used specially
in imitating many qualities seen in human beings like
identifying objects and patterns, making decisions
based on prior experiences and accumulated knowledge,
prediction of future events based on past happenings,
etc.. The very fact that the human brain is very efficient
in carrying out these actions is mainly attributable
to its complex and intricate, but very effective neural
network structure. Besides the learning algorithm of
a specific neural network, constructing an effective
neural network structure is perhaps the single most
challenging aspect in the designing of an ANN. This is
due to the high cohesiveness between the performance
of a neural network and the structure of that particular
neural network. Until recently the structure of a neural
network was defined by intuition or based on empirical
suggestions. As far as the number of hidden layers were
concerned a theoretical result by Horniket alstated in
[2], as ‘..a feed forward neural network with one layer
is enough to approximate any continuous non linear
function arbitrarily well on compact interval, provided

Adaptive Structural Optimisation of Neural Networks

N. P. Suraweera1*, D. N. Ranasinghe2

1Department of Physics, University of Colombo, Sri Lanka
2 University of Colombo School of Computing, Sri Lanka
prash_sweera@yahoo.com, dnr@ucsc.cmb.ac.lk

Revised: 16 October 2008; Accepted: 10 October 2008

that a sufficient hidden neurons are available’, may have
had an influence in this way of thinking.

In the recent years, Particle Swarm Optimisation
(PSO) algorithm, which is a simple, easy to implement
but highly effective evolutionary algorithm, has also
been used for the purpose of ANN evolution. According
to the best of our knowledge, PSO has not been used
thus far, to evolve a full neural network structure, i.e.,
both the hidden layers and the number of nodes in a
particular hidden layer, presumably due to the earlier
mentioned theoretical result. However, in our research
we show that it is indeed possible to come up with
an adaptively optimized number of hidden layers for
the neural network which will also yield improved
classification results. As such, this research has strived
to come up with an optimal structure for an ANN by
applying the PSO algorithm, on a network used in a
particular problem domain.

The paper is organized as follows: In section
II, a brief overview of feed-forward neural networks
and Particle Swarm Optimisation is given, section III
is related work, section IV discusses the design and
implementation aspects, section V presents the results
and section VI gives the conclusion and future work that
can be carried out on the optimisation approaches.

OVERVIEW OF ANN AND PSO

The ANNs considered within this research are Multilayer
Feed-Forward Neural Networks and the given sample
problems are solved through supervised learning using
back propagation.

Importance of the Architecture of an ANN

The architectural/topological design of the ANN has
become one of the most important tasks in ANN research
and application. It is known that the architecture of an
ANN has significant impact on a network’s information
processing capabilities. Given a learning task, an ANN
with only a few connections and linear nodes may not be
able to perform the task at all due to its limited capability,
while an ANN with a large number of connections and
nonlinear nodes may overfit noise in the training data and
fail to have good generalization ability [1]. Up to now,
architecture design is still very much a human expert’s
job. It depends heavily on the expert experience and a

The International Journal on Advances in ICT for Emerging Regions 2008 01 (01) : 33 - 41

* corresponding author

tedious trial-and-error process. Even though ANNs
are easy to construct, finding a good ANN structure
is a very time consuming process [2]. As there are no
fixed rules in determining the ANN structure or its
parameter values, a large number of ANNs may have to
be constructed with different structures and parameters
before determining an acceptable model. Against this
background, a logical next step is the exploration of
more powerful techniques for efficiently searching the
space of network architectures [3].

PSO

Particle Swarm Optimisation (PSO) is a population
based stochastic optimisation technique developed by
James Kennedy and Russell Eberhart in 1995, inspired
by social behavior of bird flocking or fish schooling.
PSO introduces a method for optimisation of continuous
nonlinear functions [4],[5]. This algorithm is simple in
concept, computationally efficient and effective on a
variety of problems.

PSO is initialized with a group of random
particles (solutions) and then searches for optima by
updating generations. In every iteration, each particle is
updated by following two “best” values.

The personal best solution (fitness) it has
achieved so far (measured using a fitness
function). This value is called pbest.

The best value obtained so far by any particle
in the population. This best value is a global
best and called gbest.

Apart from these values, when a particle takes
part of the population as its topological neighbors, the
best value is a local best and is called lbest.

After finding the above parameters, the particle
updates its velocity and position with following equations
(1.1) and (1.2) [4].

v[t+1] = v[t] + c1* rand() * (pbest[t]- position[t]) +
 c2 * rand() * (gbest[t] - position[t]) 1.1
 position[t+1] = position[t] + v[t] 1.2

 v[t] and v[t+1]is the particle velocity, position[t]
is the current particle (solution). pbest[t] and gbest[t]
are defined as stated before. rand() is a random number
between (0,1). c1, c2 are learning factors (usually c1 =
c2 = 2). The PSO algorithm [5] can be implemented
by incorporating the above equations. The swarm size
is a critical parameter – too few particles might cause
the algorithm to become stuck in local minima, while
too many particles will slow down the algorithm. The
optimal number of particles per swarm will also depend
on the function given in [6].

Advantages of the PSO approach

The considerable adaptability of PSO to variations
and hybrids is seen as a strength over other robust
evolutionary optimisation mechanisms, such as Genetic

1.

2.

Algorithms (GA). Normally, a stochastic hill-climber
risks getting stuck at local maxima, but the stochastic
exploration and communication of the swarm overcomes
this [7]. The interaction of the particles in the swarm
creates a very good balance between straying off the
course and staying close to the optimal solution.

The PSO algorithm is easy to implement because
it is expressed in a very few lines of code, and requires
only specification of the problem and a few parameters in
order to solve it [4]. Another advantage is that PSO takes
real numbers as particles; hence eliminating the need of
a special encoding scheme or the need to use special
genetic operators. Compared with other evolutionary
algorithms such as GA, PSO algorithm possesses
attractive properties such as memory and constructive
cooperation between individuals. All particles in a PSO
population carry memory (in the form of the personal
best value it has reached so far), whereas in a GA if an
individual is not selected the information contained by
that individual is lost. Because there are no selection
and crossover operation in PSO, each individual in an
original population has a corresponding partner in a new
population. It can avoid the premature convergence and
stagnation in GAs to some extent [9].

The cooperative approach followed by PSO
is seen as the biggest advantage over the competitive
approach taken by the GAs since, in cooperative
situations, others are depending on you to succeed but
in competitive situations, others hope to see you fail. So
PSO is a cooperative approach to optimisation rather than
an evolutionary approach which kills off unsuccessful
members of the search team. It is in the collective sharing
of knowledge that solutions are found.

RELATED WORK

ANN weight training using PSO

Adjusting weights to train a feed-forward multilayer
ANN has been one of the earliest applications of
PSO. According to Kennedy and Eberhart who are
the developers of the PSO algorithm, a particle swarm
optimizer could train NN weights as effectively as the
usual error backpropagation method [4]. One of their
first experiments involved training weights for a three-
layer ANN solving the exclusive-or (XOR) problem.
They have also used a particle swarm optimizer to train
a neural network to classify the Fisher Iris Data Set
[10]. Intriguing informal indications are that the trained
weights found by particle swarms sometimes generalize
from a training set to a test set better than solutions found
by gradient descent method.

Gudise and Venayagamoorthy [8], have shown
that feed-forward neural network weights converge faster
with the PSO than with the back propagation algorithm.
In order to compare the training capabilities of back
propagation and PSO algorithm, a non-linear quadratic
equation, y = 2x2 + 1, with data points (patterns) in range
(- 1 , 1) has been presented to the feed-forward neural
network. Based on the experimental results, the number

N.P. Suraweera, D.N. Ranasinghe 34

October 2008 The International Journal on Advances in ICT for Emerging Regions 01 (01)

of computations required by each algorithm shows that
PSO requires less number of iterations to achieve the
same error goal as compared to the back propagation.
Thus, PSO is better for applications that require fast
learning algorithms. An important observation made
is that when the training points are fewer, the ANN
learns the nonlinear function with six times lesser
number of computations with PSO than that required
by the back propagation. Moreover, the success of back
propagation depends on choosing a bias value unlike
with PSO. It is also stated that the concept of the PSO
can be incorporated into back propagation algorithm to
improve its global convergence rate. More recent work
in this regard is in [18], [19].

Architecture evolution together with weight training
of ANNs

Direct application of PSO to evolve the structure of an
ANN has been done by Zhang, Shao and Li[9]. Both
the architecture and the weights of ANNs are adaptively
adjusted according to the quality of the neural network.
Recent similar work is also in [16], [17].

ANN Weight Initialization

Apart from complete weight training, PSO has also been
used to initialize the weights of ANNs. Van den Bergh
[11] his paper has shown that training performance can
be improved significantly by using PSO to initialize the
weights, rather than random initializations.

 He has stated that since the weights in an ANN
serve as a starting position in error space, from where
the optimisation algorithms proceed to find a minimum
in the error space, it is clear that the precise starting
position can affect the speed and accuracy with which
the algorithm will find the minimum. By the means of
two case studies, namely the Ionosphere Classification
Problem [10] and The Henon Curve problem, it has been
shown that using PSO to initialize weights will reduce
the total time needed to train Multi-Layer Perceptron
networks. But it also mentions that even though PSO can
be used to train the Multi-Layer Perceptron networks to
completion, it will seldom be quicker than a mix between
PSO and gradient-based optimisation techniques.

Other Adaptive Techniques

Eberhart, one of the creators of the PSO algorithm, and
Xiaohui have evolved not only the network weights
but also the slopes of the sigmoidal transfer functions
of hidden and output processing elements using PSO
[12]. The method is general, and can be applied to
other transfer functions as well. Flexibility is gained by
allowing the slopes of the transfer function to be positive
or negative. A change in sign for the slope is equivalent
to a change in signs of all input weights. Since the PSO
process is continuous, neural network evolution is also
continuous. No sudden discontinuities exist such as

those that plague other evolutionary approaches.

DESIGN AND IMPLEMENTATION

Initially an association was made between the parameters
of the PSO and the ANN, in order to construct an
algorithm which would evolve the architecture of the
ANN. Since this research involves two parameters
to be optimized in an ANN, namely the number of
hidden layers and hidden nodes in each layer, these two
parameters were mapped to appropriate variables of the
PSO algorithm.

Association between PSO and ANN

The mapping resulted in the defining of a 1:1 relationship
between the position variable of a particle in the PSO
swarm and number of hidden nodes in a layer of an
ANN. Therefore the number of hidden nodes of each
hidden layer will be indirectly evolved due to the
velocity parameter (v) of the PSO algorithm. The number
of dimensions (the number of times the PSO equations
should be iterated) was associated with the number of
hidden layers in each network. Thus when executing the
loop with the PSO equations, it will iterate through each
hidden layer corresponding to a network, optimizing the
number of hidden nodes in each layer. The global best
value reflects the optimum number of hidden nodes for
an optimum number of hidden layers. Fig 1 illustrates
the mapping between the PSO algorithm and ANN.

for I = 1 : to number of particles (m) do

 for J = 1 to number of dimensions (n) do number of hidden layers in ANN

 R1 = uniform random number

 R2 = uniform random number

 v[I][J] = v[I][J] + c1*R1*(pbest[I][J]-position[I][J] + c2*R2*(gbest[J]-position[I][J])

 position[I][J] = position[I][J] + v[I][J] number of hidden nodes in a layer

 enddo

enddo

Figure 1:Mapping between PSO and ANN

Optimisation Approaches

The’ Global Best’ Approach

In this method the position matrix values (number of
hidden nodes of each hidden layer, in each network)
were randomly initialized for a population of 30 particles
(30 networks). This initialization was done subject to the
constraints of the minimum and maximum number of
hidden layers allowed in one network (the minimum
number = 1, the maximum number = 5) and the number
of particles in a population. Since the random generation
of position variables corresponding to each network
allows a value to even be zero, a cleaning process was
essential to proceed with the evolution.

This cleaning process was implemented so that
after the initialization of the number of hidden nodes in
each network, it will verify the fact that none of the

35 Adaptive Structural Optimisation of Neural Networks

The International Journal on Advances in ICT for Emerging Regions 01 (01) October 2008

networks have zero hidden nodes (which means that
there is no hidden layer) in the middle of any network.
In any case if there is a network which has this initial
configuration, the cleaning process will remove the
rest of the hidden layers also (because it is infeasible
to have a network which has no hidden nodes in a prior
hidden layer and has hidden nodes in the latter hidden
layers). After carrying out this cleaning process, it gives
a resulting population which has different numbers of
hidden layers.

These networks are then trained and the
performance is evaluated using the classification
accuracy percentage of the ANN. The global best value
of the population is defined according to the highest
accuracy achieved by a network. The global best variable
(‘gbest’-which is similar to an array), contains the
number of hidden nodes in each layer of the ANN which
has given the best ever performance. The classification
accuracy percentage is then checked to evaluate whether
the required performance is reached by any network in
the population. If so, then the program is terminated. If
not, the PSO equations will be applied to the parameters
of the ANN, and new values will be obtained for the
number of hidden nodes in each layer. This evolution of
each network was done by considering its personal best
performance and the global best performance, where the
latter gives the best performance ever to be reached by
a network in the whole population. This process also
can give rise to the cancellation of hidden layers in the
middle of a network. Therefore the cleaning process will
be carried out again. Then the above mentioned process
will carry on iterating until the required performance is
reached by any network.

 The most important aspect in this method of
evolution is that one instance which has obtained the
best ever performance in the whole population, in all
executed iterations, is kept as a global measurement
which will directly influence the evolution of all other
networks in the population. This clearly demonstrates the
cooperative approach followed by the PSO algorithm.
Fig 2 illustrates the global best approach using a flow
chart.

Since it was observed that the randomly initialized
population in the above method tend to mostly consist of
networks belonging to one class (e.g., networks with 5
hidden layers), it was then decided to create a uniform
population (i.e., similar number of networks from each
class) in the first stage of the algorithm. The rest of the
algorithm was carried out in the same order.

The ‘Local Best’ Approach

In this method, the main difference from the above
method was that instead of a global best value for the
whole population, local best values were taken into
consideration within the PSO algorithm. A local best
value was defined for each class (e.g., 5 local bests
corresponding to the networks belonging to the 5 classes
– 1 hidden layer networks, 2 hidden layer networks,
….etc). Therefore the evolution of each network was

done by considering its personal best performance
and the local best performance values. This gives rise to
the modification of equation 1.1 as follows.

v[t+1] = v[t]+c1*rand()*(pbest[t] - position[t])+
 c2*rand()*(lbest[t] - position[t]) 1.3

 Similar to the earlier situation, pbest gives the
best configuration ever to be reached by each specific
network while the lbest gives the best configuration
within a class (number of hidden nodes in each layer of
the network which has given the best performance for a
given class of networks).

Figure 2: Flow chart for ‘Global Best’ approach

N.P. Suraweera, D.N. Ranasinghe 36

October 2008 The International Journal on Advances in ICT for Emerging Regions 01 (01)

Randomly initialize values for position
matrix (corresponds to the number of
hidden nodes in each hidden layer)

Carryout cleaning process

Create ANNs according to the values
set in the position matrix

Train network and evaluate performance

Define network with best performance
as the network with optimal structure

Carryout PSO algorithm on each
position value

Define pbest of each network and gbest
for whole population

Required
performance achieved by any

 network?

YES

NO

For each given class above, a local best was
defined by comparing the performances among the
members of a class. Then each network in a class will
try to achieve that specific local best corresponding to its
class. Therefore a network will never change its number
of hidden layers during the execution of the algorithm but
will change the number of hidden nodes in its predefined
hidden layers. A cleaning process was not needed within
this approach due to the above reason. Fig 3 illustrates
the above mentioned local best approach.

Implementation Procedure

The two approaches designed above were implemented
in Matlab and each method was applied on the selected
application case studies.

Figure 3: Flow chart for ‘Local Best’ approach

Fishers’ Iris Data Set Classification

This is a multivariate data set introduced by Sir Ronald
Aylmer Fisher (1936) as an example of discriminant
analysis [10] . It consists of 50 samples from each of
three species of Iris flowers. Initially 75 sets of inputs
(half of the data set) from the Iris data set were fed into
all networks in the population, as training data. Then

each network was simulated using the whole data set.
Based on the classification, the performance measure
of classification accuracy percentage was introduce
into the program. The global best of the population and
personal bests of each particle was identified using this
performance measure.

Ionosphere Data Classification

This deals with the classification of radar returns from
the ionosphere [10]. “Good” radar returns are those
showing evidence of some type of structure in the
ionosphere. “Bad” returns are those that do not; their
signals pass through the ionosphere. There are 34
continuous input variables in each data set and a total
of 351 instances should be classified as either ‘good’ or
‘bad’ radar return patterns. Since this data set does not
have an equal number of data sets belonging to each of
the two classes (there are 225 ‘good’ and 126 ‘bad’ radar
return patterns), the first 200 data sets were used as the
training set (The ‘good’ and ‘bad’ data sets are given
alternatively). This data selection method was followed,
since past research work which has used this data set
in ANN classification experiments, have used this same
method [13].

RESULTS AND EVALUATION

Experimental results were obtained for each of the case
studies with the parameters set as:
Swarm (population) size = 30, c1=c2=2.0
Maximum allowed number of hidden layers = 5
Maximum allowed number of nodes in hidden layer = 10
Number of training epochs = 200

Iris Data Classification results

‘Global Best’ approach

Table 1: Results of Iris data set classification by
Global Best approach

Inst
ance

Optimal
No. of
hidden
layers

No. of hidden nodes in
each hidden layer Classification

Accuracy (%)
1st 2nd 3rd 4th 5th

1 2 3 4 0 0 0 97.33
2 2 9 6 0 0 0 97.33
3 2 7 2 0 0 0 97.33
4 2 5 9 0 0 0 97.33
5 3 6 4 4 0 0 97.33
6 2 4 7 0 0 0 97.33
7 2 5 8 0 0 0 97.33
8 3 6 4 7 0 0 97.33
9 2 5 9 0 0 0 97.33
10 3 6 6 5 0 0 97.33

The experimental results in Table I show that
2 or 3 hidden layers can be considered as the optimal

37 Adaptive Structural Optimisation of Neural Networks

The International Journal on Advances in ICT for Emerging Regions 01 (01) October 2008

Initialize uniform population with similar
number of networks from each class

Train network and calculate performance

Define network with best performance as the
network with optimal structure

Carryout PSO algorithm on each network

Define pbest of each network and lbest for
each class

Required
performance achieved by any

 network?

NO

YES

number of hidden layers. In this exercise, the
classification accuracy refers to the validation set only.
The highest achievable classification accuracy using
this approach was 97.33% (this meant that at least 4
data sets were misclassified during the classification
process). An instance in the above table refers to one
complete optimisation cycle which concludes by giving
the maximum accuracy. All instances in the above table
have obtained a classification accuracy of 97.33%. This
might be due to that the Iris data set is considered to be
a simple classification example, as the three classes are
(almost) linearly separable [14].

This experimental result can be compared with
the results obtained by Van den Bergh and Engelbrecht
[14], who have used the Iris data classification case
study for their experiments which attempt to improve the
performance of the basic PSO by partitioning the input
vector into several sub-vectors. They have heuristically
chosen an architecture which has 1 hidden layer with
3 hidden nodes, and with this topology, they have
achieved only 94% classification accuracy. The ‘Global
Best’ approach has achieved an accuracy of 97.3% for
an ANN architecture with 2 hidden layers.

In another research work by Eldracher [15],
only 93% maximum accuracy has been obtained for
the Iris data set, by using a heuristically chosen, very
simple network architecture with no hidden layers and a
sigmoid transfer function. He has further suggested that
the classification performance could be increased, if a
hidden layer is added to the existing network. From the
results of the ‘Global Best’ approach, it can be clearly
identified that 2 hidden layered ANN can obtain a higher
classification accuracy.

By above results, it can also be identified that
there is a range for the optimal number of hidden
nodes within a network. An accuracy of 97.3% has
been achieved in networks which have hidden nodes
in the range of 7-17 (irrespective of the total number
of hidden layers). According to the facts given by Tan
[2], “a Multi-Layer Perceptron network that uses any
of a wide variety of continuous nonlinear hidden-layer
transfer functions requires just one hidden layer with ‘an
arbitrarily large number of hidden neurons’ to achieve
the ‘universal approximation’ property”. Therefore the
above mentioned range might be very helpful when
deciding a value for this ‘arbitrarily large number of
hidden neurons’.

In order to check the validity of the above
statement, a single hidden layered ANN was constructed,
and the classification accuracy and total execution time
was recorded by varying the total number of hidden
nodes in the single hidden layer. Fig 4 presents the results
obtained by setting the following parameter values.
Training epochs (in 1 iteration) = 200
Maximum number of iterations allowed = 10
Termination condition of an iteration:(if accuracy >=
97%)

The results in Fig 4, illustrates the fact that
increasing the number of hidden nodes has a slight
tendency to increase the accuracy, but only up to a

certain limit of hidden nodes. From above Fig 4, it can
be observed that 16 hidden nodes in a single hidden

Figure 4: Average accuracy of ANNs with varying
number of hidden nodes

layer, has given the maximum average accuracy of
95.47%. But when the number of hidden nodes were
further increased, the classification accuracy level begins
to decrease rapidly.

When considering the classification accuracy level
in Table 1, even though all 10 instances have obtained
an accuracy level of 97.33%, the ANN consisting of two
hidden layers with 3 and 4 hidden nodes in each layer
respectively, has the lowest number of weights to be
trained within this classification problem. This ANN has
a total weight density (connection density) of 36, i.e.,
from input layer to first hidden layer – 12 weights, first
hidden layer to second hidden layer – 12 weights, and
from second hidden layer to output layer – 12 weights.
This is clearly depicted in Fig 5.

Figure 5: Connection (weight) density of the two
hidden layered ANN

If only the total number of weights are considered
as the deciding factor which contributes to the success
of an ANN’s performance, then it can be deduced that a
single hidden layered ANN which has a similar number
of weights (connections) might obtain the same accuracy
level. Therefore, the single hidden layered ANN with 5
hidden nodes (= 35 weights) should be able to obtain
the same accuracy level as that of the ANN shown in
Figure 5. But the accuracy levels shown in Fig 4 clearly

N.P. Suraweera, D.N. Ranasinghe 38

October 2008 The International Journal on Advances in ICT for Emerging Regions 01 (01)

proves that the above deduction is false, because the
single hidden layered ANN with 5 hidden nodes has
never achieved a classification accuracy of 97.33%.
Therefore it is clear that apart from the weights, the
number of hidden layers in an ANN also has a direct
impact on the performance of the ANN.

Instead of an ANN with 5 hidden nodes in
one hidden layer, the ANN with 16 hidden nodes in a
single hidden layer has obtained a similar classification
accuracy as that of the ANN shown in Fig 5. Even
though the single hidden layered ANN with 16 hidden
nodes has a higher weight density (112 weights), the
large amount of weights that need to be trained does not
significantly increase the time taken to obtain its output.
By this observation, it can be deduced that instead of
a two hidden layered ANN with 3 and 4 hidden nodes
respectively, one hidden layered ANN with 16 hidden
nodes (can be considered as the ‘arbitrary large number
of hidden neurons’ as stated by Tan [2]), can obtain a
similar classification accuracy.

‘Local Best’ approach

Table 2: Results of Iris data set classification by Local
Best approach

Inst
ance Class

No. of hidden nodes in
each hidden layer

Classification
Accuracy
(%)1st 2nd 3rd 4th 5th

1

1 8 0 0 0 0 96.00
2 3 8 0 0 0 97.33
3 2 2 3 0 0 97.33
4 2 9 2 4 0 97.33
5 7 4 6 3 7 97.33

2

1 2 0 0 0 0 96.00
2 7 4 0 0 0 97.33
3 5 3 8 0 0 96.00
4 8 8 7 6 0 97.33
5 2 5 9 6 4 97.33

3

1 9 0 0 0 0 96.00
2 8 9 0 0 0 97,33
3 2 7 8 0 0 94.67
4 2 5 2 10 0 97.33
5 10 6 7 2 5 97.33

4

1 3 0 0 0 0 94.67
2 9 7 0 0 0 96.00
3 9 7 5 0 0 97.33
4 8 8 6 9 0 97.33
5 8 6 3 8 9 97.33

5

1 5 0 0 0 0 93.33
2 8 7 0 0 0 96.00
3 10 2 4 0 0 97.33
4 10 3 5 3 0 97.33
5 7 5 8 6 5 97.33

The above results obtained from the ‘Local Best’ do not
maintain consistency with the results obtained in the
‘Global Best’ approach. This could be due to the fact that
the population is not subject to a change in the number
of hidden layers throughout the execution lifetime. Even
the result that 4 or 5 hidden layers also give an accuracy
of 97.3% might be directly related to this fact (since
the networks do not change their number of hidden
layers but only change the number of nodes in a layer,
it has the opportunity of trying out a large number of
different combinations for the total number of hidden
nodes, within a predetermined number of hidden layers).

Ionosphere Data Classification results

‘Global Best’ approach

Table 3: Results of Ionosphere data (full set)
classification by Global Best approach

Inst
ance

Optimal
No. of
hidden
layers

No. of hidden nodes in
each hidden layer

Classification
Accuracy

(%)
1st 2nd 3rd 4th 5th

1 4 6 5 9 1 0 96.87
2 4 6 4 8 9 0 96.01
3 3 5 6 7 0 0 96.58
4 2 9 6 0 0 0 97.72
5 4 6 7 8 9 0 96.58
6 4 8 1 7 7 0 96.01
7 2 9 1 0 0 0 96.58
8 2 10 9 0 0 0 96.01
9 4 5 5 8 8 0 95.16
10 3 3 8 3 0 0 96.58

In a previous research which has used PSO to initialize
ANN weights [11], a maximum classification accuracy
rate of 95.41% has been achieved for the whole
data set (training data + test data) in the ionosphere
classification problem, by an ANN with 9 hidden units
(hidden nodes) and weights which have been initialized
using the PSO concept (The number of hidden layers
is not specifically mentioned). On the other hand, an
ANN having 7 hidden nodes and whose weights were
randomly initialized, achieved a classification accuracy
of only 94.43% [11]. But according to the experimental
results shown in Table 3, a maximum classification
accuracy of 97.72% has been obtained by an ANN whose
structure was evolved using the ‘Global Best’ approach
which implements the PSO algorithm to evolve the
ANN structure. This clearly shows the effectiveness of
the ‘Global best approach’.

Table 4 gives the results obtained from the
‘Global Best’ approach for the test data set only of the
Ionosphere data classification problem.

According to Table 4, a maximum classification
accuracy of 94.70% was obtained for the test data set
only. According to the facts given in the reference work
[13], the ionosphere test data set classification carried
out by a Multilayer Feed-Forward Network using back

39 Adaptive Structural Optimisation of Neural Networks

The International Journal on Advances in ICT for Emerging Regions 01 (01) October 2008

propagation, has obtained an average of 96% accuracy on
the test instances. Even though it has mentioned that back
propagation was tested with several different numbers
of hidden units (between 0 and 15), specifications on the
total number of hidden layers has not been stated.

Table 4: Results of Ionosphere data (test set)
classification by Global Best approach

Inst
ance

Optimal
No. of
hidden
layers

No. of hidden nodes in
each hidden layer

Classifi
cation

Accuracy
 (%)1st 2nd 3rd 4th 5th

1 3 1 2 8 0 0 93.38
2 3 3 1 1 0 0 93.38
3 4 8 6 6 7 0 92.05
4 4 9 2 4 3 0 93.38
5 2 8 4 0 0 0 90.73
6 4 5 1 3 7 0 93.38
7 2 8 1 0 0 0 90.73
8 2 4 4 0 0 0 92.05
9 4 10 4 2 7 0 94.70
10 4 6 6 4 4 0 90.73

Local Best’ approach

The classification data given in Table 5, confirms the
results given in Table 3 by presenting the fact that ANNs
with two hidden layers or four hidden layers have a
tendency to give a maximum accuracy level (94.87% is
the highest accuracy achieved in the above approach).
As shown in the ‘Global Best’ approach, ANNs with a
single hidden layer or with 5 hidden layers, have never
succeeded in achieving a maximum accuracy level.

CONCLUSION

The results obtained from the ‘Global Best’ and the
‘Local Best’ optimisation approaches suggest that the
‘Global Best’ approach for adaptive optimisation of
ANNs is more successful in obtaining higher accuracy
levels. When considering the application case studies,
the ‘Global Best’ approach has achieved a maximum
classification accuracy of 97.33% for the Iris Data
classification, and 97.72% accuracy on the full data set
of the Ionosphere Data classification while achieving
a classification accuracy of 94.70% on the test data set
of the same case study. When compared with previous
research work which has been carried out on the same
case studies, the above mentioned accuracy values prove
to be better than nearly all of the past results. Therefore
it can be concluded that the ‘Global Best’ approach has
the potential to obtain a structurally optimized neural
network.

In this research, evolution of only the number
of hidden layers and hidden nodes has been considered
with regard to the adaptive optimisation of an ANN. But
it is well known that these are not the only parameters
that can be optimized in a given ANN. Therefore in
the future, this research work can include the adaptive
optimisation of other ANN parameters like the learning

rate, learning momentum and activation functions,
in order to realize the goal of achieving a completely
optimized ANN.

Table 5: Results of Ionosphere data (full set)
classification by Local Best approach

Inst
ance Class

No. of hidden nodes in
each hidden layer

Classifi
cation

Accuracy
 (%)1st 2nd 3rd 4th 5th

1

1 9 0 0 0 0 92.88
2 7 8 0 0 0 94.87
3 5 4 3 0 0 93.16
4 3 3 9 6 0 94.87
5 5 5 2 8 8 93.45

2

1 3 0 0 0 0 92.02
2 3 8 0 0 0 93.16
3 10 10 3 0 0 94.30
4 7 3 6 6 0 94.30
5 7 8 4 7 2 93.73

3

1 4 0 0 0 0 92.59
2 9 5 0 0 0 93.73
3 8 3 2 0 0 94.30
4 4 7 4 5 0 92.59
5 6 6 8 8 4 93.16

4

1 8 0 0 0 0 93.45
2 7 2 0 0 0 94.87
3 5 7 7 0 0 93.73
4 9 7 8 6 0 93.73
5 7 7 6 2 10 93.45

5

1 4 0 0 0 0 92.02
2 5 7 0 0 0 92.59
3 9 9 3 0 0 93.16
4 7 3 3 4 0 91.74
5 8 8 2 2 10 94.30

Acknoledgement

The authors wish to sincerely thank the anonymous
reriewers and the editorial staff of the journal for their
valuable comments and suggestions in improving the
clarity and the presentation of the article.

Refernces

Yao X. (1999, September). Evolving Artificial
Neural Networks, Proceedings of the IEEE, Vol.
87, No.9.

2. Tan C. N. W., (1999). An Artificial Neural
Networks Primer with Financial Applications
Examples in Financial Distress Predictions and
Foreign Exchange Hybrid Trading System, http://
www.smartquant.com/references/NuralNetworks/
nural28.pdf

3. Balakrishnan K. and Honavar V. (1995).
Evolutionary Design of Neural Architectures – A
Preliminary Taxonomy and Guide to Literature,
Tech Report no CS TR 95-01, Artificial Intelligence
Research group, Iowa State University,

4. Kennedy, J. and Eberhart, R. C. Particle swarm
optimization. Proc. (1995) IEEE international conf.
on neural networks Vol. 4,

1.

N.P. Suraweera, D.N. Ranasinghe 40

October 2008 The International Journal on Advances in ICT for Emerging Regions 01 (01)

5. Hu X, Particle Swarm Optimization Tutorial. http://
www.swarmintelligence.org/tutorials.php

6. van den Bergh F., Engelbrecht A.P. (2001).
Effects of Swarm Size on Cooperative Particle
Swarm Optimisers , Proceedings of IJCNN 2001,
Washington DC, USA

7. Particle swarm optimization - Wikipedia,
http://en.wikipedia.org/wiki/Particle_swarm_
optimization

8. Gudise V.G., Venayagamoorthy G.K. (2003).
Comparison of particle swarm optimization
and back propagation as training algorithms for
neural networks, Proceedings of the IEEE Swarm
Intelligence Symposium

Zhang C., Shao H., Li Y. (2000). Particle Swarm
Optimisation for Evolving Artificial Neural
Network. IEEE International Conference on
Systems, Man and Cybernetics, Vol 4

10. UCI Machine Learning Repository - http://archive.
ics.uci.edu/ml/

11. Van den Bergh F., (1999, September) Particle Swarm
Weight Initialization in Multi-layer Perceptron
Artificial Neural Networks, Development and
Practice of Artificial Intelligence Techiniques, pp.
41-45, Durban, South Africa.

12. Eberhart R.C., Hu X.. (1999). Human tremor

analysis using particle swarm optimization,
Evolutionary Computation.

13. Johns Hopkins University Ionosphere Data Base.
http://www.ailab.si/orange/doc/datasets/inosphere.
htm

14. Van den Bergh F., Engelbrecht A.P., Cooperative
Learning in Neural Networks using Particle Swarm
Optimizers, South African Computer Journal,
http://www.cs.up.ac.za/cs/fvdbergh/publications/
pso_splitswarm.ps.gz

15. Eldracher M. (1992). Classification of Non-Linear-
Separable Real-World-Problems using Delta-
Rule, Perceptrons, and Topologically Distributed
Encoding, Proceedings of the 1992 ACM/SIGAPP
Symposium on Applied Computing.

16. Liu B., Wang L., Jin Y., Huang D. (2005). Designing
neural networks using hybrid particle swarm
optimization, LNCS 3496, pp 391-397.

17. Xian-Lun T., Yon-Guo L., Ling Z., (2007). A
hybrid particle swarm algorithm for the structure

 and parameter optimization of feedforward neural
networks, LNCS 4493, pp 213-218.

9.

41 Adaptive Structural Optimisation of Neural Networks

The International Journal on Advances in ICT for Emerging Regions 01 (01) October 2008

18. Niu B., Li L., (2008). A hybrid particle swarm
optimization for feed forward neural network
training, LNAI 5227, pp. 494-501.

19. Seydi Ghomsheh V., Aliyari Shooredhdeli M,
Teshnehlab M. (2007). Tranining ANFIS structure
with modified PSO algorithm, Mediterranean
Conference on Control and Automation.

