
A CardioWheel-based Fatigue and Drowsiness Detection System
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bCardioID Technologies
cInstituto de Telecomunicações

A40232@alunos.isel.pt arl@cardio-id.com artur.ferreira@isel.pt

Abstract— The interest in monitoring drivers conditions and
performance has increased in the past years, to make the roads
safer both for drivers and pedestrians. This raised the idea
of developing systems to monitor the drivers conditions to
prevent road disasters. In this paper, we propose a system
to monitor the driver’s fatigue and drowsiness, based on
the CardioWheel system. The proposed system records the
driver’s ElectroCardioGram (ECG) signal and the motion of the
steering wheel during the driving session. The acquired data is
compressed and transmitted with Bluetooth Low Energy (BLE),
with an exclusive profile developed for this system. To detect
fatigue and drowsiness patterns, a machine learning approach
was taken. Among the evaluated classifiers, the Support Vector
Machines technique proved to be the best classification method
with the highest accuracy. Thus, the developed prototype has the
ability to warn the driver about his physiological and physical
states, increasing road safety.

Keywords: Electrocardiogram; Fatigue Detection;
Drowsiness Detection; Driver Assistant; CardioWheel;
Road Safety

I. INTRODUCTION

Fatigue and drowsiness are two factors that affect
the driving abilities of a person. There is an increasing
interest in the development of Advanced Driver Assistance
Systems (ADAS)1, which monitors the vehicle performance
and behaviour, as well as the physiological and physical
conditions of the driver. To perform this monitoring, we
can resort to accelerometers, which are inertial sensors that
measure the proper acceleration applied to an object, called
g force. They can be placed on the automobiles steering
wheel to monitor their movements. In addition, physiological
signals such as ElectroCardioGram (ECG) [21], can be
monitored. The ECG signal can be obtained with the aid
of dry-electrodes placed on the vehicles steering wheel,
such that, in contact with the human skin, detect the
electrical signals generated by the heartbeat. The fatigue and
drowsiness detection can be achieved with machine learning
algorithms working on these signals. With these methods,
it is possible to identify sleepiness in both the ECG and
the steering wheel accelerometer data and to predict if the
driver is entering in a state of sleepiness. This detection
triggers an alarm to the driver.

1https://www.mobileye.com/ourtechnology/adas/

In this paper, we report the development of a prototype
for driver fatigue and drowsiness detection, based on the
CardioWheel system. The prototype is composed by two
main blocks:

• the acquisition system, for data collection, pre-
processing, and transmission tasks;

• the gateway solution, to receive data and to perform
classification, and alarm activation.

In the acquisition system, the accelerometer and the ECG
recording module work for the entire driving period. The vol-
ume of generated data is such that it needs to be compressed
in order to occupy less storage space and less transmission
time. The acquired data is stored on a remote database, not
physically attached to the acquisition system, thus wireless
technologies are adequate to transmit the data.

The CardioWheel system [11], developed by CardioID
and depicted in Figure 1, allows the acquisition of off-the-
person ECG signals [2] and accelerometer signals in a non-
intrusive way, with a Bluetooth Low Energy (BLE) module
for wireless transmission purposes. To achieve an acceptable
biometric signal, only two electrodes are required. However,
the method is more sensitive to noise, as compared to the on-
the-person ECG acquisition methods. Thus, in some cases it
leads to the need of additional signal processing techniques
on the acquired signal. After these signal processing opera-

Fig. 1. CardioWheel [11]: a steering wheel cover with a conductive leather
connected with a box containing embedded electronics.
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tions, it is possible to achieve an ECG signal quality similar
to that of hospital systems.

The off-the-person ECG techniques acquire ECG signals
in a less intrusive way using hands as contact points, allowing
the acquisition of signals without sensors placed on the
body, but rather in objects of everyday use [2]. The purpose
of these methods is to make the acquisition of signals
almost involuntarily, without impact on the person’s daily
actions. The components used in this method are named dry-
electrodes as they do not require the use of any conductive
gels or pastes, using human perspiration to a better contact
with the person’s skin.

In the gateway solution, a machine learning algorithm
classifies the incoming data and to predict the driver’s
patterns of sleepiness for both ECG and steering wheel angle
accelerometer signals. The gateway solution is responsible
for the activation of the system that can warn the driver if
fatigue and drowsiness patterns are found in the extracted
signals. Figure 2 shows two pictures of the CardioWheel
mainboard [11], over which we will develop our prototype.

Fig. 2. CardioWheel [11]: top side (left) and bottom side (right) of the
CardioWheel mainboard.

II. MONITORING SYSTEMS, SENSORS AND
BIOLOGICAL SIGNALS

This section provides some background concepts on fa-
tigue, drowsiness and the monitoring aspects related to the
acquisition of the steering wheel angle and ECG signals.

A. Fatigue and drowsiness

Sometimes, fatigue and drowsiness are used to describe the
same situation. These two words are quite related, however
they have a distinctive meaning2.

Fatigue is a physical or psychological exhaustion. A per-
son feels fatigued when, for instance, goes to a gymnasium
and works out his muscles and heart-rate for a reasonable
amount of time or when one has solved a large amount of

2https://drowsydriving.org/about/

complex mathematical problems. Fatigue, usually outcomes
from doing the same task repeatedly or in an exhaustive way.
When the fatigue state requires a rest, it could cause a person
to fall in a drowsiness state.

Drowsiness is defined as the state before sleep. When
someone is drowsy, one requires to sleep, and one’s body
is fighting to stay awake. Drowsiness can interfere more ac-
tively than fatigue in the daily basis affecting concentration,
reaction time, productivity and safety. Some medications
induce drowsiness, but it is mostly related with sleeping
habits, as people that have a good quality and a good quantity
of sleep have more resistance to enter in a drowsiness state,
for a longer period.

To classify the drowsiness state, there is a metric named
Karolinska Sleepiness Scale (KSS) [17]. This is a subjective
method, using a 10-point Likert scale [9], in which the person
classifies his/her sleepiness in periods of 5 minutes. Table I
describes the KSS scale.

B. Direct and indirect monitoring systems

Monitoring systems are composed by sensors and devices
that measure parameters for a given purpose. There are two
main types of monitoring: direct monitoring and indirect
monitoring, which are addressed in this section.

Direct monitoring systems deal with physiological signals
or with a person’s behaviour. Among these, we have facial
expressions, yawning, eye tracking and blinking, electroocu-
logram (EOG), electroencephalogram (EEG), electrocardio-
gram (ECG) heart rate, and body temperature, for instance.
The main advantages of these methods are [6]:

• accuracy - because measurements are under medical
investigation and supervision;

• universality - since the results are valid or are directly
connected with scientific or commercial domains;

• versatility - given that the experiments can be tested in
a laboratory environment since it is simple to reproduce
adequate real conditions for the task of interest.

However, by using this kind of monitoring, there are also
some disadvantages, such as [6]:

• privacy invasion - since the measurements can describe
a lot of physical and psychological conditions of the
person;

TABLE I
THE 10-POINT KAROLINSKA SLEEPINESS SCALE (KSS) [17]

Level Description
1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to keep awake
8 Sleepy, but some effort to keep awake
9 Very sleepy, great effort to keep awake, fighting sleep
10 Extremely sleepy, cant keep awake
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• high sensitivity - to light, weather, clothes or acces-
sories;

• current health conditions - may decrease the precision
of the measures.

Indirect monitoring systems interact with the objects con-
trolled by the individual, for example, in an automobile,
it is possible to monitor the steering wheel movements,
pedal acceleration (gas or break), sitting position, as well as
other indicators. Unlike direct monitoring systems, the main
advantages of this kind of monitoring are [6]:

• robustness - since the influence caused by external
sources like weather, cannot disturb the measurement;

• privacy - because the methods are non-intrusive to the
person.

These systems also have their drawbacks, namely [6]:
• experimental rigorous - to achieve significant results,

the tests should be done using real conditions to best
suit the measurements to the real working environment;

• low applicability - because even the promising results
usually cannot be reused in other research domains and
are focused on a specific problem.

Thus, the best choice between these techniques depends on
the specific goals of the application at hand. Both these
types of monitoring are adequate to get relevant data for the
intended detection. However, indirect monitoring systems are
easier to apply for a driver.

C. Accelerometers

An accelerometer is an inertial sensor that measures the
proper acceleration of an object, named as g force [25].
This acceleration differs from the common speed/time rate
concept; instead, the speed variation is measured according to
an axial complex located in the device. Some accelerometers
have three axes (x, y, and z) while others have six axes, being
named as gyroscopes. These more complex accelerometers
have the ability to detect rotations on each of the three axes,
making possible to monitor rotational movements besides the
axial acceleration.

Mechanical accelerometers are composed by a moving
mass between fixed masses. As the moving mass comes
near or moves away from the fixed masses, the capacitance
measured in each fixed mass changes with the distance to
the moving mass, allowing the measurement of the proper
acceleration. Figure 3 depicts a model for the measurement
of the proper acceleration in one axis.

Nowadays, accelerometers are used in a wide range of
applications, such as in seismographs, impact measurement
systems, motion sensors used in some gaming controllers,
tilt sensors found in almost all smartphones as well as in the
automobile steering wheel for motion monitoring.

D. ECG signal and acquisition

The electrocardiogram (ECG) signal is the electrical signal
that the heart emits through successive contractions and
distensions of the heart muscle, named myocardium [8], [14],
[15], [21]. The acquisition of ECG signals can be done using
intrusive or non-intrusive methods [2].

Intrusive methods are used in clinical settings where
biological signals are extracted using devices placed in the
human skin. These components are placed on the surface
of the human body using a gel or a conductive substance
paste that provides a suitable contact with the skin and,
consequently an adequate capture of the cardiac signals.
These clinical methods may require the placement of, for
example, up to twelve electrodes on the surface of the body
to extract a good ECG signal and are limited to a small
physical space of use, such as an ambulance, or a treatment
room.

Non-intrusive methods allow the acquisition of signals
with sensors not placed on the person’s body, but rather
in objects of everyday use. The purpose of these methods
is to make the acquisition of signals almost involuntarily,
without having an impact on the person’s daily actions. The
components used in this method are called dry-electrodes as
they do not require the use of any conductive gels or pastes,
taking advantage of human perspiration to improve contact
with the persons skin. These electrodes can be placed on any
equipment, such as, for example, computer mice, keyboards,
mobile phones, watches and cars’ steering wheels. To obtain
an acceptable biometric signal using this method only two
electrodes are required.

The ECG signal is easily distinguished from other wave-
forms, because it presents a distinctive format where it is
possible to identify five types of wave, namely P, Q, R, S, and
T. In some cases, it is possible to identify a sixth wave named
U. The clinical analysis of an ECG signal focuses mainly on
the QRS wave complex. However, the P and T waves also
have a high clinical value. Cardiac abnormalities are detected
by considering the mean amplitude of each wave as well as
the time intervals between them. Typically, the signal voltage
values may range from 1 to 10 mV, with signal frequency
components ranging from 0.05 to 100 Hz and a heart rate
oscillating from 60 to 100 beats per minute [15]. Figure 4
presents a comparison of the signals acquired on the chest
with the CardioWheel device, that acquires off-the-person
ECG signals. In both cases, we are able to identify the types
of wave P, Q, R, S, and T.

Fig. 3. Mechanical model of an accelerometer [25].
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III. ECG SIGNAL COMPRESSION
On monitoring systems, we usually acquire a large amount

of data. Thus, we need to address the use of data compression
techniques to encode the information using fewer bits than
the original representation. For this purpose, we can choose
between direct time-domain techniques, lossless, and lossy
techniques [10], [16].

The time-domain techniques are simple approaches made
up by some operations directly on the time domain of the
acquired signal. These methods are often used in heartbeat
detection and counting, achieving good compression ratios
but failing in the perfect reconstruction of the signals,
introducing distortion to the ECG signal. Among these oper-
ations, we have: amplitude scaling, Differential Pulse Code
Modulation (DPCM), Amplitude Zone Time Epoch Coding
(AZTEC), Turning Point (TP), and Coordinate Reduction
Time Encoding Scheme (CORTES) [8], [14].

In the lossless approach, also named compaction, the
decoded signal is exactly the same as the original signal.
On the lossy approach, the decoded signal is similar to the
original version, thus it has some controlled distortion [10],
[16], and it achieves much higher compression ratios than
the lossless techniques.

The lossy transform-based methods are known as good
compression methods for ECG signals [13], [16], [20] and
thus we have chosen these techniques. These techniques
consist in discarding less significant information, on the
quantisation stage, which tends to be irrelevant to the human
perception of the signal. Figure 5 depicts the lossy encoding
process with its three key stages: transform, quantisation, and
encoding.

IV. PROPOSED SOLUTION
The key idea behind the proposed solution in this paper,

is that fatigue and drowsiness lead to a modification in

Fig. 4. Comparison between off-the-person (blue line) signal with on-the-
person ECG (green line) signal. The PQRST complex.

Fig. 5. The lossy encoding process block diagram with its three main
operations: transform, quantisation, and encoding [10].

the person’s biological signals and behaviour. Thus, the
monitoring of the fatigue and drowsiness states lead to an
adequate approach to tackle the problem at hand.

The proposed solution for drowsiness detection is focused
on the acquisition device that transmits the data to the
gateway and in the classification algorithm that classifies the
data and determines if the driver is drowsy or not. When
the system determines that the driver is drowsy, the alarm is
activated. Figure 6 depicts the block diagram of the proposed
system. Our solution is composed by two main parts:

• the acquisition system, for data collection, preprocess-
ing, and transmission tasks, depicted on the left-hand-
side and centre of Figure 6;

• the gateway solution, for data reception, classification,
and alarm activation, represented on the right-hand-side
of Figure 6.

A. Electrocardiogram and steering wheel angle data

The CardioWheel system encompasses all the blocks of
an acquisition system solution. This system can collect,
in a non-intrusive way, the driver ECG signal, using dry-
electrodes placed in a conductive leather cover (that can fit
into any automobile), and the Steering Wheel Angle (SWA)
signal, using an accelerometer placed in the centre of the
steering wheel. The dry-electrodes can sense the heartbeat,
by its electrical impulses, while the person places the hands
on the steering wheel. This electrical continuous signal is
converted from analogue to digital with an Analogue-to-
Digital Converter (ADC) and the resulting samples are read
by a microcontroller.

The SWA signal is recorded by a three-axis accelerometer,
placed in the centre of the steering-wheel behind the airbag.
The driver, while moving the steering wheel, causes a varia-
tion in each accelerometer axis, and with it, being possible to
estimate the rotational angle of the steering wheel. Figure 7
shows where the CardioWheel mainboard is placed in the
steering wheel.

The CardioWheel device has a ST ARM Cortex
STM32F446RE microcontroller that acquires ECG and ac-
celerometer data with, respectively, off-board dry-electrodes
and an on-board STMLSM6DSL accelerometer. It also in-
corporates an on-board Nordic nRF52832 Bluetooth Low
Energy (BLE) module for wireless communication.

B. Steering wheel angle motion monitoring

To estimate the steering wheel’s rotation angle, it is neces-
sary to know how the accelerometer is oriented. This means
that, depending on the orientation of the accelerometer,
the data could be understood in different ways. The main
characteristic that can be recorded with the accelerometer
is the rotation angle of the steering wheel θ, usually called
SWA. Figure 8 illustrates a front view of a steering wheel
with the axial orientation of the accelerometer.

Given this accelerometer’s axial orientation, the rotation
angle of the steering wheel, θ, is given by

tan(θ) = Ax/Ay (=) θ = atan(Ax/Ay), (1)
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Fig. 6. Block diagram of the proposed system - the global use case scenario.

Fig. 7. The conductive leather on the outside steering wheel and the location of the mainboard in the steering wheel.

Fig. 8. Front view of a steering wheel with the rotational angle θ and the
accelerometers axial orientation.

where Ax and Ay represent the measured accelerations with
the same direction as x and y axes, respectively. Assuming
that there are four quadrants, as represented in Figure 10, it
is possible to estimate the instantaneous g force range for
each quadrant [3].

Another important parameter to consider is the inclination
angle of the steering wheel, η, as depicted in Figure 9.
Depending on the vehicle and on the driver, the steering
wheel could be adjusted to different inclinations to suit
the driver body structure. In each case, the instantaneous
g force will be distributed by the three axes in different
way according to the inclination angle. Besides this, the
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Fig. 9. Side view of a steering wheel with the inclination angle η and the
accelerometers axial orientation.

automobile can also be in an inclined plane, therefore this
inclination angle is relevant to calibrate the axial system
of the accelerometer relative to the automobile direction,
allowing a more accurate estimation of the SWA. Given this
accelerometer’s axial orientation, the inclination angle η can
be written as

tan(η) = Az/Ay (=) η = atan(Az/Ay), (2)

where Ay and Az represent the measured accelerations with
the same direction as y and z axes, respectively.

With these two angles, rotation (θ) and inclination (η), it
is possible to get accurate measurements for monitoring the
behaviour of the steering wheel while driving.

Figure 10 depicts the initial calibration movement of the
steering wheel. The final assessment for the accelerometer

Fig. 10. Representation of the initial calibration movement.

can be done when the measures for steering wheel motion
monitoring are working as expected. To test the accuracy
of the device, the accelerometer was fixed, with the same
orientation as in Figure 8, on a gaming steering wheel. The
steering wheel, in turn, was linked to a PC that is running the
driving simulator rFactor with the MoTec plugin, that enables
data analysis. The acquisition system was composed by an
Arduino ATMega 2560 that was sampling the accelerometer
with a rate of 100 Hz and sending the data via Serial Port.
The simulator was getting the SWA using the potentiometer
inside the gaming steering wheel, with a sampling frequency
of 10.24 Hz. The accelerometer and potentiometer sampling
were done at the same time with the recording of one
lap in a racing track. For these results, we notice that
the accelerometer data and potentiometer data are similar,

thus the accelerometer is getting a correct real-time SWA.
Figure 11 shows the results obtained for the Estoril Circuit.

Fig. 11. Representation of the initial calibration movement.

C. Data compression and transmission

The accelerometer signals can produce waveforms similar
to the ones found in ECG signals. Thus, the data compression
techniques suited for ECG signals also works well for the
SWA data. We have chosen to use the Discrete Cosine
Transform (DCT)-based lossy data compression technique.
The typical DCT transformed signals has high values on
its first coefficients; however, from the 4800 coefficient and
beyond there are no significant coefficient values, and from
sample 11000 until the end, the amplitudes can be discarded.

Since we need a wireless data transmission technique, we
have analyzed a wide range of wireless technologies, that
allow communication to a large diversity of applications,
having power consumption as the main concern. The Blue-
tooth technology [18] has emerged as a way to replace wired
communications from computer peripherals such as mice,
keyboards and headsets. At this time, Bluetooth is used in
a wide range of health applications, such as blood pressure
monitors and blood glucose meters, or in the fitness area,
such as speed sensors or heart-rate meters. Considering that
most of the Bluetooth devices are battery-powered, there is
a growing need to reduce the energy consumption of this
technology. The Bluetooth Low Energy (BLE) [22] technique
addresses this issue. The BLE stack can be represented by
three independent layers:

• Link layer - master-slave relationship;
• GAP (Generic Access Profile) layer - central-peripheral

relationship;
• GATT (Generic ATTribute) layer - client-server rela-

tionship.
At the Link layer, the master acts as a Scanner and the

slave as an Advertiser. The Advertiser continuously sends
basic information about itself and once the Scanner receives
the information it needs, it tries to connect to the Advertiser.
When the Advertiser accepts, the connection is established.

In the GAP layer, the central is the one initiating a connec-
tion, establishing connection intervals and other connection
parameters. Almost everything is initiated by the central, for
example, a connection pairing or parameter update. Although
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a peripheral can request the central to perform these actions,
it is always up to the central to decide what to do.

The roles of the GATT layer come into play once a
connection has been established. The GATT Server can, in
general, be described as the device sitting on information or
data, while the GATT Client is the one seeking this data. The
GATT Client sends requests for information to the GATT
Servers, which respond with the information requested by
the GATT Client.

BLE allows communications up to 100 meters, in the 2.4
GHz frequency band where transmission rates can go up to
2 Mbit/s but, for most applications, the required bit rate is
usually around 0.3 Mbit/s. The average power consumption
with this technology is around 15 mA of current, reducing
the power consumption to about half as compared to the
standard Bluetooth.

Since CardioWheel has a BLE module, it is necessary to
create a custom profile to handle this data, transmitting it
to a gateway. This device works as a BLE Server while the
gateway works as a BLE Client that will request ECG and
SWA data from the Server. The GATT protocol states that
a BLE Profile is structured in three components: Services,
Characteristics, and Descriptors. A Service is the part of the
profile that encapsulates a specific behaviour. These Services
are composed by Characteristics. A Characteristic is a value
that defines each action for a specific behaviour and it
is composed by Descriptors. Descriptors are attributes that
define the Characteristic value, and could be, for example,
read/write permissions, security roles, among others.

There are many Services that could be integrated in each
BLE Profile, according to the needs. In this work, it was
included the Battery Service, for battery analysis purposes,
and the Device Information Service, for specific device
related information. In this case, it is necessary to create
two custom Services to handle the ECG data and the SWA
data in distinctive ways.

Given that CardioWheel acts as a BLE Server, the two
custom Services for the BLE Profile are composed by one
single characteristic that is responsible to load the ECG or
SWA data from memory. This characteristic is composed by
two descriptors: Read Descriptor and Notify Descriptor. The
Read Descriptor is responsible to provide the data to the
BLE Client requests. Whenever the BLE Client wants data,
it searches for the Read Descriptor identifier and asks for
data. However, searching for the Read Descriptor without
synchronisation could end up in getting repeated data, as
the BLE Server may not have new data to deliver. For
this situation, the BLE Client is continually searching for
the Notify Descriptor identifier. Each time the BLE Server
has new data, it updates the Notify Descriptor, and the
BLE Client, only searches for the Read Descriptor if it has
an update in the Notify Descriptor. Figure 12 represents
the hierarchy of the custom BLE profile for this work,
highlighting the ECG and the SWA services.

D. Classification module

In order to have classifier to work on the data, a feature-
based vector must be composed. In the literature, some
features were pointed out as being adequate to describe the
relationship between ECG or SWA signals with the KSS
scales. Table II describes the features for both signals that
were used to train the classifiers.

For classification purposes we have considered different
classifiers such as Support Vector Machines (SVM) [24],
[23], Artificial Neural Networks (ANN) [1], [7], Linear Re-
gression (LinReg) and Logistic Regression (LogReg) [5]. To
summarize the proposed solution, highlighting the connec-
tion between the blocks described in this section, Figure 13
shows the block diagram of the proposed system.

V. EXPERIMENTAL EVALUATION

This Section reports the experimental evaluation of our
solution on its different aspects. Due to the complexity and
specificity of the involved test scenario, it is not possible to
compare our solution with other similar approaches in detail.
Our aim is to check if the developed prototype provides good
enough results to be further improved.

A. Dataset with ECG and SWA data

To achieve the goal of fatigue and drowsiness detection, it
is necessary an adequate data classifier to predict the drivers
state according to the acquired data. Using the ECG and
SWA data, it is possible to teach a machine to make that
prediction. The dataset provided by the Swedish National
Road and Transport Research Institute 3 contains signals
from 18 subjects, including ECG and SWA, for the same car
and track, in both awake and drowsy states, as well as the
KSS values for each data sample. The features from those
signals will be the input and the KSS values will be the
output to train the classifier.

3https://www.vti.se/en/

TABLE II
SET OF FEATURES FOR THE ECG AND SWA SIGNALS

Signal Feature
SDV - Standard deviation

ECG + SWA ENT - Shannon entropy
RMS - Root-Mean-Square
NRP - Number of R peaks per window
DBR - Mean difference between R peaks
MAR - Mean amplitude of R peaks
ADR - Amplitude deviation of R peaks

ECG VLF - Very-Low Frequency power [0, 0.04] Hz
LFP - Low Frequency power [0.04, 0.15] Hz
HFP - High Frequency power [0.15, 0.4] Hz
LHR - Low-High frequency Ratio
ZCR - Zero-Crossing Rate
HTR - Holding time below ± 3 degrees

SWA MAS - Mean acceleration applied to the steering wheel
ASD - Angular Speed Deviation
EXT - Number of extremes
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Fig. 12. Hierarchy of the custom Bluetooth Low Energy Profile.

Fig. 13. Block diagram of the proposed system - the block functionalities.

This dataset is composed by ECG, EEG, and EOG biomet-
ric signals, and car movement signals such as velocity, lateral
and longitudinal acceleration, Steering Wheel Angle (SWA)
and yaw rate. In the experiment, each person was classifying
his sleepiness according to the Karolinska Sleepiness Scale
(KSS) test while driving, adding a KSS value to each data
sample. Figure 14 represents a pie chart with the distribution
of the KSS values in the given dataset.

To simplify this 9-class output, we converted it into a
binary classification problem, where 0 represents the awake
state and 1 the drowsy state. According to the KSS scale,
from the value 6, the driver is showing some signs of
sleepiness, although they are not so significant. The most
credible approach for a binary classification is considering
the KSS values above 7 as a drowsy state [19], however,
the approach in which the dataset becomes more balanced is
using KSS values above 6 for classifying a drowsy person.
To overcome the class imbalance for the first scenario, we
use the oversampling method to synthesize more drowsy
samples.

Fig. 14. Pie chart with the distribution of the different KSS classes in the
dataset.

Figure 15 shows a pie chart with the distribution of the
percentage of drowsy and non-drowsy states, considering the
threshold at level 6 or at level 7.

Fig. 15. Awake and drowsy state distribution for a KSS 7 and above (left)
and KSS 6 and above (right).

B. Evaluation metrics for compression and classification
The Compression Ratio (CR) is one of the most used

metrics in signal compression and measures the data re-
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duction achieved by a given compression method. When
testing a method, it is intended to obtain high CR while
maintaining acceptable signal quality. For the original, o[n]
and the compressed, c[n], signals, the CR is given by

CR(o[n], c[n]) =
lo
lc

: 1, (3)

where lc and lo are the length of the compressed and the
original signal, respectively. For instance, a compression with
a reduction to half the original size is represented as 2:1.

The Root-Mean-Squared Error (RMSE) is one of the
most used distortion metrics to measure differences between
values, representing the differences between input samples
and output samples. It represents how far the output samples
are from the input and it is calculated by the squared root
of the summation of the mean of the squared differences
between the original signal o[n] and the decoded signal d[n],

RMSE(o[n], d[n]) =

√√√√ 1

N

N−1∑
n=0

(o[n]− d[n])2. (4)

The Signal-to-Noise Ratio (SNR) measures the quality of
a signal affected by noise. In this case, the noise is given by
the distortion introduced by the lossy encoding process on
the quantisation stage. SNR, expressed in dB, is defined as

SNR(o[n], d[n]) = 10 log10

(
Po

Pn

)
, (5)

where Po and Pn are the power of the original and noise/error
signals, defined as

Po =
1

N

N−1∑
n=0

o2[n], (6)

and

Pn =
1

N

N−1∑
n=0

e2[n] =
1

N

N−1∑
n=0

(o[n]− d[n])2, (7)

with e[n] = o[n] − d[n]. The use of SNR to denote the
quality of the uniform quantisation procedure leads to the
SNR-quantisation (SNRQ) expression,

SNRQ = 6.02R+ 10 log10

(
3P

V 2

)
, (8)

where R denotes the number of bits per sample, P is
the power of the quantised signal and V is the maximum
amplitude of the quantiser. SNRQ serves as the basis for
comparing the attained transmission SNR (SNRt), after lossy
encoding. Considering that the number of bits per symbol
after quantisation is R = 12, the supply voltage of the
microcontroller V = 3.3, and the power of the signal P is
roughly its squared amplitude A2, then SNRQ=111.93 dB,
for the considered ECG signals.

To evaluate the performance of the classifier for a binary
problem, it is required to consider the four possible situa-
tions, according to the actual and predicted values. Since “0”
represents the awake state and “1” the drowsy state, the True
Positives (TP), True Negatives (TN), False Positives (FP) and

False Negatives (FN). The consequence of misclassifying a
drowsy driver as awake has potentially more risk than the
opposite case. It is important to minimise the number of
false negatives. If a person is driving in a drowsy state, it
is fundamental that the vehicle warns the driver, however, if
the vehicle warns the driver when he/she is awake, the driver
could simply ignore the alarm.

The dataset is composed by pairs, each pair representing
the same person but in different sleepiness states. To apply
cross-validation with a good reliability, each awake-drowsy
pair will be used as a test set, reaching 33 results for each
tested algorithm. Each pair will be tested, in order to reduce
the standard deviation of the results.

C. Experimental results

Table III shows the experimental results of the considered
data compression techniques, mentioned in section IV-C,
regarding the CR, RMSE, and SNRt measures. We have
considered the Differential Pulse Code Modulation (DPCM),
Huffman, Linear Predictive Coding (LPC), DEFLATE, Dis-
crete Wavelet Transform (DWT), and Lempel-Ziv-Welch
(LZW) techniques [10], [16]. For more details on the data
compression techniques used in the prototype, please see [4].

TABLE III
EXPERIMENTAL RESULTS ON COMPRESSION AND DISTORTION

Method CR RMSE SNRt
DPCM + Huffman 1.5:1 0 ∞

LPC (10 coefficients) + LZW 4.57:1 21.94 18.47
LPC + DEFLATE 3.45:1 21.94 18.47

DCT-based 5.36:1 0.33 54.94
Amplitude Scaling + DWT 5.99:1 3.56 34.26

According to the CR values obtained, the technique using
Amplitude Scaling with DWT proved to be the one with
higher compression and acceptable distortion. However, this
is a lossy technique and it introduces some distortion in the
signal, that cannot be acceptable for precise analysis, like
medical analysis. For lossless compression, the technique
using LPC and LZW is the one with the best CR, taking
into account that this algorithm needs some time to correct
the prediction error and to be effectively a lossless method.

Table IV reports the experimental results for the classi-
fication task, with the classifiers mentioned in section IV-
D, using standard accuracy measures [12], on the ECG +
SWA signals. In our experiments, we have found that it is
preferable to use the ECG + SWA signals, as compared to the
individual use of the ECG and SWA signals. On this dataset,
the SVM classifier achieves the best results, although these
results need to be improved. Thus, the use of this classifier
can be improved by tuning its parameters, such as the type of
kernel and the ‘C’ parameter. Moreover, we have to further
investigate the effect of the choice on the grouping of several
classes into two classes, and check for class imbalance issues,
as depicted in Figure 14 and Figure 15. The chosen set of
features, on the feature engineering stage reported in Table II,
can also be readdressed.

A. Cerca et al. | i-ETC, Vol. 8, n. 1 (2022) ID-01

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers   http://journals.isel.pt



TABLE IV
EXPERIMENTAL RESULTS FOR CLASSIFICATION OF THE ECG + SWA SIGNALS

Method Accuracy Specificity Recall Precision F1-Score
LinReg 0.55 ± 0.08 0.58 ± 0.19 0.52 ± 0.26 0.55 ± 0.11 0.50 ± 0.18
LogReg 0.55 ± 0.07 0.60 ± 0.15 0.49 ± 0.21 0.55 ± 0.11 0.51 ± 0.14

ANN 0.54 ± 0.07 0.55 ± 0.21 0.53 ± 0.24 0.54 ± 0.09 0.51 ± 0.16
SVM 0.62 ± 0.05 0.56 ± 0.12 0.68 ± 0.11 0.61 ± 0.06 0.64 ± 0.06

VI. CONCLUSIONS

In order to prevent car accidents and to improve road
safety, monitoring systems capable of detecting drowsiness
patterns and to warn the driver about his/her physical and
psychological condition are necessary.

In this work, a low-cost prototype for such a monitoring
system was proposed, based on the CardioWheel board,
developed by CardioID. This model consists in ECG and
steering wheel movement data acquisition, compression,
transmission and classification for detection of drowsiness
and fatigue patterns.

From the CardioWheel model, the ECG data acquisition
is performed using dry-electrodes in a conductive leather
that is covering the steering wheel. While the driver has
his hands on the steering wheel, the electrodes can sense
the electrical impulses caused by the heartbeat, creating a
continuous electrical signal.

The steering wheel motion monitoring is carried out by a
three-axis accelerometer placed in the centre of the steering
wheel. When the driver moves the steering wheel, it changes
the acceleration measured in each axis of the accelerometer.
Using an Arduino ATMega 2560, the SWA signal was
extracted by applying trigonometry expressions with the
magnitudes of the g force felt in each axis.

To compress the data before transmission, we have chosen
a lossy transform-based DCT technique. Since the Car-
dioWheel has a BLE module, the transmission is carried out
by BLE with a profile created for the transmission of ECG
and SWA. This profile enables a gateway for getting the ECG
and SWA data from the acquisition system.

The fatigue and drowsiness detection was accomplished by
testing different machine learning algorithms in a two-class
problem. The algorithm that reached the best results was the
SVM, with an accuracy of 0.62 ± 0.05. The percentage of
false positives is 15.95 ± 5.4, meaning that from 10% to
20% of the times, the classifier cant predict that the driver
is drowsy.

It is important to notice that the KSS scale, used as output
in the supervised learning task, is a subjective scale and
subjective measures are based in self-rating scores given by
the drivers and, although they are helpful in understanding
the drivers condition, they are highly depended on the
personal evaluation and interpretation. With these reported
results, we conclude that the developed prototype is an ade-
quate approach to fatigue and drowsiness detection problem.
However, the overall system still needs improvement on
some specific parts.

A. Future work

There are some topics that should be investigated more
deeply. In the acquisition device, more efficient compression
algorithms can be implemented, that can enable higher
compression ratios with a tolerant loss in the signal quality.

The results for data classification are very dependent from
the dataset used to train the classifier. The tested conditions
are the same for the entire dataset and this influences the
data. For more reliable results, we should consider a more
complete dataset that contains different circuits, different
vehicles or different weather conditions.

Also, in the dataset, the ECG signal was extracted in an
intrusive way, so when testing machine learning algorithms
with signals acquired in a non-intrusive way, it is expected
that the quality of the signal decreases and the extracted
features could not be relevant enough to describe the signal
differences. Besides this, a different set of features can be
defined to improve the results for intrusive or non-intrusive
ECG data.

Since the SVM method proved to be the best of the tested
algorithms, it is necessary to further investigate it to see if
is possible to improve the classification results. Besides this,
different feature sets can also be explored.
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