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Abstract1— Different platforms such as resource limited 

devices and high-performance processors are used in IoT 
networks each with its own set of resource, performance, 
and security needs. It is critical to optimize existing 
standard cryptographic algorithms to meet the needs of 

today's networks, yet this is a difficult undertaking. In this 
paper, a compact and efficient architecture for the 
Advanced Encryption Standard (AES) is developed and 
implemented using several FPGA devices, with the goal of 
addressing both constrained and high-performance 
platforms in IoT networks. To implement a compact and 
efficient FPGA-based AES architecture, a hybrid 
optimization technique is applied. The implementation 
takes advantage of FPGA embedded resources such as 
BRAMs and DSP slices. To synthesize and implement it on 
the Xilinx Virtex-7 device, the Vivado HLS tool 2019.2 is 
used. Similarly, as devices older than the Xilinx 7-series 
platforms are not directly supported by Vivado HLS tool, 
Xilinx 14.5 ISE tool is used to synthesize and implement it. 
Compared to existing research results found in the 
literature, reductions of 78.33 %, 63.12% and 78.14% of 
the number of slices utilized on Virtex-5, Virtex-6 and 
Virtex-7, respectively, are obtained. Also, improvements of 
0.33%, 0.37% and 7.42% of throughput on Virtex-5, 
Virtex-6 and Virtex-7, respectively are achieved. 

Keywords: AES algorithm, cryptography, FPGA based 

implementation, IoT security, parallel pipelining 

architecture  

I. INTRODUCTION 

There are a number of well-known standard 
cryptographic algorithms with proven security 
capabilities, such as AES [1]. Although the benefits of 
standard algorithms have long been known, the 
contemporary network requires lightweight and efficient 
architectures since it includes constrained as well as 
high-performance platforms that differ in resource, 
performance and security needs. Optimizing existing 
standard cryptographic algorithms and improving their 
performance based on the needs of today's networks are 
on going research but are challenging.  

After the Data Encryption Standard (DES) was broken 
due to its small key size, AES was developed as a 
standard symmetric key technique [1]. The AES  

 
 

algorithm is a strong symmetric key block cipher that 
has been used to secure a variety of applications.  

Although it is not an authenticated encryption 
technique in and of itself, it serves as the foundation for 
several authenticated encryption algorithms [2], [3]. It is 
a well-organized standard symmetric key algorithm that 
can be implemented in both hardware and software. 

Hardware implementation of AES provides stronger 
physical security and higher speed compared to the 
software implementation. For this reason, implementing 
AES in hardware is vital [4].  

In this paper, a compact and efficient architecture for 
AES is developed and implemented using several FPGA 
platforms, with the goal of addressing the security of 
both constrained and high-performance platforms in IoT 
networks. To create compact and efficient FPGA-based 
architecture for AES, a hybrid optimization technique is 
applied. For the implementation, FPGA embedded 
resources such as BRAMs and DSP slices are combined 
with a reasonable number of typical FPGA logic 
elements. 

The contribution of this research work is summarized 
as follows: considering the resource, performance and 
security requirements of the contemporary IoT network 
that incorporates high performance platforms and 
constrained devices, an FPGA-based AES architecture 
is proposed and implemented on different FPGA 
devices and optimized to achieve reduced area and 
improved throughput. The hardware-based small 
footprint architecture (in terms of small number of 
FPGA slices and embedded hard-cores) with a good 
throughput performance achieved using Virtex-5 device 
is intended for constrained devices’ security in IoT 
application environment. Conversely, the Virtex 6 and 
Virtex 7 implementations of the proposed architecture 
with higher throughputs are intended for high 
performance platforms in current IoT networks.  

The rest of the paper is organized as follows: Section 
II reviews the AES algorithm. FPGA based 
implementation approaches for AES are discussed in 
Section III. The proposed architecture is presented in 
Section IV. Section V presents the discussion and 
analysis of the achieved results in comparison to 
existing research results found in the literature. Finally, 
Section VI concludes the paper. 

II. OVERVIEW OF AES ALGORITHM 

AES is a 128-bit block cipher algorithm with three 
possible key sizes: 128-bit, 192-bit, and 256-bit, 
respectively, with 10, 12, and 14 round operations. As 
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shown in Figure 1, the AES encryption process executes 
four essential operations to provide data confidentiality: 
SubBytes (byte substitution), ShiftRows (rows shifting), 
MixColumns (column mixing), and AddRoundKey 
(adding round keys). As illustrated in Figure 1, there is 
no MixColumns transformation for the last round. 

The 128 bit block data (Plaintext) is placed in a 4x4 
matrix known as state before the execution of these four 
basic operations can begin. State elements are elements 
with an 8-bit size that are found in each cell of a state. 
Before the round operations begin, the state is XORed 
with the initial round key.  

 

 
Fig. 1. The structure of AES Encryption Rounds 

 
The first round key (128 bits) is combined with 128 

bits plaintext to complete the initialization process. 
Then, until the desired round number is reached, all four 
operations are done in order, on the resulting state 
outputs (after each round step). The ciphertext is the end 
product of the encryption procedure. A separate key is 
utilized for each round operation, which is generated 
using a key generator function [1]. 

The SubBytes function is a nonlinear byte 

replacement that uses a substitution table (S-box) to act 

independently on each byte of the state. S-boxes are 

produced in two stages: Finding the multiplicative 

inverse in the GF(28) for the numbers 00H-FFH (Zero 

has no reciprocal, thus it is replaced by itself); then, 

performing the affine transformation to them. This 

entails multiplying a finite field by a matrix A, then 

adding a finite field (Exclusive OR) to a vector X of 

hexadecimal value 63 as: [A] * b + X, which is extended 

as indicated in Eq. (1). Thus, applying all 256 possible 

bytes to the matrix in Eq. (1) yields a lookup table that 

implements the SubBytes transformation. 

 
 

ShiftRows is a transformation that cyclically shifts 
rows to the left. In this scenario, the first row remains 
unchanged, but the second row shifts one byte, the third 
row shifts two bytes, and the fourth row shifts three 
bytes to the left [1]. The MixColumns operation is 
processed by multiplying each state column by a matrix 
of constant numbers to produce an updated column [1] 
as shown in Eq. (2) and Eq. (3) for encryption and 
decryption processes, respectively [1]. 

 

 
 

 
 

The MixColumns transform is composed of 

multiplication and addition operations, with 16 

multiplications and 12 additions. When the input is 

multiplied by one, it can be directly taken. 

AddRoundKey is a function that adds the round key 

word to each column of the state matrix. One column at 

a time is processed by AddRoundKey. To generate fresh 

state, the state column is XORed with the key generated 

by the key generator. 

InverseSubBytes, InverseShiftRows, AddRoundKey 

(which is the inverse of itself), and InverseMixColumns 

are the inverse operations used in AES decryption 

process. The construction of AES is described in detail 

in [1] and [5]. 

III. FPGA BASED IMPLEMENTATION APPROACHES 

FOR AES  

Different studies have mostly concentrated on the 
AES S-box for implementing the AES algorithm on 
FPGA [4], [6]. This is because the S-box is the only 
non-linear component of the algorithm that has a 
significant impact on its performance. The ShiftRows 
operation is a permutation of bytes that does not require 
any hardware. The MixColumns operation is a linear 
column mixing transformation. AddRoundKey is a 128-
bit word that is XORed with another 128-bit word. 
However, the AES S-box is a nonlinear byte 
replacement with a block length of 128 bits and a key 
length of 128 bits, considering AES-128. 

The substitution box is the most expensive portion of 
AES in terms of hardware resources, necessitating 
effective hardware optimization for efficient 
implementation [4]. As a result, new approaches of 
reconstructing it (the S-box) for high speed or compact 
area optimization targets have been presented in [4], [6], 
[7], without compromising the algorithm's basic 
purpose.  

RAM-based (using pre-stored S-Box values) [8], 
composite field-based (using combinational logic 
circuits rather than pre-stored values) [9], and LUT-
based (using FPGA logic elements) [8], [10], are some 
of the implementation options for AES on FPGA. To 
build substitution boxes, the RAM-based technique 
makes use of the block RAMs found inside FPGAs. 
SubBytes and InverseSubBytes are thus stored in 
BRAMs. This approach can save logic elements because 
current FPGAs include BRAMs [8], [10]. However, it 

(1) 

(2) 

(3) 
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necessitates a large area. The composite field technique 
is the computation of SubBytes to directly implement 
the multiplicative inverse and affine transforms [9]. 
Small-area architecture can be achieved using this 
method. However, it does require some transformation 
logic [4], [11]. The LUT-based implementation method 
employs generic FPGA logic elements [12]. The design 
might not be accommodated due to a lack of resources if 
it is sophisticated and requires more such logic parts and 
the FPGA does not give as much of these resources as 
needed.  

The T-Box (T-table) [13] is another implementation 

alternative that can be used instead of S-box 

implementations. A T-Box is a lookup table technique 

that includes SubBytes, ShiftRows, and MixColumns in 

addition to SubBytes. A T-Box can be expressed 

algebraically as demonstrated in Eq. (5): 

 
 

A. Optimization Techniques for Small Area AES on 

FPGA 

Area optimization refers to the use of a small amount 
of FPGA resources for compact implementation [6] 
results, especially for use in constrained devices. There 
are many methods of area optimization for FPGA-based 
AES implementations [4], in addition to the composite 
field method [9]. The looping (iterative) design is the 
most basic way to implement AES on FPGA since it 
takes numerous computing cycles (as it is basically an 
iterative algorithm). It allows the use of the same FPGA 
hardware resource resulting in a decreased area 
utilization while requiring more clock cycles [4]. An 
iterative design on reconfigurable hardware for AES 
implementation is described in [12]. For AES-128, this 
method used a single round and processed it ten times 
iteratively. As demonstrated in Eq. (6), the throughput 
may be calculated by multiplying the maximum 
frequency reached by the data block size (128 bits) and 
dividing the result by ten (number of rounds) [12].  

 
Throughput (Mbps) = (Fmax(MHz) x 128)/10 

 

Therefore, looping architecture necessitates the 

repetition of the same operation for a large number of 

computation cycles. As shown in Figure 2 [4], this 

architecture employs a feedback loop in which the data 

is iteratively modified by round functions. 

 
 

Fig. 2.  Iterative (Looping) Architecture 

 

Resource sharing is another way for small-area 
optimization. This optimization technique allows 
different functions and operations of the same algorithm 
to handle equivalent jobs on the same hardware. This 
method aids in the reduction of hardware requirements 
for various components of the algorithm that would 
otherwise necessitate independent hardware for each 
[4], [6].  

In general, the applicability of the algorithm for area 

optimization and the coding styles associated to the 

structure of the FPGA device might influence 

optimization techniques for reduced resource 

consumption. 

B. Optimization Techniques for High-Speed AES  

Using pipelined architectures, it is possible to boost 

the throughput of the AES architecture at the cost of 

additional area. As shown in Figure 3, registers are 

inserted at each cycle of AES to form the pipeline for 

concurrent processing [4], [14]. The depth of the 

pipeline can be determined limiting the amount of data 

blocks that can be processed at the same time. If full 

pipeline is required, the total number of rounds of the 

AES is chosen as the pipeline depth to obtain higher 

throughput [4], [9], [15]. Pipeline architecture improves 

the performance of the encryption process as numerous 

blocks of data are executed at the same time. 

 
Fig. 3. Pipelined AES 

 
Sub-pipeline architecture is created by inserting 

registers within the round functions of AES, as shown in 
Figure 4 [4], [9], [10]. Registers are also inserted within 
each round unit in this situation. If each round unit has x 
stages with equal delay, an N-round sub-pipelined 
design can reach x times the speed of an N-round 
pipelined architecture, with some additional registers 
and control logic causing some area increase [4].  

 

 
Fig. 4. Sub-pipeline AES 

 
All rounds are implemented independently in 

hardware in a loop unrolling architecture [4], [16], as 
illustrated in Figure 5. In this case, the registers placed 
at each round in the AES pipelined architecture are 
eliminated, and multiple AES rounds are processed in 
the same clock cycle. Each round has the same delay, 
which is determined by the combinational logic 

(5) 

(6) 
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employed. However, the aggregate of many delays 
produces the total delay, which makes these systems 
slow. Unrolled architectures can increase hardware 
complexity by allowing a large number of rounds to be 
implemented independently in hardware [4].  

 

 
 

Fig. 5. Loop Unrolling Architecture 

C. Area Versus Speed Trade-offs 

In the design and implementation of FPGA-based 
AES, there is always a trade-off between throughput 
and hardware resource utilization. Designing a better 
architecture for a small-area and high-throughput 
application is demanding and challenging. In general, 
some applications require extremely high throughput, 
such as e-commerce servers, a wide range of 
throughput, such as cell phone design, and very tiny 
area and low power implementations, such as RFID 
cards [4]. Despite the fact that many studies have 
provided diverse implementation strategies for FPGA-
based AES, efficiency could be significantly improved 
by using efficient architectures and optimization 
techniques linked to devices and algorithms [4]. 

When AES needs to be smaller in size while still 
performing at a high speed, balancing area and timing 
efficiency is essential [12], [13], [17]-[19]. However, 
the area and throughput trade-offs are dependent on the 
application's specific requirements [17]-[19]. 

IV. THE PROPOSED ARCHITECTURE 

Using a hybrid approach, an efficient FPGA-based AES 
architecture is proposed as shown in Figure 6. Figure 6 
depicts the proposed architecture, which contains two 
AES-128 cores running in parallel with full outer 
pipelining stages of rounds, including the initial round, 
intermediate rounds, and final round. It also depicts 
inner partial sub-pipelining and round-by-round 
processes. Except for the last round, which eliminates 
the MixColumn operation, a round consists of 
SubBytes, ShiftRows, MixColumns, and AddRound-
Key operations. SubBytes and ShiftRows actions are 
made to function in tandem with MixColumns and 
AddRoundKey operations, as illustrated in Figure 6. 
These round activities are also partially pipelined. 

To provide high throughput, the two AES-128 cores 
are designed to run in parallel with their respective full 

outer pipelining and parallel sub-pipelining modes. A 
pre-stored S-box BRAM and a hardware key scheduling 
module are also included in the proposed design for data 
access and key expansion duties, respectively. The 
plaintext (Pt) is provided in parallel mode using pre-
stored BRAMs, as shown in Figure 6. The two 
concurrent AES-128 cores each accept 128-bit input 
data and process it in parallel.  

 In both cores, the initial round is first conducted by 
XORing the plaintext (Pt) with the initial round key in 
parallel. The intermediate rounds are then processed in 
the same way, with each round's processed state output 
XORed with the AddRoundKey of its associated round 
in both AES-cores in parallel. After the intermediate 
rounds are finished, the final rounds are run in parallel 
on both AES-cores, yielding the ciphertext (Ct). For 
both AES cores, the same round keys are utilized. To 
speed up the procedure, pipelined registers are 
employed. The key schedule generates the appropriate 
keys and stores them in BRAMs, which are then utilized 
by the two AES-cores during encryption. All of these 
procedures continue until all of the input messages have 
been processed. 

To balance hardware resource use and improve 

throughput efficiency, this design uses both the FPGA 

general fabrics and specialized hard-cores such as 

DSP48E1 and BRAMs. The activities of these 

components and the parallel operations of the modules 

are synchronized using a control block. The proposed 

method varies from other analogous designs in that it 

combines several methodologies to provide a compact 

and efficient AES-128 architecture based on a hybrid 

approach, which is implemented utilizing DSP and 

BRAM hard-cores, as well as balanced resources from 

generic FPGA fabrics. Rather than employing all 

traditional logic parts or all FPGA hard-cores entirely, it 

balances the usage of both hardware resources. This 

enhances implementation flexibility while utilizing the 

modern FPGA resources for appropriate sections of the 

algorithm. The proposed architecture's combined impact 

is intended to generate a balanced trade-off between 

throughput and area, with more emphasis on 

throughput. 

 

 
Fig. 6. A two core parallel pipelined AES architecture 
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Techniques from [4], [16], and [20] were employed 
and merged in the proposed method. In [4], generic 
FPGA fabrics were used to build fully pipelined AES. 
They didn't employ parallel AES cores or DSP hard-
cores. DSP slices and BRAMs were employed in [16] to 
construct a high-throughput round-based and unrolled 
pipelined architecture. They didn't employ parallel 
AES-128 cores in their method. In [19], a similar 
technique to [16] was adopted for implementing AES 
and extending the method to include GCM and optimize 
AES-GCM utilizing DSP and BRAM. They followed 
the architecture used in [16], which included round-
based and unrolled architectures. Unlike the method 
proposed in [20], where four parallel AES-cores were 
employed for AES-GCM implementation, only two 
parallel AES-128 cores are used based on hybrid 
optimization technique in the present proposed 
architecture. 

The area needed by two parallel AES-128 cores is half 
that of four parallel AES-cores. The usage of DSP and 
BRAM hard-cores proposed by [16] for implementation 
of unrolled pipelined architecture is followed; however, 
it is only utilized to create parallel AES-128 cores in the 
current study, not for a single round based and unrolled 
pipelined AES architecture. The proposed work uses the 
same fully pipelining approach as [4] to fully pipeline 
the two parallel AES-128 cores; however, this time it is 
also based on DSP slices and BRAMs, rather than using 
only generic FPGA logic elements as in [4]. In addition, 
the partial sub-pipelining strategy uses simultaneous 
SubBytes and ShiftRows operations with MixColumns 
and AddRoundKeys operations. 

The key schedule shown in Figure 7 is implemented in 
hardware, but the required round constants shown in 
Table 1 are stored in BRAMs. The process of creating 
all round keys from the original input key is known as 
key-expansion in AES-128. The key-expansion method 
develops Nr + 1, 128-bit round keys from a single 128-
bit key if the number of rounds is given by Nr. Before 
beginning the encryption or decryption operations, an 
initial round key is added to the input. The circular keys 
are made in a word-by-word fashion. For the 128-bit 
key size, ten round keys of 16 bytes are created. 
SubWord applies the S-box to the 32-bit input word, 
RotWord rotates the word one byte to the left, and the 
round constant RCi is an 8-bit constant associated with 
each round, as illustrated in Figure 7. 

 
TABLE I  

AES ROUND CONSTANTS  
 

Round Constant 

(RCon) 
1 (01 00 00 00)16 

2 (02 00 00 00)16 

3 (04 00 00 00)16 

4 (08 00 00 00)16 

5 (10 00 00 00)16 

6 (20 00 00 00)16 

7 (40 00 00 00)16 

8 (80 00 00 00)16 

9 (1B 00 00 00)16 

10 (36 00 00 00)16 
 
 

 
 

Fig. 7. Key expansion in AES 

V. IMPLEMENTATION APPROACHES 

The proposed architecture was first implemented on 

Xilinx Virtex-7 (Part: XC7VX690T, speed-grade -3) 

platform. It was tested using the Xilinx Vivado 2019.2 

High-Level Synthesis (HLS) tool. A functional test for 

the encryption section of AES-128 is shown in Figure 8. 

The RTL output was then synthesized on Xilinx Virtex-

5 (XC5VLX155T, speed-grade -3) and Virtex-6 

(XC6VLX75T, speed-grade -3) FPGAs. 

 

 
 

Fig. 8. Functional test for AES-128 Encryption 

 
Xilinx Vivado HLS is a cutting-edge EDA tool that 

allows to specify a design in software, synthesize it, and 
generate RTL for the specified design. It gives the 
freedom to optimize the design implementation using a 
variety of optimization directives to get the results 
needed. The synthesized VHDL code was implemented 
on Xilinx Virtex-7 device. Xilinx ISE 14.5 was used to 
implement and analyse the performance of the proposed 
architecture on earlier generations of Xilinx FPGA 
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devices that are not directly supported by the Vivado 
HLS tool, including Virtex-5 and Virtex-6. A simple 
Finite State Machine (FSM) was used for 
synchronization of the activities of the different 
components of the proposed architecture including the 
pipeline registers found in DSP slices. Exclusive-or 
(XOR) operations are employed to accomplish binary 
addition operations in hardware, hence DSP slices were 
used to conduct the XOR operations. BRAMs were used 
to hold the S-box values and constants. As a result, the 
BRAMs are read whenever the data and keys for 
processing the AES states are required. To execute 128 
bit operations, cascaded DSP slices were employed. 

VI. RESULTS COMPARISONS AND ANALYSIS 

Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA 
platforms were used to synthesize the proposed 
architecture. Table II, Table III and Table IV show 
comparisons of the synthesis results of proposed 
architecture on Virtex-5, Virtex-6 and Virtex-7 devices, 
respectively, including resource utilization and 
throughput performance, against existing research 
findings found in the literature. It's difficult to obtain a 
balance between throughput performance and resource 
consumption as there is always a tradeoff between them. 
Nonetheless, the goal of this research is to achieve 
better throughput while using relatively less hardware 
resources.  

In comparison to existing research outcomes found in 
the open literature, a lesser number of LUT slices are 
utilized for synthesizing the proposed AES architecture 
on Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA 
devices, while achieving improved throughput 
performance. Thus, reductions of 78.33 %, 63.12% and 
78.14% of the number of slices utilized on Virtex-5, 
Virtex-6 and Virtex-7, respectively, are obtained. 
Similarly, improvements of 0.33%, 0.37% and 7.42% of 
throughput on Virtex-5, Virtex-6 and Virtex-7, 
respectively, are achieved compared to the outcomes 
found in the open literature for the related works. These 
results are achieved at the cost of smaller number of 
FPGA hard-cores. 

From the results shown in Table II, Table III and 
Table IV, it is noted that the achieved frequencies of the 
present work are higher. This is because the reported 
results in this paper are Post-synthesis Timing analysis 
and not post place-and-rout (PAR) simulation analysis 
that considers full design routing. Moreover, only the 
AES encryption part is considered for the Post-synthesis 
timing analysis. 
 

VII. CONCLUSIONS 

It's critical to improve the performance of existing 

standard cryptographic algorithms to meet today's 

security standards. Despite the fact that the benefits of 

such standard algorithms have long been recognized, the 

contemporary network's resource, performance, and 

security needs demand lightweight and efficient designs 

since it includes constrained and high-performance 

platforms. An efficient architecture for FPGA-based 

AES algorithm is proposed which takes into account the 

IoT security. A hybrid technique is employed, and the 

proposed AES architecture is implemented on Xilinx 

Virtex-5, Virtex-6, and Virtex-7 FPGA devices. In 

comparison to existing research outcomes found in the 

open literature, lower number of LUT slices are utilized 

for implementation of the proposed AES architecture on 

Xilinx Virtex-5, Virtex-6, and Virtex-7 FPGA devices, 

while achieving improved throughput at the cost of 

smaller number of FPGA hard-cores. As a result, 78% 

reduction of the number of slices on Virtex-5 device and 

7.42% improvement of throughput on Virtex-7 device 

are achieved. In the future, Post-implementation Timing 

analysis will be performed considering full routing of 

the design. 
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TABLE II  
RESULTS FOR IMPLEMENTATION OF THE PROPOSED AES ARCHITECTURE ON VIRTEX-5 DEVICE 

 

Methods Device Slices BRAMs DSPs Freq. 
(MHz) 

Throughput 
(Gbps) 

[21] 
 

Virtex-5 3420 - - 199.18 25.50 

Virtex-5 3788 - - 232.30 29.73 

[22] Virtex-5 7385 - - 638.16 81.68 

[23] Virtex-5 2940 - - 704.70 90.40 

This work Virtex-5 637 8 32 708.60 90.70 

 
 

TABLE III  
RESULTS FOR IMPLEMENTATION OF THE PROPOSED AES ARCHITECTURE ON VIRTEX-6 DEVICE 

 

Methods Device Slices BRAMs DSPs Freq. 
(MHz) 

Throughput 
(Gbps) 

[21] Virtex-6 4095 - - 463.42 5.93 

[17] Virtex-6 423 - - 191.98 2.50 

[21] 
 

Virtex-6 5566 - - 237.45 3.03 

Virtex-6 4095 - - 463.42  59.31 

[22] Virtex-6 6361 - - 849.18 108.69 

[23] Virtex-6 2537 - - 740.70 94.81 

[17] 
 
 

Virtex-6 5759 - - 732.28 93.73 

Virtex-6 9531 - - 457.58 58.57 

Virtex-6 5759 - - 849.18 108.69 

[24] Virtex-6 1626 - - 166.66 0.24 

[6] Virtex-6 1551 - - 190.66 0.56 

This work Virtex-6 572 8 32 828.60       109.0 
 
 

TABLE IV 
RESULTS FOR IMPLEMENTATION OF THE PROPOSED AES ARCHITECTURE ON VIRTEX-7 DEVICE 

 
Methods Device Slices BRAMs DSPs Freq. 

(MHz) 
Throughput 

(Gbps) 

[21] Virtex-7 4089 - - 495.32 6.34 

[7] Virtex-7 126040 288 - - 31.29 

[25] Kintex-7 4493 - - 202.26 21.92 

[23] Virtex-7 2617 - -    813.0 104.06 

This work Virtex-7 572 8 32    878.0 112.40 
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