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Abstract— Stochastic Computing has emerged as a competitive
computing paradigm that produces fast and simple implemen-
tations of arithmetic operations, while offering high levels of
parallelism, and graceful degradation of the results when in the
presence of errors. IoT devices are often operate under limited
power and area constraints and subjected to harsh environments,
for which, traditional computing paradigms struggle to provide
high availability and fault-tolerance. Stochastic Computing is
based on the computation of pseudo-random sequences of bits,
hence requiring only a single bit per signal, rather than a
data-bus. Notwithstanding, we haven’t witnessed its inclusion
in custom computing systems. In this direction, this work
presents Stochastic Theater, a framework to specify, simulate,
and test Stochastic Datapaths to perform computations using
stochastic bitstreams targeting IoT systems. In virtue of the
granularity of the bitstreams, the bit-level specification of circuits,
high-performance characteristics and reconfigurable capabilities,
FPGAs were adopted to implement and test such systems. The
proposed framework creates Stochastic Machines from a set of
user defined arithmetic expressions, and then tests them with the
corresponding input values and specific fault injection patterns.
Besides the support to create autonomous Stochastic Computing
systems, the presented framework also provides generation of
stochastic units, being able to produce estimates on performance,
resources and power. A demonstration is presented targeting
KLT, typical method for data compression in IoT applications.

Keywords: IoT, FPGA, Fault-Tolerant Computing,
Stochastic Bitstreams, Approximate Computing.

I. INTRODUCTION

Data intensive Digital Signal Processing (DSP) applications
for near real-time image and video processing, neuromor-
phic [21] and bio-inspired systems [17], are characterized
for their regularity in their datapath. Their computations are
mainly based on multiplications followed by accumulations,
and by the fact that they can tolerate some errors in their
computations.

To alleviate Edge servers from the work of computing basic,
but essential, DSP and Machine Learning (ML) functions,
there is interest in delegating such computing to the Internet
of Things (IoT) device. However, in the IoT context, devices
are often required to operate under heavy power and area
constraints and subjected to harsh environments, struggle to
provide high availability and fault-tolerance. To overcome such
limitations, this work proposes to make use of a different
computing paradigm that blends well with the IoT context, and
offers direct analog sensor interface without Analog-to-Digital

Fig. 1. Illustration of two scenarios for a typical IoT application,
with stochastic computing.

Converters (ADCs), fault-tolerance and savings in resources
and power.

Stochastic arithmetic has emerged as an alternative compu-
tational paradigm able to provide approximate computations
requiring less hardware, towards a circuit design with simpler
but massively parallel components, trading off precision for
computation time [11].

Applications like neural networks [24], [23], high-
throughput Bayesian inference [15], image and video pro-
cessing [19], Finite Impulse Response (FIR) [5] and Infinite
Impulse Response (IIR) [20] digital filters, and autonomous
cyber-physical systems [10] are characterized for their regular-
ity in their datapath. Their computations are mainly based on
multiple multiplications followed by accumulations. Moreover,
many of these applications do not require exact results and can
tolerate some deviations in their computations.

The operation of Stochastic Computing (SC) is suitable
for reconfigurable devices such as Field-Programmable Gate
Arrays (FPGAs) given that the bit level specification of
stochastic bitstreams makes it favorable for implementation
on these devices.

Figure 1 illustrates the scenario where a dependable IoT
system requires the implementation of fault-tolerance mecha-
nisms at all levels of the system, even though it only acquires
data from the sensor and communicates the data to the Edge
servers. The proposed approach, using SC, performs compu-
tations directly over the acquired stochastic bitstream, thus
alleviating the computational load at the Edge, and reducing
the require fault-tolerance mechanisms at the IoT and Edge
levels.

However, the majority of research conducted on SC is
confined to a set of applications, which are highly customized,
specific to certain applications and difficult to extend its
adoption. Furthermore, the benefits of SC are not always clear
due to the resources of the supporting elements and the clock
latency to process long bitstreams. Often, the benefit of SC is
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shadowed by the latency and resources required to interface a
traditional computing systems.

As an inspirational example, the Bayesian inference system
presented in [7] requires 597 Logic Elements (LEs) to be
implemented, of which, only 42 are spent on the datapath
for the Bayesian Machine. The remaining 555 LEs are spent
on conversion of 13 stochastic bitstreams. The contribution in
[18] presents a comparison of parallel binary versus stochas-
tic implementations for neural networks on reconfigurable
hardware. The authors concluded that even though stochastic
bitstreams require more clock cycles to compute than binary,
the advantage of compact realizations in hardware surpasses
that through comparison of geometric mean of the two metrics.
Therefore there is a need for a methodology to make this
assessment at an earlier stage of the design process.

The main claim addressed in this paper is to ease the defini-
tion and evaluation of a Stochastic Datapath (SD) to compute,
at the IoT-level, mathematical expressions as alternative to
other time consuming and prone-to-error design approaches,
and without having to delve into the technicalities of High-
Level Synthesis (HLS).

This work presents Stochastic Theater, a highly customiz-
able and scalable framework that given a problem’s specifica-
tion as mathematical expression, it generates the corresponding
SD, and its supporting blocks, targeting reconfigurable logic.
This work is intended to facilitate automated architectural
changes via unified and regular interfaces, and design-space
exploration often sought in research due to the long execution
times. Moreover, this work provides an estimate of resources,
power and performance metrics. This enables the usage of
the SC in stand-alone stochastic systems or accelerators for
heterogeneous and System-on-a-Chip (SoC) platforms.

Stochastic Theater is a novel framework for prototyping of
SC systems on FPGAs, and it is an improvement over previous
work found in [8]. Moreover, the Karhunen-Loève Transform
(KLT) algorithm can be implemented as inner product, which
is the same for a FIR filter, hence demonstrating its wide range
of applicability of the proposed work.

Stochastic Theater offers the following features:
• scalable and fully automated process through the exe-

cution of configuration scripts, to enhance the use of
Stochastic Computing;

• generation of custom Stochastic Computing elements, e.g.
arithmetic units with more than 2 inputs;

• support for fault injection, through simulation, to predict
the behaviour of the stochastic system when operating
under fault conditions;

• supports for Self-Timed Ring-Oscillator (STRO) to mini-
mize temporal correlations of bitstreams, according to [9];

• support for different FPGA device families. Currently
Cyclone III, IV and V from Altera are supported, but
can be easily ported to devices from other vendors.

The flow of Stochastic Theater is illustrated in Figure 2. It
begins with a high-level specification from the user as a mathe-
matical expressions described in Python, which are translated
into a computational stack, as sequences of inter-connected
operands and operators. The framework then generates the
Register Transfer Level (RTL) in Very High Speed Integrated

Fig. 2. Flow of the proposed framework to simulate, synthesize and
evaluate Stochastic Computing systems on FPGAs.

Circuits (VHSIC) Hardware Description Language (VHDL)
for custom SC arithmetic units, the SD which implements the
desired functionality, and the supporting blocks.

This paper is organized as follows: section II is devoted
to introduce SC and presents the most relevant research
contributions incorporated in the proposed framework. Sec-
tion III presents the details about the proposed framework
along with the inner workings of the proposed framework, to
generate VHDL entities and the datapath for the mathematical
expression to be implemented. A demonstration of a stochastic
system with the first implementation of the KLT implemented
on an FPGA is in Section IV. Analysis on the outcomes are
in section V Conclusions and final remarks are in section VI.

II. BACKGROUND

J. Von Neumann introduced SC in [22] as a method to de-
sign probabilistic logic circuits and synthesize robust systems
from unreliable components. In [12], Gaines has introduced
the use of stochastic bitstreams to represent operators with
high levels of error tolerance.

A. Stochastic Bitstreams

By definition, a stochastic signal is the result of a
continuous-time stochastic process which produces two values:
0 and 1. According to [11], a unipolar stochastic bitstream
is a sequence of stochastic signals over time whose value is
within [0; 1] and defined as the number of ones (o) over the
total number of bits (t). In bipolar representation, the value is
within [−1; 1] and is also encoded as a ratio but followed by a
negative bias and a scale factor of 2. On stochastic bitstreams
there are no weights in the representation, as in typical binary-
radix representation, thus all bits have the same contribution
for the encoded value. For example, the same sequence of
8 bits 01110110 represents 5/8 = 0.625 in unipolar and
2 ∗ (5/8 − 0.5) = 0.25 in bipolar. Figure 3 illustrates the
aforementioned stochastic bitstream. On top, there is the clock
signal, to ensure synchronism; and on bottom the encoded
value.
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Fig. 3. Example of a stochastic bitstream encoding 0.625 and 0.25
in unipolar and bipolar encodings, respectively.

Fig. 4. Block diagram of the unipolar stochastic units: a) multiplier
(top-left), b) adder (top-right), c) negation (bottom-left) and d) squarer
(bottom-right).

B. Stochastic Arithmetic

Stochastic arithmetic supports basic arithmetic computa-
tions like addition and multiplication, as illustrated in Figure
4. Details on stochastic arithmetic units can be found in
the survey presented in [2] which covers the most common
arithmetic units.

The unipolar stochastic multiplication is only the result
of a logic AND of its stochastic inputs. The complement
is the negation of the bitstream. Bipolar multiplication is
achieved through an XNOR operation. Addition, or more
precisely average, is obtained via a round-robin multiplexation
of the stochastic inputs, which depends on a N-module counter
corresponding to N inputs in the multiplexer. The square of a
stochastic bitstream is the equivalent to a multiplication of a
bitstream by itself, delayed by a clock cycle. The clock cycle
makes the pseudo-random bitstreams to be uncorrelated. The
multiplication is now of two independent streams but with the
same value, resembling the power of two operation.

The implementation of n-ary add or multiply operators is
achieved by adding additional inputs to the logic circuits. In
terms of FPGA implementation it means that the number of
inputs of a LE can be evaluated simultaneously.

For more complex operators, such as exp, tanh and abs,
there are realizations of stochastic operators using Finite State
Machines (FSMs). Implementations of such units can be found
in [4], [14].

Table I illustrates the sensitivity to temporal correlations,
for the case of multiplications of two bitstreams. In this case
both input streams encode the value 0.5, which is represented
by the same number of 0s and 1s on the bitstream. However,
because of the alignment of the bits, the multiplication, which
is achieve at the logic AND, produces a bitstream with only
0s, encoding value 0, rather than the expected value of 0,25.

To improve the statistical quality of the stochastic bitstreams
on the datapath, this work adopts the STRO proposed in [7].

Bit Num 8 7 6 5 4 3 2 1
A 0 0 1 1 0 0 1 1
B 1 1 0 0 1 1 0 0
A.B 0 0 0 0 0 0 0 0

TABLE I
EXAMPLE OF A MULTIPLICATION OF TWO CORRELATED

BITSTREAMS, PRODUCING A BAD RESULT.

Fig. 5. Detail on process of generating a pseudo-random bitstream
for a given binary-radix value between 0 and 1.

The main reasons to consider a STRO instead of a global
clock source are: different clock signal for each stochastic
unit; all generated clock signals with the variation of voltage,
temperature, location on the device and its degradation. All
synchronous stochastic units have an instance of this unit to
generate its clock signal.

C. Interface and Other Supporting Blocks

Forasmuch as most systems usually use parallel binary-
radix representation, it is therefore required a converter from-to
stochastic bitstreams to ensure inter-operability. The process
of generating the stochastic bitstream is illustrated in Figure
5, where a specific binary-radix value (val) is compared with
the output of a uniform pseudo-random generator, usually
a Linear Feedback Shift-Register (LFSR) [3]. Whenever the
pseudo-random number is smaller, it produces a 1 and 0
otherwise. After each pseudo-random sample the ratio between
the number of ones and the total number of bits will be towards
val. In this example, the encoded value is 9/16 = 0, 5625.
The conversion from stochastic-to-binary is based on the
integration of the 1s on a bitstream, which is accomplished
using a binary-radix counter. A second counter is required to
count the total number of bits. Figures 6 and 7 show the details
of the conversion units.

D. Fault-Tolerance

The graceful degradation of stochastic bitstreams is referred
to the impact of bit-flips on the bitstream. In such occurrences,

Fig. 6. Block diagram of a binary-to-stochastic unit.
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Fig. 7. Block diagram of a stochastic-to-binary unit.

and regardless of the position of the bit on the bitstream, the
value of the error associated with each bit-flip is the same as
the least significant bit, in binary-radix. On this account, [19]
has applied the concept of stochastic logic to a reconfigurable
architecture that implements image processing operations on
a simulated datapath. The authors show that the quality of the
results degrades gracefully with the increase of errors on the
bitstream.

E. Disadvantages

The main disadvantages of SC are: a linear increase in
the precision of typical binary representations, for stochastic
computations it imposes an exponential increase in the length
of the bitstream; sensitivity to temporal correlations; and the
supporting blocks are usually the performance bottleneck,
rather than the arithmetic units.

III. STOCHASTIC THEATER: FRAMEWORK FOR
SPECIFICATION OF STOCHASTIC DATAPATHS

This work proposes a method to specify it as a mathematical
expression, defined as a list of operands and operators, orga-
nized in a stack to resemble Reverse Polish Notation (RPN),
or postfix notation. The advantages of such representation
are: simplified representation without parenthesis, hence fewer
operations are needed, faster introduction by the user and with
fewer mistakes [13], [1]. In RPN the operators follow the
operands. The strength of this notation is the support of n-
ary operators, which is compatible with the aforementioned
stochastic operators. Example: the computation of 1 − 2× 3
is defined in RPN as 1 2 3×−. Essentially, the framework rec-
ognizes the different operands and operators of a mathematical
expression, and then generates the corresponding VHDL. This
regular form is easily mapped into an FPGA, exploiting the
parallelism offered. From this data structure it is possible to
identify the requirements for a system, namely: the number of
input, internal and output signals; the different types, number
of input operands and data dependencies of the operators used.
The data structure is organized as a tree of computations
which maintains the data dependencies in the datapath. These
mathematical expressions can be variable in size and type of
operations.

Considering the following example of a function to be
implemented to compute data from 4 sensors:

func =
1

N
(i0 × i1 + i2 × i3 × i4) (1)

it has the corresponding RPN stack representation:

func = i0 i1 × i2 i3 i4 × × + N / (2)

To ease the stack manipulation, it is split into a set of partial
computations stored in intermediate variables:

aux0 = i0 × i1 (3)
aux1 = i2 × i3 × i4 (4)

which the original expression can be replaced with:

func =
1

N
(aux0 + aux1) (5)

and to facilitate the generation of the VHDL source file
describing the datapath to implement this expression, it is
expressed as a list of operands and operators in Python, e.g.
sums and multiplications, resembling RPN. This regular form
is easily extracted and can be efficiently mapped into an RTL
specification, exploiting the parallelism offered by FPGAs.

The user input for equation 2 in Python can be described
by the following list of computations, which itself can be
comprised of other lists, or operands, and operators:

aux1 = [’i0’, ’i1’, ’*’];
aux2 = [’i2’, ’i3’, ’i4’, ’*’];
f = [aux1, aux2, ’+’];

which results in the following Python variable:

>>> f
[[’i0’, ’i1’, ’*’], [’i2’, ’i3’, ’i4’,
’*’], ’+’]

Variables t1 and t2 are lists of strings, which represent
partial computations. These variables can be of any size. The
last element, or tail, of the list holds the representation of
the operation. In this example, the operands are: + or *. The
remaining elements are the operands. It is also possible to
define operations which depend on the results of previous
computations, e.g. f is defined as the sum, or average, of
t1, and t2 . Table II lists the stochastic combinatorial and
sequential operators supported so far.

TABLE II
LIST OF THE STOCHASTIC OPERATORS SUPPORTED.

Operator Codification
Sum (average) +
Multiplication *

Negation -
Square pow2

Complement not

The inputs and outputs of the SD correspond to the number
of variables and are determined by the framework. To complete
the specification of a datapath it is necessary to indicate
the length and type (unipolar/bipolar) of the bitstream. To
serve this purpose there is a variable in Python which holds
this configuration. However, the architecture of the SD is
independent of the bitstream’s length.

One of the key strengths of the proposed framework is that
given any mathematical expression, regardless the complexity
of the mathematical expressions, the system maintains its
regularity. The framework integrates the translation of the
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Fig. 8. Top-level architecture of the circuit design to test the
Stochastic Datapaths, including the supporting units.

expression of the SD into a stack. Apart from the core of the
SD, which is different for all expressions, all other supporting
units have the same architecture, such as data sources and
sinks for the stochastic bitstreams, varying only the number
of bits, or the length of the bitstreams supported.

The generated SD was planned to be autonomous or part
of a larger system, as illustrated in Figure 8. The SD is in the
middle and the rest of the circuit is formed by the supporting
units to do the computations. The system is interfaced via
the input and output bitstreams, and also the FSM’s control
signals, namely Clk, Enable and Reset. In particular, the FSM
is responsible for the generation of the control signals for
all units in the design. It also controls the burn-in period
to compensate the clock cycles required by the FSM-based
stochastic arithmetic units.

A. Stochastic Arithmetic Units

Typical parallel binary-radix representation all basic op-
erators are either unary or binary, with 1 or 2 operands,
respectively. However, has n-ary SC operators support for
more than two operands. Therefore, it is required to create
the customized components, as it is difficult to account for all
possible operators with any number of operands in advance.
Therefore, the framework determines the number of arguments
for multiplications and sums and then generates the required
stochastic arithmetic components. In more detail, it iterates
over the aforementioned list of computations to retrieve the
different operators and then generates the VHDL entity match-
ing the operation and the number of inputs.

In SC, each operator can have a diverse number of operands.
Therefore, it is necessary to generate custom arithmetic units
according to the mathematical expression. Moreover, the num-
ber of variables considered is unknown, so it is also necessary
to create the interfaces to support any number of inputs and
outputs. The VHDL source files are created, and used to
synthesize the design and generate the FPGA configuration
file, or to simulate the system.

B. Interfaces for IoT

Conversion between binary-radix and stochastic bitstreams
is the major limitation in interfacing typical digital systems.
Even tough it offers many parallel operators there are not many
inputs available.

Connecting the SD from the rest of the supporting elements
allows to integrate it in other systems, capable of interfacing

Fig. 9. Analog-to-Stochastic bitstream conversion circuit (from
[10]).

Fig. 10. Example of a 3-input stochastic adder with a STRO to
minimize correlation between the bitstreams.

with stochastic bitstreams, such as [10]. In this work the
authors have created a cyber-physical system which interfaces
analog sensors and actuators without the need to have either
analog to digital and binary-to-stochastic converters, to acquire
input data; and stochastic-to-binary and digital to analog
converters to drive the actuators.

In essence, the generation of a bitstream from a binary-radix
value requires more resources than an analog interface, but the
analog interface requires a dedicated input pin.

C. State-of-the-art Attributes
To hold on to the novel advancements in SC, the framework

already includes a few research novelties to demonstrate its
adaptability. The incorporated features which mitigate some
of the limitations in SC and improve the quality of the results

1) Burn-in Period: There are stochastic arithmetic units are
based on FSM, thus the values at their outputs are not instantly
produced. Therefore, to account for such units, a counter is
included to introduce enough latency. The outputs become
valid once the counter reaches the threshold value.

2) Independent and Uncorrelated Units: As mentioned pre-
viously, correlation between bitstreams leads to weak results.
To reduce such correlations [9] introduced STROs to generate
spread-spectrum, individual and uncorrelated clock sources for
each synchronous stochastic unit. Moreover, the authors also
claim reduction in the power dissipated in the clock trees,
without the penalty of introducing synchronizers, or alternative
components, typical of asynchronous circuit designs [16].
This feature, which consists of a configurable length ring
oscillator can be instantiated to provide the clock signal to
all synchronous components in a SD, as illustrated in Fig. 10.

D. Simulation Platform
To facilitate the system development and verification, the

proposed framework supports both RTL and gate-level sim-
ulation. This functionality is granted by a VHDL top-level
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entity, automatically and specifically created for each system.
This top-level entity automatically interfaces the generated
SD, by connecting its inputs and outputs. Regarding the input
stimulus for the simulation, it uses the values from the problem
specification. The same information is then used to validate the
obtained results at the end of the simulation.

One of the flagships of stochastic computing is its inherent
resilience to faults. Doing fault-tolerance tests requires a
rather complicated laboratory environment or native support
from the FPGA to change configuration bits according to
existent models. Therefore, to alleviate the designer from such,
the proposed framework supports simulation of the complete
system using fault-injection models.

The actual simulation process itself is supported directly
by Modelsim, through the execution of a custom script which
compiles all source files, executes the simulation and displays
the waveforms for all signals. Figure 11 depicts the waveforms
for some of the signals from a simulation of a stochastic
system. It is worth noticing the buses which aggregate and
organize the bitstreams in the design.

E. Fault Injection

Fault injection is performed at RTL level on the SD or
the complete system, and they can be configured to upset the
system as transient or permanent faults. In either case the faults
injected are stuck-at 0 or 1 faults.

The fault injection is supported only at the simulation level
through the use of Modelsim scripts. Each fault is charac-
terized by an identifier of a net from the circuit, simulation
time of occurrence and logic level of the fault. All faults are
generated by a Python script before running the simulation
following a specific probability distribution, e.g. Weibull or
Normal distributions.

>>> a = 5. # shape
>>> s = np.random.weibull(a, 1000)

F. Evaluation Platform

The proposed framework provides a test platform to run any
SD generated by it on an FPGA. It creates a fully functional
autonomous stochastic system, containing the SD derived from
the mathematical expression. The system supports SD of any
size, being limited by the resources available on the FPGA
device. This test platform manages the input and output signals
required by the SD, along with the required conversions to be
accessed by the host computer. Figure 12 depicts the system
to be implemented on the FPGA. On the edges there are the
conversion blocks, and in the middle the unit corresponding
to the SD.

1) Architecture: The test platform circuit is constituted by
the circuit under test (i.e. a simple arithmetic unit or a SD),
the bitstream generators, and the output calculators.

It includes the units for the generation of the stochastic
bitstreams from binary values previously stored in Block
Random Access Memorys (BRAMs), and the result converters
back to binary and its storage in other BRAMs. In more detail,
each of these units supports many parallel bitstreams.

2) Process: The process of evaluating a SD starts with the
configuration of the FPGA with the bitstream. Thereafter it
is ready to exchange data with the host computer. The whole
process is controlled by the host computer via Tool Command
Language (TCL) scripts, and illustrated in fig. 13. The FSM
controls the test process. It waits for the indication from the
host computer to start the generation of the input bitstreams
and starts counting the burn-in period, from binary values
stored in BRAMs. After the burn-in period is over, the FSM
starts the conversion of the output bitstreams.

IV. KARHUNEN-LOÈVE TRANSFORM

A. Background

The KLT, also known as Principal Component Analysis
(PCA), is an algorithm widely used in Machine Learning
to reduce the dimensionality of data sets of many correlated
variables, and is formulated as follows. Given a set of N data
xi ∈ RP , where i ∈ [1, N ] an orthogonal basis described by a
matrix Λ with dimensions P×K can be estimated that projects
these data to a lower dimensional space of K dimensions. The
projected data points are related to the original data through
the formula in (6), written in matrix notation, where X =
[x1, x2, ..., xN ] and F = [f1, f2, ..., fN ], where f i ∈ RK

denote the factor coefficients.

F = ΛTX. (6)

The original data is described from the lower dimensional
space via (7):

X = ΛF +D (7)

where D is the error of the approximation. The objective of
the transform is to find a matrix Λ that has the Mean-Square
Error (MSE) of the data approximation minimized. A standard
technique is to evaluate the matrix Λ iteratively as described
in steps (8) and (9), where λj denotes the jth column of the
Λ matrix.

λj = arg max E{(λTj Xj−1)2} (8)

Xj = X −
j−1∑
k=1

λkλ
T
kX (9)

where X = [x1x2...xN ], X0 = X , ‖λj‖ = 1 and E{.} refers
to expectation.

Fig. 14 presents a sample of the input data set. The data set
consists of 68 images of 20x25 pixels. To compress the images
from their dimension of 500 pixels down to 100 pixels, the λ
matrix is required to have 500x100 elements. This application
resembles the image compression in surveillance systems.

B. Implementation and Results

The KLT algorithm is based on the dot-product operation,
which can be implemented using different circuits. Figure 15
shows the datapath for: a) rolled and b) unrolled architectures
of a dot-product based circuit, to implement the datapath of
one projection vector from a Zp to Zk KLT.

The circuit receives data from the input stream, identified
with X . The samples, from the input stream, for each dimen-
sion p, are multiplied by the corresponding projection vector



Fig. 11. Waveforms of a stochastic system Modelsim simulation.

Fig. 12. RTL of a test circuit for a Stochastic Datapath.

Fig. 13. Actions performed in the test process.

Fig. 14. Faces used as input data for the KLT designs.

a) b)

Fig. 15. Schematics of the datapath of a dot-product, for a projection
vector of a KLT circuit: a) rolled and b) unrolled architectures.

λpk. The output of the multiplier is connected to an adder to
do the accumulation. The final result is placed in the output
stream, identified with fk.

In this experiment, to compare binary-radix against SC, it
was considered the unfolded architecture, which is the one
that maximizes the parallelism offered by FPGAs. Considering
also 9-bit binary-radix representation, it corresponds to a 512-
bit bitstream. However, the length of the bitstream has no
influence on the SD.

The implementation of the aforementioned KLT example in
a complete parallelized would require to compute 100 streams
with 500 multiply-accumulate operations, thus it is necessary
to evaluate what is the maximum level of parallelism, and
determine if the adoption of the SC is the most favorable
approach.

The introduction of the expression for the KLT is generated
in Python to explore different possible implementations for the
problem via the following script:

[frame=single]
inp = 0



Fig. 16. Resources required to implement KLT using binary-radix
(red) and SC (blue) for different numbers of input and parallel
streams, with radix conversion units.

outp = []
expr = []
mac_inputs = 2
num_streams = 10

for i in range(0,num_streams):
for j in range(0,10,mac_inputs):

for k in range(0,mac_inputs):
outp.append("in" + str(inp))
inp = inp + 1

outp.append("*")
outp.append("+")

expr.append(outp)

Figure 16 presents the comparison of the resources required
by both types of implementation using different numbers of
inputs and parallel streams. For the SD implementation,on the
left, the inputs are associated with converters, which penalizes
the solution by requiring 18% extra resources. The plot on
the right shows the results for the same implementation but
without considering the conversion of the inputs, leading a
SD solution which in the worst case requires 10% of the
resources for the binary-radix solution. The results for the
synthesis, in terms of resources, of the binary-radix and SC
were modeled, using a linear approximation, to reduce the
number of synthesis required to perform the evaluation.

V. ANALYSIS

A. Design Automation

The present work could be of benefit for the engineer that
is not familiarized with SC and is considering adopting it
to use the processing power of a sensor node and improve
the reliability of the system. By automatically producing and
evaluating traditional datapaths in their SC implementations,
not only is possible to compare resources but also evaluate
its performance when operating variation of the operating
conditions (power, temperature).

Fig. 17. Resources required to implement KLT using binary-radix
(red) and SC (blue) for different numbers of input and parallel
streams, without radix conversion units.

B. Bitstream Time Overhead

In SC each value is encoded as a bitstream over time instead
of a parallel set of bits at one. Therefore, in the case-study
presented the latency to produce a valid computation is given
by the clock cycles to reach the length of the projection vector
plus the time to perform multiplication and go through the
adder tree, which is given by equation 10:

T = PProjLen + TMult + TAdderTree (10)

For both cases PProjLen is the same as the number of
inputs. However for the particular case of SC, TMult requires
2WL clock cycle and so does TAdderTree, but delayed by
one clock cycle. For typical parallel binary TMult is 1,
considering a fully combinatorial multipliers, and TAdderTree

is log2(ProjLen).
The tradeoff is given in terms of the size of the pro-

jection vector and the wordlength (WL) adopted. Thus, the
latency SC implementation would only produce results faster if
log2(ProjSize) is greater than 2WL. A parallel binary system
is able to produce a result per clock cycle, whereas an SC
system requires 2WL clock cycles.

VI. CONCLUSIONS

This work introduces Stochastic Theater, a framework to
specify, simulate, synthesize and test SDs on FPGAs, tar-
geting IoT devices. It combines the bit-level specification
for the processing of the stochastic bitstreams, and massive
parallelization supported by the logic elements existent on
FPGAs. The proposed framework also introduces support for
simulation of stochastic systems when in the presence of faults.
This paper also presents an evaluation of the proposed frame-
work by producing system designs to implement different
arithmetic expressions. Future work involves including support
for Process, Voltage and Temperature (PVT) variation as in [6]
to enable further research low-power designs for Stochastic
Computing. This stochastic framework has been implemented
mainly in Python and VHDL.
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