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Abstract: The microalga Nannochloropsis oculata is marine widely used in aquaculture systems as 

an essential source of protein, lipid, and polyunsaturated fatty acids. Day/night pH fluctuations driven 

by photosynthesis and respiration create an environment that exhibits changing pH ranges. The aim 

of this study was to find whether physical shocks could change the complete profile of nutrients 

(lipid, fatty acid, carbohydrate, chlorophylls, and proteins) in N. oculata. The algae were cultivated 

in 32 flasks of ten-liter for biomass production for 12 days using Guillard medium (f/2). The cells 

were reared at 0.5 molar salinity (29 ppt), under 3500 lux light intensity with a 12L:12D photoperiod 

and 21ºC temperature. After 12 days, when the cell density reached its stationary phase, they were 

centrifuged. The pellets were then re-suspended in fresh seawater thoroughly and transferred into 

thirty-two containers with 10-liter volumes, including eight treatments with four replicates. The algae 

in treatments 3, 4, and 8 were subjected to salinity (88 ppt), starvation, and pH (11) shocks, 

respectively and treatments 2, 5, 6, and 7 were subjected to salinity + pH + starvation, pH + starvation, 

salinity + pH and salinity + starvation shocks, respectively. The biochemical composition of 

N. oculata demonstrated that T3 at the end of the dark period, and T1 at the end of the light period, 

possessed significantly higher (51.51%), and lower (24.9%) lipid content, respectively. According to 

the results, EPA under pH shock, linoleic acid under pH + salinity + starvation shock, and DHA and 

omega-3 under pH + salinity shock at the end of the dark period revealed significant differences with 

the control group. The saturated fatty acids showed significantly higher value in the control group 

during the dark period. The monounsaturated fatty acids increased significantly under pH shock at 

the end of the light period on day 18. Based on the results, the best treatment to obtain more lipid 

production in N. oculata was using six-day salinity shock and harvesting algae at the end of the dark 

period, and for more EPA synthesis in N. oculata, pH shock for six days and harvesting the algae at 

the end of dark period is recommended. 

 
Introduction 

Some species of microalgae synthesize very long-

chain fatty acids (carbon chains 20+ in length), 

including eicosapentaenoic acid (EPA, C20:5n-3) 

and docosahexaenoic acid (DHA, C22:6n-3) 

(Bigogno et al., 2002; Guiheneuf et al., 2013). These 

omega-3 (ω-3) fatty acids are essential components 

of high-quality fish diets (Muhlroth et al., 2013). 

Fatty acids are the building blocks of lipids, but they 

are not distributed equally amongst different lipid 

classes. Algal polar lipids are located in structural 

and functional cell membranes, while neutral lipid 

triacylglycerols (TAGs) function as storage 
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molecules (Hu et al., 2008).  

The microalga Nannochloropsis sp. is a 

Eustigmatophyte widely used in marine aquaculture 

systems as an important source of vitamins, 

pigments, and PUFAs (Sukenik, 1991; Sukenik et 

al., 1993; Pal et al., 2011). This microalga has been 

widely studied due to its high PUFA content. As 

found in many other species of algae, nutrient 

depletion significantly increased FA accumulation in 

Nannochloropsis. Other studies have reported that 

Nannochloropsis salina reaches a total FA 

accumulation of 37.5% lipid/DW when arriving at 

the stationary phase and could grow well at 34 ppt 
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salinity (Bartley et al., 2013). Similarly, 

Nannochloropsis gadiata grows at low irradiance 

demonstrating accumulation of up to 50% lipid/DW 

after a nutrient deprivation phase (Bartley et al., 

2013). Doan and Obbard (2011, 2012) reported a 

total lipid production of 50 and 55% of DW in 

Nannochloropsis sp. using cell sorting and ethyl 

methanesulfonate, respectively. Nannochloropsis is 

a genus of robust, oleaginous microalgae that 

synthesizes EPA during balanced growth and is a 

promising candidate for commercial applications 

(Kilian et al., 2011; Radakovits et al., 2012; Li et al., 

2014; Sharma et al., 2015). 

Research demonstrated that subjecting the culture 

to a temporary change of environmental factors such 

as pH can decrease unwanted organisms and 

improve final culture densities. Day/night pH 

fluctuations driven by photosynthesis and respiration 

create an environment that exhibits changing pH 

ranges (Richmond and Becker, 1986). Further, pH 

may affect the lipid composition (Griffiths et al., 

2009, Rodolfi et al., 2009, Moheimani, 2013). 

Nitrogen and phosphorus starvation shifts the lipid 

metabolism from membrane lipid synthesis to 

neutral lipid storage. This, in turn, increases the total 

lipid content of green algae (Hu, 2004). Higher 

salinity increases the algae's lipid content (Fabregas 

et al., 1984; Zhila et al., 2011). Besides the pigment 

contents, other algal cell components such as 

carbohydrates and proteins can also be influenced by 

the light regime (Renaud et al., 1991). The aim of 

this study was to find out how different physical 

shocks, alone or in combination, can influence the 

synthesis of different nutrients such as lipids, fatty 

acids, carbohydrates, chlorophylls, and proteins by 

Nannochloropsis oculata. 

 

Materials and Methods 

Nannochloropsis oculata was obtained from 

Artemia and Aquaculture Research Institute (AARI), 

Urmia University, Iran. The algae were cultivated in 

ten-liter conical flasks for biomass production for 12 

days using Guillard medium (f/2)1 (Guillard, 1973). 

The cells were reared at 0.5 molar salinity (29 ppt), 

3500 lux light intensity with a 12L: 12D photoperiod 

and 21ºC temperature. After 12 days when the cell 

density reached its stationary phase, they were 

centrifuged (3500 rpm, 5 min). The pellets were 

collected and then re-suspended thoroughly, equally 

divided (0.2713 g.L-1 DW), and transferred into 

thirty-two 10-liter containers, including eight 

treatments and four replicates. Then the 

Nannochloropsis algae were exposed to different 

shocks for six days. Treatments 3, 4, and 8 were 

subjected to salinity of 88 ppt, nutrient starvation, 

and pH (11) shocks, respectively and treatments 2, 5, 

6, and 7 were subjected to salinity + pH + starvation, 

pH + starvation, salinity + pH, and salinity + 

starvation shocks, respectively. However, the control 

group (T1) was cultured under normal conditions. 

Each container was aerated continuously at a rate of 

758 mL.min-1. The samples were collected every 

three days and at the end of light and dark periods.  

Chlorophyll a, b and total carotene analysis: Fifty 

mL algae were frozen under -20°C and then defrost 

(for breaking down of cell wall), filtered with S&X 

filter (1 µm), and weighed. The pigments were 

extracted with 96% methanol (50 ml.g-1 algae). The 

samples were homogenized for one minute at 1000 

rpm. The homogeneous mixture was filtered and 

centrifuged for 10 min at 2500 rpm. Supernatants 

were separated and the absorbance at 666, 653 and 

470 nm was recorded using the microplate reader 

synergy HT. The following formula was used to 

calculate chlorophyll and total carotene: 

Ca= 15.65A666 – 7.340A653 

Cb= 27.05A653 – 11.21A666 

Cc= 1000A470 – 2.860Ca – 129.2Cb /245 

Where Ca = chlorophyll a, Cb= chlorophyll b, and 

Cc= total carotene in terms of micrograms per gram 

of wet weight (Dereet al., 1998). 

Lipid and ash contents analysis: Laboratory 

methods were used to measure lipid content by ether 

extraction (AOAC, 2005). For this purpose, a certain 

amount of samples was weighted and held for 7 

hours on soxhlet within diethyl ether (98%). To 

calculate the ash content samples were weighed and 

placed in an electric furnace for 6 hours at 550°C 
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 (AOAC, 2005). 

Fatty acid profiles: The fatty acid composition of 

Nannochloropsis algae was determined based on 

Miquel and Browse (1992). In brief, 200 mg of algae 

was heated to 80°C in 1 ml of a mixed solution of 

H2SO4 2.5% and methanol 98% (1:40, v/v) for one 

hour in a Teflon lined screw cap glass tube. The 

mixture was cooled at room temperature and then 

500 µl of hexane and 1.5 mL of NaCl 0.9% (w/v) 

were mixed and added to the samples. The samples 

were centrifuged for 10 min at 4000 rpm and 

supernatant (1 µl) was injected to Gas 

chromatograph (GC) to determine the fatty acid 

profiles (Miquel and Browse,1992).  

Protein content: The protein content was measured 

according to Slocombe et al. (2013). Five mg of 

dried algae was mixed with 0.2 ml trichloroacetic 

acid (TCA) 24% (w/v). The mixture was incubated 

for 15 min at 95°C and cooled at room temperature. 

The homogenate was centrifuged at 15000 g for 20 

min at 4°C and the supernatant was discarded. The 

pellets were re-suspended in 0.5 mL Lowry reagent 

and were incubated for 3 hours at 55°C. The samples 

were cooled at room temperature and centrifuged at 

15000 g for 20 min. The supernatant was placed for 

30 min in Lowry reagent and absorption was read at 

600 nm (Slocombe et al., 2013). The standard curve 

was prepared using bovine serum albumin (BSA) as 

standard. 

Total Carbohydrate content: The carbohydrate 

content of the samples was measured by adding 5 ml 

of 2.5 N HCl to 100 mg of algae. The samples were 

hydrolyzed to simple sugars by keeping them in a 

boiling water bath for three hours and then cooled at 

room temperature. The sample was neutralized by 

solid Na2CO3 until the effervescence ceases and then 

the volume was made to 100 mL with distilled water 

and centrifuged at 5000 rpm for 5 minutes. To 0.5 ml 

of supernatant, 0.5 mL of distilled water and 4 mL of 

0.2% anthrone reagent were added and the mixture 

was heated for 8 min in boiling water bath. The 

sample cooled rapidly and the absorbance was read 

at 630 nm. The glucose standard solution was 

prepared at a concentration of 100 µ.mL-1 (Hedge 

and Hofreiter, 1962). 

Statistical analysis: The normality of all data was 

checked by the Kolmogorov-Smirnov test. Mean 

(±SD) and factorial multivariate were used. One-

Way ANOVA, ANCOVA (Bonferroni test) and 

Post-hoc Tukey analysis were used at 5% (P<0.05). 

Calculated data and drawing charts were done by 

SPSS (version 22) and Excel (2013 version), 

respectively. 

 

Results 

Biochemical compositions and some fatty acid 

profiles of Nannochloropsis cultivated in f/2 

medium on day 12 under laboratory conditions are 

shown in Table 1. The results (Fig. 1) showed that 

the protein content was affected by salinity and pH 

shock (T6) at the end of the dark period showing the 

lowest value, while the highest protein content was 

found in T4 at the end of the dark period on day 18 

(P<0.05). Lipid content was significantly influenced 

by the dark period and significantly higher values 

were observed in T7 and T3 (P<0.05) and the lowest 

value was achieved in T1 (4.68%) at the end of the 

dark period on day 18 (P<0.05). The result of ash 

reveals a significantly higher value at the end of the 

light period in starvation + salinity shock (T7) on day 

15 (P<0.05). Carbohydrate content was influenced 

significantly by starvation + salinity (T7) and 

salinity (T3) shocks at the end of the dark period and 

exhibited the highest and lowest values, respectively 

(P<0.05). 

The protein content was significantly decreased at 

the end of the light and dark period in T6 on day 18 

and increased in T4 at the end of the dark period on 

day 18 (P<0.05). Moreover, at the end of the dark 

period on day 18, T3 showed a significantly higher 

lipid content (51.51%) (P<0.05). Carbohydrate 

content in T7 at the end of the dark period on day 18 

showed the highest values (P<0.05). The chlorophyll 

a and b on day 18 and at the end of the dark 

photoperiod under pH + starvation + salinity shock 

revealed highly significant (P<0.05).  

The pH + starvation + salinity shock at the end of 

the dark period on day 18 increased total carotene 
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level significantly (P<0.05) (Fig. 2). The results on 

day 18 showed pH + starvation + salinity shock at 

the end of dark period made chlorophyll a and b and 

total carotene to increased significantly (P<0.05) 

(Fig. 2). Based on the results, EPA in pH, DHA, and 

omega-3 in pH + salinity, and MUFA under 

starvation + salinity treatments at the end of the dark 

period on day 15 demonstrated significant 

Day 12 Protein (%) Lipid (%) 
Carbohydrate 

(%) 
Ash (%) 

Chlorophyll a 

(µg.g-1 fw) 

Chlorophyll b 

(µg.g-1 fw) 

Total 

carotenoid 

(µg.g-1 fw) 

End of Light 33.24±0.25 18.62±0.15 35.65±0.24 12.01±0.20 35.62±0.14 8.15±0.31 126.24±1.01 

End of Dark 30.12±0.08 19.31±1.11 37.99±1.01 12.08±0.35 34.21±0.14 7.16±0.44 124.21±0.14 

Day 

12 
ARA DHA EPA 

Linoleic 

acid 

Linolenic 

acid 
SFA MUFA PUFA Sum of ω3 

Sum of 

ω6 

End of 

Light 
ND ND 10.35±0.62 8.55±0.65 3.68±0.54 41.35±0.35 37.15±0.31 21.35±1.21 14.03±1.24 8.55±0.65 

End of 

Dark 
ND ND 10.95±0.35 8.84±0.24 3.71±0.84 41.95±1.21 37.45±1.32 21.42±1.67 14.66±0.71 8.84±0.24 

 

Table 1. Bio-chemical and fatty acid compositions of Nannochloropsis oculata cultivated in f/2 medium on day 12 under standard conditions. 
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differences compared to other treatments (P<0.05). 

Furthermore, Linoleic acid (or omega-6) in T2 (pH 

+ salinity + starvation) at the end of the dark period 

showed a significantly higher value compared to 

other treatments (P<0.05). At the end of the dark 

period, in T1, SFAs were increased significantly 

(P<0.05). Moreover, the PUFAs values under T8 and 

at the end of the dark period on day 15 increased 

significantly (P<0.05). Linolenic acid in pH + 

salinity at the end of the light period on day 15 

showed a significant difference between all groups 

(P<0.05) (Table 2). 

According to the result obtained omega-6 and 

Linoleic acid in T4 (starvation), EPA in T4, and 

SFAs in T1 at the end of the dark period revealed 

significantly higher values than other treatments 

(P<0.05). The DHA in T2, PUFAs in T7, and 

linolenic acid in T3 at the end of the light period on 

day 18 showed significantly higher amounts 

(P<0.05). The MUFAs in T8 at the end of the light 

period exhibited significantly higher than other 

treatments (P<0.05). Moreover, the total omega-3 at 

the end of the dark period on day 18, in T8 was 

significantly higher than other treatments (P<0.05) 

(Table 3). 

 

Discussion 

Microalgae can accumulate considerable quantities 

of carbohydrates, proteins, and/or lipids (Ho et al., 

2012, 2013). Changes in microalgae biochemical 

composition are likely to occur as a result of 

variations in pH (Khalil et al., 2010), temperature 

(Roleda et al., 2013), light, salinity (Ruangsomboon 

et al., 2013), and metal contents (Sun et al., 2014).  
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 Regarding the effects of starvation, studies 

demonstrated that N and/or P limitation in growth 

media causes metabolism alterations that induce 

lipid accumulation (Liang et al., 2013; Li et al., 

2014). Despite several studies made in an attempt to 

understand the potential effects of N and/or P 

limitations on microalgae biochemical composition 

changes, the phenomena seem to be species-

dependent (Shifrin and Chisholm, 1981). 

Nitrogen and phosphorus starvation shifts the 

lipid metabolism from membrane lipid synthesis to 

neutral lipid storage. This, in turn, increases the total 

lipid content of green algae (Hu, 2004). Major 

effects of nitrogen deficiency in algal culture include 

the enhanced biosynthesis and accumulation of 

lipids (Thompson, 1996, Shifrin and Chisholm, 

1981; Converti et al., 2009; Demirbas, 2010) and 

triglycerides (Takagi et al., 1999; Stephenson et al., 

2010) with a concomitant reduction in protein 

content (Fogg, 1956; Morris et al., 1974; Kilham et 

al., 1997; Heraud et al., 2005), resulting in a higher 

lipid/protein ratio (Converti et al., 2009). In this 

study, a high alkaline pH + starvation + high salinity 

increased carbohydrate and decreased lipid and 

protein contents of algae, however high salinity in 

combination with any other shock caused higher 

lipid production, especially on day 18. This could be 

explained that under salinity conditions the cell 

would release nitrogen from the photosynthetic 

pigments and utilize the same for the metabolic 

processes. Higher salinity increases the algae lipid 

content (Fabregas et al., 1984; Zhila et al., 2011). 

Dunaliella, a marine alga, exhibited an increase in 

saturated and monounsaturated fatty acids with an 

increase in NaCl concentration from 0.4 to 4 M (Xu 

and Beardall, 1997). In another study with 

Dunaliella tertiolecta, an increase in intracellular 

lipids (60 to 67%) and triglyceride concentration (40 

to 56%) with an increase in NaCl concentration from 

0.5 (freshwater concentration) to 1.0 M was 

observed (Takagi and Karseno, 2006). 

In this work, when the N. oculate biomass was 

cultured under normal conditions and transferred to 

high salinity, they showed different levels of lipid 

accumulation in the cell. Among all conditions and 

sampling time, the most favorable treatment to 

achieve high lipid content per cell was at the end of 

the dark period on day 18. Nannochloropsis oculata, 

showed a profound increase in lipid content under 

salinity shock at the end of the dark period on day 18 

(51.51%). The lipid accumulation is enhanced by a 

combination of salinity shock. This inference is 

achieved on the bases of the results obtained from 

treatment 3 (end of light, day 15, and end of dark, 

day 18), where a significant increase in the cellular 

lipid content of N. oculate was observed under 

salinity shock individually. In a study conducted by 

Ben-Amotz, the lipid content of Botryococcus 

braunii cultured in 0.50 M NaCl was higher 

compared to media without the addition of NaCl, but 

protein, carbohydrates, and pigments levels were 

lower (Ben-Amotz et al., 1985). Another study with 

the same alga reported a decrease in protein content 

with unchanged carbohydrate and lipid content with 

an increase in salinity (Vazquez-Duhalt et al., 1991). 

Research on Tetraselmis suecica also reported a 

reduction in protein content per cell of up to 20% 

with an increase in salinity (Fabregas et al., 1984), 

but protein in all shocks decreased to less than 25%. 

Variations in salinity also influence several 

biochemical and physiological mechanisms such as 

lipid production and growth which are essential in 

marine organisms (Fava and Martnini, 1988). In the 

current study, the treatments of 2 (salinity + pH + 

starvation), 7 (salinity + starvation), and 8 (pH) on 

day 15 at the end of the light period showed the 

highest lipid level, while the other treatments 

revealed different action, that it would be due to 

different physiological mechanisms in a specific 

algal. Lipids in general (as a percentage of 

particulate organic matter or as absolute amounts) 

and particularly fatty acids have been targeted as 

important variables determining the food quality of 

algae (Ahlgren et al., 1990; Coutteau and Sorgeloos, 

1997; Weers and Gulati, 1997a). 

The characteristic types of fatty acids produced 

by diatoms, green algae and/or cryptomonads have 

been studied (Piorreck et al., 1984; Cranwell et al., 
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1989; Ahlgren et al., 1990). The general pattern 

observed is that green algae rarely produce fatty 

acids in excess of eighteen carbons, while diatoms 

and cryptophytes make many long-chained (18C) 

polyunsaturated fatty acids (PUFAs). Ahlgren et al. 

(1990) showed that the long-chained PUFAs 

produced by cryptophytes enhance reproduction in 

zooplankton, including Daphnia. Many studies of 

algal biochemistry have been undertaken in the past 

on cells that were either growing at the maximal rate 

(µmax) or at the stationary phase. Growth rates of 

algae measured in lakes are frequently found to be at 

some intermediate growth rate (Lehman and 

Sandgren, 1985; Sommer, 1989), rather than at 

stationary phase or µmax. Algae grown in 

continuous or semi-continuous culture have reduced 

variation in physiological conditions, can be easily 

replicated, and are more representative of the in-situ 

condition. Immediate effects of phosphorus 

limitation include a reduction in the synthesis and 

regeneration of substrates in the Calvin-Benson 

cycle and a consequential reduction in the rate of 

light utilization required for carbon fixation (Reitan 

Barsanti and Gualtieri, 2005). Phosphate limitation 

also reduces the synthesis of n-3 PUFA (Reitan 

Barsanti and Gualtieri, 2005). Salinity and pH (T6) 

shocks together on day 15 and combination of pH 

and salinity and starvation (T2) shocks on day 18 

induced DHA production in N. oculata at the end of 

dark period, However, pH shock alone did influence 

the cell EPA level to more than 47% of FAME on 

day 15 and 63% of FAME on day 18 at the end of 

the dark period. 

 

Conclusion 

In conclusion based on the results for high lipid 

production (more than 51% of whole-body weight), 

it is recommended to keep the N. oculate in salinity 

shock for 6 days (day 18) and harvest at the end of 

dark period. Our data indicate that high DHA (7.63% 

of FAME) is obtained at the end of the dark period 

on day 18 and EPA level (up to 63% of FAME) is 

improved under pH shock at the end of light period 

on day 18 (incubate under shock condition for 6 

days). While to obtain high level of total carotene 

(more than 1825 µg/g FW), it is recommended to 

apply pH + starvation + salinity shock and harvest 

the algae at the end of the dark period on day 18 (6 

days shock). Finally, in this research, the highest 

value of carbohydrates was produced under pH + 

salinity + starvation shock at the end of the dark 

period on day 18 (6 days shock). 
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