
i-ETC: ISEL Academic Journal of Electronics,
 Telecommunications and Computers

Vol. 8 , n. 1 (2022) ID-3

http://journals.isel.pt

A New Lightweight and Efficient FPGA based Architecture for
AES Algorithm Targeting IoT Security

Abiy Tadesse Abebea
aSchool of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa

University, Addis Ababa, Ethiopia
abiy.tadesse@aait.edu.et

Abstract1— Different platforms such as resource limited

devices and high-performance processors are used in IoT
networks each with its own set of resource, performance,
and security needs. It is critical to optimize existing
standard cryptographic algorithms to meet the needs of

today's networks, yet this is a difficult undertaking. In this
paper, a compact and efficient architecture for the
Advanced Encryption Standard (AES) is developed and
implemented using several FPGA devices, with the goal of
addressing both constrained and high-performance
platforms in IoT networks. To implement a compact and
efficient FPGA-based AES architecture, a hybrid
optimization technique is applied. The implementation
takes advantage of FPGA embedded resources such as
BRAMs and DSP slices. To synthesize and implement it on
the Xilinx Virtex-7 device, the Vivado HLS tool 2019.2 is
used. Similarly, as devices older than the Xilinx 7-series
platforms are not directly supported by Vivado HLS tool,
Xilinx 14.5 ISE tool is used to synthesize and implement it.
Compared to existing research results found in the
literature, reductions of 78.33 %, 63.12% and 78.14% of
the number of slices utilized on Virtex-5, Virtex-6 and
Virtex-7, respectively, are obtained. Also, improvements of
0.33%, 0.37% and 7.42% of throughput on Virtex-5,
Virtex-6 and Virtex-7, respectively are achieved.

Keywords: AES algorithm, cryptography, FPGA based

implementation, IoT security, parallel pipelining

architecture

I. INTRODUCTION

There are a number of well-known standard
cryptographic algorithms with proven security
capabilities, such as AES [1]. Although the benefits of
standard algorithms have long been known, the
contemporary network requires lightweight and efficient
architectures since it includes constrained as well as
high-performance platforms that differ in resource,
performance and security needs. Optimizing existing
standard cryptographic algorithms and improving their
performance based on the needs of today's networks are
on going research but are challenging.

After the Data Encryption Standard (DES) was broken
due to its small key size, AES was developed as a
standard symmetric key technique [1]. The AES

algorithm is a strong symmetric key block cipher that
has been used to secure a variety of applications.

Although it is not an authenticated encryption
technique in and of itself, it serves as the foundation for
several authenticated encryption algorithms [2], [3]. It is
a well-organized standard symmetric key algorithm that
can be implemented in both hardware and software.

Hardware implementation of AES provides stronger
physical security and higher speed compared to the
software implementation. For this reason, implementing
AES in hardware is vital [4].

In this paper, a compact and efficient architecture for
AES is developed and implemented using several FPGA
platforms, with the goal of addressing the security of
both constrained and high-performance platforms in IoT
networks. To create compact and efficient FPGA-based
architecture for AES, a hybrid optimization technique is
applied. For the implementation, FPGA embedded
resources such as BRAMs and DSP slices are combined
with a reasonable number of typical FPGA logic
elements.

The contribution of this research work is summarized
as follows: considering the resource, performance and
security requirements of the contemporary IoT network
that incorporates high performance platforms and
constrained devices, an FPGA-based AES architecture
is proposed and implemented on different FPGA
devices and optimized to achieve reduced area and
improved throughput. The hardware-based small
footprint architecture (in terms of small number of
FPGA slices and embedded hard-cores) with a good
throughput performance achieved using Virtex-5 device
is intended for constrained devices’ security in IoT
application environment. Conversely, the Virtex 6 and
Virtex 7 implementations of the proposed architecture
with higher throughputs are intended for high
performance platforms in current IoT networks.

The rest of the paper is organized as follows: Section
II reviews the AES algorithm. FPGA based
implementation approaches for AES are discussed in
Section III. The proposed architecture is presented in
Section IV. Section V presents the discussion and
analysis of the achieved results in comparison to
existing research results found in the literature. Finally,
Section VI concludes the paper.

II. OVERVIEW OF AES ALGORITHM

AES is a 128-bit block cipher algorithm with three
possible key sizes: 128-bit, 192-bit, and 256-bit,
respectively, with 10, 12, and 14 round operations. As

http://journals.isel.pt/index.php/IAJETC
mailto:abiy.tadesse@aait.edu.et

A. Abebe et al. | i-ETC, Vol. 8, n. 1 (2022) ID-3

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

shown in Figure 1, the AES encryption process executes
four essential operations to provide data confidentiality:
SubBytes (byte substitution), ShiftRows (rows shifting),
MixColumns (column mixing), and AddRoundKey
(adding round keys). As illustrated in Figure 1, there is
no MixColumns transformation for the last round.

The 128 bit block data (Plaintext) is placed in a 4x4
matrix known as state before the execution of these four
basic operations can begin. State elements are elements
with an 8-bit size that are found in each cell of a state.
Before the round operations begin, the state is XORed
with the initial round key.

Fig. 1. The structure of AES Encryption Rounds

The first round key (128 bits) is combined with 128

bits plaintext to complete the initialization process.
Then, until the desired round number is reached, all four
operations are done in order, on the resulting state
outputs (after each round step). The ciphertext is the end
product of the encryption procedure. A separate key is
utilized for each round operation, which is generated
using a key generator function [1].

The SubBytes function is a nonlinear byte

replacement that uses a substitution table (S-box) to act

independently on each byte of the state. S-boxes are

produced in two stages: Finding the multiplicative

inverse in the GF(28) for the numbers 00H-FFH (Zero

has no reciprocal, thus it is replaced by itself); then,

performing the affine transformation to them. This

entails multiplying a finite field by a matrix A, then

adding a finite field (Exclusive OR) to a vector X of

hexadecimal value 63 as: [A] * b + X, which is extended

as indicated in Eq. (1). Thus, applying all 256 possible

bytes to the matrix in Eq. (1) yields a lookup table that

implements the SubBytes transformation.

ShiftRows is a transformation that cyclically shifts
rows to the left. In this scenario, the first row remains
unchanged, but the second row shifts one byte, the third
row shifts two bytes, and the fourth row shifts three
bytes to the left [1]. The MixColumns operation is
processed by multiplying each state column by a matrix
of constant numbers to produce an updated column [1]
as shown in Eq. (2) and Eq. (3) for encryption and
decryption processes, respectively [1].

The MixColumns transform is composed of

multiplication and addition operations, with 16

multiplications and 12 additions. When the input is

multiplied by one, it can be directly taken.

AddRoundKey is a function that adds the round key

word to each column of the state matrix. One column at

a time is processed by AddRoundKey. To generate fresh

state, the state column is XORed with the key generated

by the key generator.

InverseSubBytes, InverseShiftRows, AddRoundKey

(which is the inverse of itself), and InverseMixColumns

are the inverse operations used in AES decryption

process. The construction of AES is described in detail

in [1] and [5].

III. FPGA BASED IMPLEMENTATION APPROACHES

FOR AES

Different studies have mostly concentrated on the
AES S-box for implementing the AES algorithm on
FPGA [4], [6]. This is because the S-box is the only
non-linear component of the algorithm that has a
significant impact on its performance. The ShiftRows
operation is a permutation of bytes that does not require
any hardware. The MixColumns operation is a linear
column mixing transformation. AddRoundKey is a 128-
bit word that is XORed with another 128-bit word.
However, the AES S-box is a nonlinear byte
replacement with a block length of 128 bits and a key
length of 128 bits, considering AES-128.

The substitution box is the most expensive portion of
AES in terms of hardware resources, necessitating
effective hardware optimization for efficient
implementation [4]. As a result, new approaches of
reconstructing it (the S-box) for high speed or compact
area optimization targets have been presented in [4], [6],
[7], without compromising the algorithm's basic
purpose.

RAM-based (using pre-stored S-Box values) [8],
composite field-based (using combinational logic
circuits rather than pre-stored values) [9], and LUT-
based (using FPGA logic elements) [8], [10], are some
of the implementation options for AES on FPGA. To
build substitution boxes, the RAM-based technique
makes use of the block RAMs found inside FPGAs.
SubBytes and InverseSubBytes are thus stored in
BRAMs. This approach can save logic elements because
current FPGAs include BRAMs [8], [10]. However, it

(1)

(2)

(3)

http://journals.isel.pt/index.php/IAJETC

A. Abebe et al. | i-ETC, Vol. 8, n. 1 (2022) ID-3

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

necessitates a large area. The composite field technique
is the computation of SubBytes to directly implement
the multiplicative inverse and affine transforms [9].
Small-area architecture can be achieved using this
method. However, it does require some transformation
logic [4], [11]. The LUT-based implementation method
employs generic FPGA logic elements [12]. The design
might not be accommodated due to a lack of resources if
it is sophisticated and requires more such logic parts and
the FPGA does not give as much of these resources as
needed.

The T-Box (T-table) [13] is another implementation

alternative that can be used instead of S-box

implementations. A T-Box is a lookup table technique

that includes SubBytes, ShiftRows, and MixColumns in

addition to SubBytes. A T-Box can be expressed

algebraically as demonstrated in Eq. (5):

A. Optimization Techniques for Small Area AES on

FPGA

Area optimization refers to the use of a small amount
of FPGA resources for compact implementation [6]
results, especially for use in constrained devices. There
are many methods of area optimization for FPGA-based
AES implementations [4], in addition to the composite
field method [9]. The looping (iterative) design is the
most basic way to implement AES on FPGA since it
takes numerous computing cycles (as it is basically an
iterative algorithm). It allows the use of the same FPGA
hardware resource resulting in a decreased area
utilization while requiring more clock cycles [4]. An
iterative design on reconfigurable hardware for AES
implementation is described in [12]. For AES-128, this
method used a single round and processed it ten times
iteratively. As demonstrated in Eq. (6), the throughput
may be calculated by multiplying the maximum
frequency reached by the data block size (128 bits) and
dividing the result by ten (number of rounds) [12].

Throughput (Mbps) = (Fmax(MHz) x 128)/10

Therefore, looping architecture necessitates the

repetition of the same operation for a large number of

computation cycles. As shown in Figure 2 [4], this

architecture employs a feedback loop in which the data

is iteratively modified by round functions.

Fig. 2. Iterative (Looping) Architecture

Resource sharing is another way for small-area
optimization. This optimization technique allows
different functions and operations of the same algorithm
to handle equivalent jobs on the same hardware. This
method aids in the reduction of hardware requirements
for various components of the algorithm that would
otherwise necessitate independent hardware for each
[4], [6].

In general, the applicability of the algorithm for area

optimization and the coding styles associated to the

structure of the FPGA device might influence

optimization techniques for reduced resource

consumption.

B. Optimization Techniques for High-Speed AES

Using pipelined architectures, it is possible to boost

the throughput of the AES architecture at the cost of

additional area. As shown in Figure 3, registers are

inserted at each cycle of AES to form the pipeline for

concurrent processing [4], [14]. The depth of the

pipeline can be determined limiting the amount of data

blocks that can be processed at the same time. If full

pipeline is required, the total number of rounds of the

AES is chosen as the pipeline depth to obtain higher

throughput [4], [9], [15]. Pipeline architecture improves

the performance of the encryption process as numerous

blocks of data are executed at the same time.

Fig. 3. Pipelined AES

Sub-pipeline architecture is created by inserting

registers within the round functions of AES, as shown in
Figure 4 [4], [9], [10]. Registers are also inserted within
each round unit in this situation. If each round unit has x
stages with equal delay, an N-round sub-pipelined
design can reach x times the speed of an N-round
pipelined architecture, with some additional registers
and control logic causing some area increase [4].

Fig. 4. Sub-pipeline AES

All rounds are implemented independently in

hardware in a loop unrolling architecture [4], [16], as
illustrated in Figure 5. In this case, the registers placed
at each round in the AES pipelined architecture are
eliminated, and multiple AES rounds are processed in
the same clock cycle. Each round has the same delay,
which is determined by the combinational logic

(5)

(6)

http://journals.isel.pt/index.php/IAJETC

A. Abebe et al. | i-ETC, Vol. 8, n. 1 (2022) ID-3

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

employed. However, the aggregate of many delays
produces the total delay, which makes these systems
slow. Unrolled architectures can increase hardware
complexity by allowing a large number of rounds to be
implemented independently in hardware [4].

Fig. 5. Loop Unrolling Architecture

C. Area Versus Speed Trade-offs

In the design and implementation of FPGA-based
AES, there is always a trade-off between throughput
and hardware resource utilization. Designing a better
architecture for a small-area and high-throughput
application is demanding and challenging. In general,
some applications require extremely high throughput,
such as e-commerce servers, a wide range of
throughput, such as cell phone design, and very tiny
area and low power implementations, such as RFID
cards [4]. Despite the fact that many studies have
provided diverse implementation strategies for FPGA-
based AES, efficiency could be significantly improved
by using efficient architectures and optimization
techniques linked to devices and algorithms [4].

When AES needs to be smaller in size while still
performing at a high speed, balancing area and timing
efficiency is essential [12], [13], [17]-[19]. However,
the area and throughput trade-offs are dependent on the
application's specific requirements [17]-[19].

IV. THE PROPOSED ARCHITECTURE

Using a hybrid approach, an efficient FPGA-based AES
architecture is proposed as shown in Figure 6. Figure 6
depicts the proposed architecture, which contains two
AES-128 cores running in parallel with full outer
pipelining stages of rounds, including the initial round,
intermediate rounds, and final round. It also depicts
inner partial sub-pipelining and round-by-round
processes. Except for the last round, which eliminates
the MixColumn operation, a round consists of
SubBytes, ShiftRows, MixColumns, and AddRound-
Key operations. SubBytes and ShiftRows actions are
made to function in tandem with MixColumns and
AddRoundKey operations, as illustrated in Figure 6.
These round activities are also partially pipelined.

To provide high throughput, the two AES-128 cores
are designed to run in parallel with their respective full

outer pipelining and parallel sub-pipelining modes. A
pre-stored S-box BRAM and a hardware key scheduling
module are also included in the proposed design for data
access and key expansion duties, respectively. The
plaintext (Pt) is provided in parallel mode using pre-
stored BRAMs, as shown in Figure 6. The two
concurrent AES-128 cores each accept 128-bit input
data and process it in parallel.

 In both cores, the initial round is first conducted by
XORing the plaintext (Pt) with the initial round key in
parallel. The intermediate rounds are then processed in
the same way, with each round's processed state output
XORed with the AddRoundKey of its associated round
in both AES-cores in parallel. After the intermediate
rounds are finished, the final rounds are run in parallel
on both AES-cores, yielding the ciphertext (Ct). For
both AES cores, the same round keys are utilized. To
speed up the procedure, pipelined registers are
employed. The key schedule generates the appropriate
keys and stores them in BRAMs, which are then utilized
by the two AES-cores during encryption. All of these
procedures continue until all of the input messages have
been processed.

To balance hardware resource use and improve

throughput efficiency, this design uses both the FPGA

general fabrics and specialized hard-cores such as

DSP48E1 and BRAMs. The activities of these

components and the parallel operations of the modules

are synchronized using a control block. The proposed

method varies from other analogous designs in that it

combines several methodologies to provide a compact

and efficient AES-128 architecture based on a hybrid

approach, which is implemented utilizing DSP and

BRAM hard-cores, as well as balanced resources from

generic FPGA fabrics. Rather than employing all

traditional logic parts or all FPGA hard-cores entirely, it

balances the usage of both hardware resources. This

enhances implementation flexibility while utilizing the

modern FPGA resources for appropriate sections of the

algorithm. The proposed architecture's combined impact

is intended to generate a balanced trade-off between

throughput and area, with more emphasis on

throughput.

Fig. 6. A two core parallel pipelined AES architecture

http://journals.isel.pt/index.php/IAJETC

A. Abebe et al. | i-ETC, Vol. 8, n. 1 (2022) ID-3

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

Techniques from [4], [16], and [20] were employed
and merged in the proposed method. In [4], generic
FPGA fabrics were used to build fully pipelined AES.
They didn't employ parallel AES cores or DSP hard-
cores. DSP slices and BRAMs were employed in [16] to
construct a high-throughput round-based and unrolled
pipelined architecture. They didn't employ parallel
AES-128 cores in their method. In [19], a similar
technique to [16] was adopted for implementing AES
and extending the method to include GCM and optimize
AES-GCM utilizing DSP and BRAM. They followed
the architecture used in [16], which included round-
based and unrolled architectures. Unlike the method
proposed in [20], where four parallel AES-cores were
employed for AES-GCM implementation, only two
parallel AES-128 cores are used based on hybrid
optimization technique in the present proposed
architecture.

The area needed by two parallel AES-128 cores is half
that of four parallel AES-cores. The usage of DSP and
BRAM hard-cores proposed by [16] for implementation
of unrolled pipelined architecture is followed; however,
it is only utilized to create parallel AES-128 cores in the
current study, not for a single round based and unrolled
pipelined AES architecture. The proposed work uses the
same fully pipelining approach as [4] to fully pipeline
the two parallel AES-128 cores; however, this time it is
also based on DSP slices and BRAMs, rather than using
only generic FPGA logic elements as in [4]. In addition,
the partial sub-pipelining strategy uses simultaneous
SubBytes and ShiftRows operations with MixColumns
and AddRoundKeys operations.

The key schedule shown in Figure 7 is implemented in
hardware, but the required round constants shown in
Table 1 are stored in BRAMs. The process of creating
all round keys from the original input key is known as
key-expansion in AES-128. The key-expansion method
develops Nr + 1, 128-bit round keys from a single 128-
bit key if the number of rounds is given by Nr. Before
beginning the encryption or decryption operations, an
initial round key is added to the input. The circular keys
are made in a word-by-word fashion. For the 128-bit
key size, ten round keys of 16 bytes are created.
SubWord applies the S-box to the 32-bit input word,
RotWord rotates the word one byte to the left, and the
round constant RCi is an 8-bit constant associated with
each round, as illustrated in Figure 7.

TABLE I

AES ROUND CONSTANTS

Round Constant

(RCon)
1 (01 00 00 00)16

2 (02 00 00 00)16

3 (04 00 00 00)16

4 (08 00 00 00)16

5 (10 00 00 00)16

6 (20 00 00 00)16

7 (40 00 00 00)16

8 (80 00 00 00)16

9 (1B 00 00 00)16

10 (36 00 00 00)16

Fig. 7. Key expansion in AES

V. IMPLEMENTATION APPROACHES

The proposed architecture was first implemented on

Xilinx Virtex-7 (Part: XC7VX690T, speed-grade -3)

platform. It was tested using the Xilinx Vivado 2019.2

High-Level Synthesis (HLS) tool. A functional test for

the encryption section of AES-128 is shown in Figure 8.

The RTL output was then synthesized on Xilinx Virtex-

5 (XC5VLX155T, speed-grade -3) and Virtex-6

(XC6VLX75T, speed-grade -3) FPGAs.

Fig. 8. Functional test for AES-128 Encryption

Xilinx Vivado HLS is a cutting-edge EDA tool that

allows to specify a design in software, synthesize it, and
generate RTL for the specified design. It gives the
freedom to optimize the design implementation using a
variety of optimization directives to get the results
needed. The synthesized VHDL code was implemented
on Xilinx Virtex-7 device. Xilinx ISE 14.5 was used to
implement and analyse the performance of the proposed
architecture on earlier generations of Xilinx FPGA

http://journals.isel.pt/index.php/IAJETC

A. Abebe et al. | i-ETC, Vol. 8, n. 1 (2022) ID-3

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

devices that are not directly supported by the Vivado
HLS tool, including Virtex-5 and Virtex-6. A simple
Finite State Machine (FSM) was used for
synchronization of the activities of the different
components of the proposed architecture including the
pipeline registers found in DSP slices. Exclusive-or
(XOR) operations are employed to accomplish binary
addition operations in hardware, hence DSP slices were
used to conduct the XOR operations. BRAMs were used
to hold the S-box values and constants. As a result, the
BRAMs are read whenever the data and keys for
processing the AES states are required. To execute 128
bit operations, cascaded DSP slices were employed.

VI. RESULTS COMPARISONS AND ANALYSIS

Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA
platforms were used to synthesize the proposed
architecture. Table II, Table III and Table IV show
comparisons of the synthesis results of proposed
architecture on Virtex-5, Virtex-6 and Virtex-7 devices,
respectively, including resource utilization and
throughput performance, against existing research
findings found in the literature. It's difficult to obtain a
balance between throughput performance and resource
consumption as there is always a tradeoff between them.
Nonetheless, the goal of this research is to achieve
better throughput while using relatively less hardware
resources.

In comparison to existing research outcomes found in
the open literature, a lesser number of LUT slices are
utilized for synthesizing the proposed AES architecture
on Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA
devices, while achieving improved throughput
performance. Thus, reductions of 78.33 %, 63.12% and
78.14% of the number of slices utilized on Virtex-5,
Virtex-6 and Virtex-7, respectively, are obtained.
Similarly, improvements of 0.33%, 0.37% and 7.42% of
throughput on Virtex-5, Virtex-6 and Virtex-7,
respectively, are achieved compared to the outcomes
found in the open literature for the related works. These
results are achieved at the cost of smaller number of
FPGA hard-cores.

From the results shown in Table II, Table III and
Table IV, it is noted that the achieved frequencies of the
present work are higher. This is because the reported
results in this paper are Post-synthesis Timing analysis
and not post place-and-rout (PAR) simulation analysis
that considers full design routing. Moreover, only the
AES encryption part is considered for the Post-synthesis
timing analysis.

VII. CONCLUSIONS

It's critical to improve the performance of existing

standard cryptographic algorithms to meet today's

security standards. Despite the fact that the benefits of

such standard algorithms have long been recognized, the

contemporary network's resource, performance, and

security needs demand lightweight and efficient designs

since it includes constrained and high-performance

platforms. An efficient architecture for FPGA-based

AES algorithm is proposed which takes into account the

IoT security. A hybrid technique is employed, and the

proposed AES architecture is implemented on Xilinx

Virtex-5, Virtex-6, and Virtex-7 FPGA devices. In

comparison to existing research outcomes found in the

open literature, lower number of LUT slices are utilized

for implementation of the proposed AES architecture on

Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA devices,

while achieving improved throughput at the cost of

smaller number of FPGA hard-cores. As a result, 78%

reduction of the number of slices on Virtex-5 device and

7.42% improvement of throughput on Virtex-7 device

are achieved. In the future, Post-implementation Timing

analysis will be performed considering full routing of

the design.

http://journals.isel.pt/index.php/IAJETC

A. Abebe et al. | i-ETC, Vol. 8, n. 1 (2022) ID-3

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

TABLE II
RESULTS FOR IMPLEMENTATION OF THE PROPOSED AES ARCHITECTURE ON VIRTEX-5 DEVICE

Methods Device Slices BRAMs DSPs Freq.
(MHz)

Throughput
(Gbps)

[21]

Virtex-5 3420 - - 199.18 25.50

Virtex-5 3788 - - 232.30 29.73

[22] Virtex-5 7385 - - 638.16 81.68

[23] Virtex-5 2940 - - 704.70 90.40

This work Virtex-5 637 8 32 708.60 90.70

TABLE III
RESULTS FOR IMPLEMENTATION OF THE PROPOSED AES ARCHITECTURE ON VIRTEX-6 DEVICE

Methods Device Slices BRAMs DSPs Freq.
(MHz)

Throughput
(Gbps)

[21] Virtex-6 4095 - - 463.42 5.93

[17] Virtex-6 423 - - 191.98 2.50

[21]

Virtex-6 5566 - - 237.45 3.03

Virtex-6 4095 - - 463.42 59.31

[22] Virtex-6 6361 - - 849.18 108.69

[23] Virtex-6 2537 - - 740.70 94.81

[17]

Virtex-6 5759 - - 732.28 93.73

Virtex-6 9531 - - 457.58 58.57

Virtex-6 5759 - - 849.18 108.69

[24] Virtex-6 1626 - - 166.66 0.24

[6] Virtex-6 1551 - - 190.66 0.56

This work Virtex-6 572 8 32 828.60 109.0

TABLE IV
RESULTS FOR IMPLEMENTATION OF THE PROPOSED AES ARCHITECTURE ON VIRTEX-7 DEVICE

Methods Device Slices BRAMs DSPs Freq.

(MHz)
Throughput

(Gbps)

[21] Virtex-7 4089 - - 495.32 6.34

[7] Virtex-7 126040 288 - - 31.29

[25] Kintex-7 4493 - - 202.26 21.92

[23] Virtex-7 2617 - - 813.0 104.06

This work Virtex-7 572 8 32 878.0 112.40

REFERENCES

[1] J. Daemen and V. Rijmen, The Design of Rijndael: AES

- The Advanced Encryption Standard, In Information

Security and Cryptography. springer, 2002.

[2] D. McGrew, J. Viega, The Galois/Counter Mode of

operation (GCM), Submission to NIST, May 2005.

[3] H. Wu and B. Preneel, AEGIS: A Fast Authenticated

Encryption Algorithm (v1. 1), Submission to CAESAR,

2016.

[4] A. Tadesse and P.S. Kumar, Effective Implementations

Techniques for FPGA Based AES Algorithm, 2016

KICS Korea and Ethiopia ICT International Conference,

2016.

[5] PUB, NIST FIPS. 197. Specification for the advanced

encryption standard (AES), 2001-11-26). ht-tp://csrc.

nist. gov/publications/fips/fips197/fips-197. pdf 2001.

[6] P. Rajasekar and H. Mangalam, Design and

implementation of power and area optimized AES

architecture on FPGA for IoT application, Circuit World,

2020.

[7] S. Chen, W. Hu, Z. Li, High Performance Data

Encryption with AES Implementation on FPGA, In 2019

IEEE 5th Intl Conference on Big Data Security on Cloud

(BigDataSecurity), IEEE Intl Conference on High

Performance and Smart Computing,(HPSC) and IEEE

http://journals.isel.pt/index.php/IAJETC

A. Abebe et al. | i-ETC, Vol. 8, n. 1 (2022) ID-3

i-ETC: ISEL Academic Journal of Electronics, Telecommunications and Computers http://journals.isel.pt

Intl Conference on Intelligent Data and Security (IDS),

149-153. IEEE, 2019.

[8] C.J. Chang, C.W. Huang, H.Y. Tai, M.Y. Lin, and T.K.

Hu, 8-bit AES FPGA implementation using block RAM,

In IECON 2007-33rd Annual Conference of the IEEE

Industrial Electronics Society, 2654-2659. IEEE, 2007.

[9] X. Zhang and K. K. Parhi. High-Speed VLSI

Architectures for the AES Algorithm, IEEE transactions

on Very Large Scale Integration (VLSI) Systems,

12(9):957-967, 2004.

[10] F. Wu, L. Wang, J. Wan, A low cost and inner-round

pipelined design of ECB-AES-256 crypto engine for

Solid State Disk, In 2010 Fifth IEEE International

Conference on Networking, Architecture, and Storage,

IEEE, 485-491, 2010.

[11] C. Arul Murugan, P. Karthigaikumar and Sridevi Sathya

Priya, FPGA implementation of hardware architecture

with AES encryptor using sub-pipelined S-box

techniques for compact applications, Automatika, 61(4),

682-693, 2020.

[12] F. X. Standaert, G. Rouvroy, J. J. Quisquater, and J. D.

Legat, Efficient Implementation of Rijndael Encryption

in Reconfigurable Hardware: Improvements and Design

Tradeoffs, In International Workshop on Cryptographic

Hardware and Embedded Systems-CHES, 334-350,

Springer, Berlin, Heidelberg, 2003.

[13] V. Fischer, and M. Drutarovský, Two methods of

Rijndael implementation in reconfigurable hardware, In

Proceedings of the Conference on Cryptographic

Hardware and Embedded Systems (CHES’01). 2160, 77-

92, Springer, Berlin, Heidelberg, 2001.

[14] C. P. Fan and J. K. Hwang, Implementations of high

throughput sequential and fully pipelined AES

processors on FPGA, In 2007 International Symposium

on Intelligent Signal Processing and Communication

Systems, 353-356, IEEE, November, 2007.

[15] A. Hodjat and I. Verbauwhede, A 21.54 Gbits/s Fully

Pipelined AES Processor on FPGA, In 12th Annual

IEEE Symposium on Field-Programmable Custom

Computing Machines, 308-309, IEEE, 2004.

[16] S. Drimer, T. Güneysu, and C. Paar, C., DSPs, BRAMs,

and a pinch of logic: Extended recipes for AES on

FPGAs, ACM Transactions on Reconfigurable

Technology and Systems (TRETS), ACM, 2010.

[17] A.Q. Al-Khafaji, M.F. Al-Gailani and H.N. Abdullah,

FPGA Design and Implementation of an AES Algorithm

based on Iterative Looping Architecture, In 2019

IEEE 9th International Conference on Consumer

Electronics (ICCE-Berlin), 1-5. IEEE, September 2019.

[18] A. Soltani, S. Sharifian, An ultra-high throughput and

fully pipelined implementation of AES algorithm on

FPGA, Microprocess. Microsyst. 39(7), 480–493, 2015.

[19] E.B. Kavun, N. Mentens, J. Vliegen and T. Yalçın,

Efficient Utilization of DSPs and BRAMs Revisited:

New AES-GCM Recipes on FPGAs, In 2019

International Conference on ReConFigurable Computing

and FPGAs (ReConFig), 1-2. IEEE, December 2019.

[20] L. Henzen and W. Fichtner, FPGA parallel-pipelined

AES-GCM core for 100G Ethernet applications, In 2010

Proceedings of ESSCIRC, IEEE, 202-205, 2010.

[21] H. Zodpe, and A. Sapkal, An efficient AES

implementation using FPGA with enhanced security

features,Journal of King Saud University-Engineering

Sciences, 32(2) 115-122, 2018.

[22] S. Oukili, S. Bri, High throughput FPGA implementation

of Advanced Encryption Standard algorithm,

Telkomnika. 15(1), 494–503, 2017.

[23] M. B. Chellam, R. Natarajan, AES Hardware Accelerator

on FPGA with Improved Throughput and Resource

Efficiency, Arabian Journal for Science and Engineering,

43(12), 6873-6890, 2018.

[24] S. Oukili, S. Bri, Hardware implementation of AES

algorithm with logic Sbox, Journal of Circuits, Systems

and Computers. 26(9), 1750141, 2017.

[25] S.S. Rekha and P. Saravanan, Low-Cost AES-128

implementation for edge devices in IoT applications,

Journal of Circuits, Systems and Computers, 28(4)

1950062, 2019.

[26] Shengiian, L., Ximing, Y., Senzhan, J. and Yu, P., A fast

hybrid data encryption for FPGA based edge computing,

In 2019 14th IEEE International Conference on

Electronic Measurement & Instruments (ICEMI) 1820-

1827. IEEE, 2019.

http://journals.isel.pt/index.php/IAJETC

