## APPLICATION OF COMBINED ANALYTIC HIERARCHY PROCESS (AHP) AND SWOT FOR INTEGRATED WATERSHED MANAGEMENT

Fadim Yavuz Necmettin Erbakan University Konya, Turkey fadimyavuz@konya.edu.tr

Tüzin Baycan Istanbul Technical University Istanbul, Turkey tbaycan@itu.edu.tr

## ABSTRACT

The most critical issue in watershed management is the active involvement of a range of stakeholder groups in the process. This paper offers an integrated approach to contribute to the integrated watershed management (IWM) process by using the Analytic Hierarchy Process (AHP) and SWOT (Strengths, Weaknesses, Opportunities, and Threats) methods. The paper looks at Beysehir Lake Basin (BLB), the largest freshwater lake and drinking water reservoir in Turkey, and focuses on the most critical stage of IWM. This critical stage determines the optimal and agreed upon watershed management strategy from all of the stakeholder's perspective. This strategy is referred to in this study as the 'Collaborative Watershed Management (CWM) Strategy'. The combined AHP and SWOT methodology is applied to the real-life problems of: i) how to identify differences among the knowledge, experiences, values and interests of three different stakeholder groups including local communities, local authorities and experts regarding the agreed upon watershed management strategy, and ii) how to determine the CWM strategy that meets the expectations of all stakeholders in BLB. The methodology is carried out via stages including describing SWOT factors, comparing these SWOT factors pair by pair to determine the relative weights of each, developing strategies based on those factors, evaluating each strategy alternative with respect to each SWOT factor, and performing final calculations. The study illustrates the feasibility of combining AHP and SWOT to incorporate stakeholder preferences in the decision making process of IWM.

**Keywords:** Integrated watershed management, stakeholder-based decision making, analytic hierarchy process (AHP), AHP-SWOT, Beyşehir Lake Basin

http://dx.doi.org/10.13033/ijahp.v6i1.194

## 1. Introduction

Integrated watershed management (IWM) has emerged as a new model for watershed planning following the trend towards more holistic and participatory approaches to natural resource management (DeSteiguer et al., 2003). IWM is the process of managing human activities and natural resources in an area defined by watershed boundaries, and aims to protect and manage natural resources for present and future generations. Considering the integrity of the environment, economy and communities and using adaptive environmental management approaches, IWM offers an integrated interdisciplinary approach.

IWM recognizes the importance of the human dimension. Instead of focusing exclusively on biophysical processes and human impacts, IWM includes stakeholder participation, adaptive management, and experimentation that are compatible with critical ecosystem functions and services.

Stakeholders are the people that directly and/or indirectly take part in watershed planning and management activities in the area and are affected by the actions in the basin. Key stakeholders of a watershed may include people who can influence land management decisions, such as individual landowners, farmers, local government officials, representatives from environmental and community groups etc. (Bonnell and Baird, 2010). IWM is a process-oriented approach that provides a chance for stakeholders to balance diverse goals, and considers how their cumulative actions may affect long-term sustainability of watershed resources (Qianxiang et al., 2005). IWM as a decision-making process makes it possible to address multiple issues and objectives, and enables planning in a very complex and uncertain environment. Decision making in IWM typically involves several stakeholders with conflicting views. Effective participation and conflict resolution are the most important challenges of the IWM approach (Sharma et al., 2005). The related literature emphasizes the importance of consensual decision making in collaboration. Margerum (1999) states that consensus is important not only for reaching an acceptable decision, but also for building long-term trust and support for outcomes. Beierle (2002) suggests that it is the more intensive stakeholder processes that are more likely to result in higher-quality decisions. In order to succeed, IWM must be participatory, integrating all the relevant scientific knowledge/data and user-supplied information regarding the social, economic and environmental processes affecting natural resources at the watershed level.

This paper offers an integrated approach to contribute to the IWM process by using the Analytic Hierarchy Process (AHP) and SWOT (Strengths, Weaknesses, Opportunities, and Threats) methods. The paper addresses Beyşehir Lake Basin (BLB), the largest freshwater lake and drinking water reservoir in Turkey, and focuses on the most critical stage of IWM, where the optimal and agreed upon watershed management strategy is determined by all of the stakeholders. This is referred to in this study as 'Collaborative Watershed Management (CWM) Strategy'. Identifying the CWM strategy is an important stage as it represents the culmination of the IWM process and sets the course for the future of the watershed. Within this context, the differences among the knowledge, experiences, values and interests of three different stakeholder groups (local communities, local authorities and experts) with regard to the optimal and agreed upon watershed management strategy are assessed with the goal of protecting and restoring aquatic ecosystems, human health and other natural resources in BLB. The paper consists of five sections. Following a brief review of the stakeholder participation in IWM approach given in the Introduction, Section 2 describes the methodology of the combined use of AHP-SWOT. Section 3 focuses on the empirical study and describes the case study area and the survey methodology. In this section, the participatory SWOT analysis for BLB and the strategy formulation on the basis of SWOT analysis are also presented. Next, Section 4 explains the AHP-SWOT application steps and discusses the empirical results. The last section evaluates the application of combined AHP and SWOT as a tool for stakeholder-based decision making in IWM and discusses future research directions.

## **2.** Methodology: Combined use of AHP and SWOT as a tool for stakeholderbased decision making in IWM

The methodological framework includes the combined use of AHP and SWOT in developing CWM strategies, tallying SWOT factors, and prioritizing them with the pairwise comparison technique available with AHP.

## 2.1 AHP

The multitude of watershed planning and management objectives inevitably leads to conflicts among watershed stakeholders or interest groups. It is often impossible to aggregate the objectives into a single criterion or performance measure in the alternative ranking and selection process. Thus, multi-criteria (or multi-objective) decision support methods are widely applied in water policy planning and evaluation, strategic watershed planning and management, and

infrastructure development. Multiple criteria analysis techniques have been used by water resource practitioners to select or to design alternatives in areas such as river basin planning and development, water resources development, land use management, groundwater/surface water allocation, watershed restoration and water resources quality (Mirchi et al., 2010).

Since AHP is fairly well known for the audience of this journal we will only briefly introduce the methodology. AHP is a mathematical method for analysing complex decisions with multiple criteria. It has been translated into the level of analysis by Thomas Saaty. The technique has become a widely known and used for solving discrete multiple criteria problems. It has been successfully applied to many complex planning, resource allocation and priority setting problems in business, energy, health, marketing, natural resources and transportation (Saaty, 2001).

AHP is applied to the decision problem after it is structured hierarchically at different levels, each level consisting of a finite number of elements. Fundamentally, AHP works by developing priorities for alternatives and the criteria are used to judge the alternatives. The estimation of the priorities from pairwise comparison matrices is the major component of the AHP. The importance or preferences of the decision elements are compared in a pairwise manner with regard to the element preceding them in the hierarchy. The priority vector can be derived from these pairwise comparison matrices using different techniques. The most commonly used technique is the Eigenvector Method (Mikhailov, 2000).

First of all, priorities are derived for the criteria in terms of their importance to achieve the goal, and then priorities are derived for the performance of alternatives on each criterion. These priorities are derived based on pairwise assessments using the judgement or ratios of measurements from a scale if one exists. Finally, a weighting and adding process is used to obtain overall priorities for alternatives as to how they contribute to the goal. By additive aggregation AHP finally computes the priorities of the elements at the bottom level of the hierarchy, usually known as the alternatives. Their priorities are interpreted with respect to the overall goal at the top of the hierarchy and elements at upper levels such as criteria, sub-criteria etc. are used to mediate comparison process (Srdjevic, 2005). With the AHP, a multidimensional scaling problem is thus transformed to a uni-dimensional scaling problem.

Saaty (2001) suggests AHP as a formal method for rational and explicit decision making. It is a useful tool to analyse decisions in complex social and political problems. AHP is also useful when many interests are involved and a number of people participate in the judgement process. AHP is a straightforward and transparent method that is also able to consider subjective and judgemental information. The technique provides the objective mathematics to process the inescapably subjective and personal preferences of an individual or a group in making a decision. AHP can deal with qualitative as well as quantitative attributes.

## 2.2 SWOT

SWOT analysis is a commonly used strategic planning method to evaluate the Strengths (S), Weaknesses (W), Opportunities (O), and Threats (T) involved in a project or business venture. Generally SWOT is a list of statements or factors with descriptions of the present and future trends of both the internal and external environment; the expressions of individual factors are general and brief which describe subjective views. However, SWOT is a convenient and promising way of conducting a situational assessment (Wickramasinghe and Takano, 2009).

#### 2.3 Combined use of AHP-SWOT

The use of AHP in SWOT analysis supports the strategic planning process quantitatively by providing analytical priorities to the SWOT factors. The combined use of the AHP and SWOT analysis has been widely used to support strategic decision-making processes such as institutional situation analysis and strategy selection (Arslan, 2010; Gürbüz, 2010), economical structure analysis (Çelik and Murat, 2008), stakeholder analysis in environmental management

(Dwivedi and Alavalapati, 2009), strategy selection in defense sector (Kandakoğlu et al., 2007), developing and selecting strategy in forest management (Kurttila et al., 2000; Leskinen et al., 2006; Masozera et al., 2006; Shrestha et al., 2004), developing collaborative strategy in the health sector (Osuna and Aranda, 2007), selecting strategy in natural resource management (Pesonen et al., 2001), project management (Stewart et al., 2002), strategy development in industry sector (Shinno et al., 2006; Taşkın and Güneri, 2005), developing and selecting strategy in tourism planning (Kajanus et al., 2004; Wickramasinghe, 2008), collaborative project evaluation (Yılmaz, 2007), selection of the optimal reconstruction solution of a water intake structure within a regional hydro-system (Srdjevic et al., 2012), and decision making in information technology (Hacımenni, 1998).The technique has been also referred as A'WOT in some studies (Gürbüz, 2010; Kajanus et al., 2004; Leskinen et al., 2006; Pesonen et al., 2001; Taşkın and Güneri, 2005; Yılmaz, 2007).

The first AHP-SWOT applications (Kurttila et al., 2000, Shrestha et al., 2004) have only focused on weighting the SWOT factors. The method has been developed by involving the evaluating processes of the strategy alternatives according to each SWOT factor and general priority calculations for the strategy alternatives. Making pairwise comparisons forces the decision-makers to think over the weights of the SWOT factors and to analyze the situation more precisely and in more depth than the standard SWOT does. By integrating AHP with SWOT, not only the mutual weighting of SWOT factors, but also the evaluation of alternative strategic decisions can be integrated with ordinary SWOT analyses. In this way, the most crucial weakness of SWOT can be avoided (Kangas et al., 2001; Kangas et al., 2003; Saaty and Vargas, 2001, cited in Dwivedi and Alavalapati, 2009; Yılmaz, 2007). The AHP-SWOT method increases and improves the information basis of the strategic planning processes, and not only provides a robust decision support, but also an effective framework for learning in strategic decision support. AHP-SWOT can be used as a communication and educational tool in the decision making processes if more than one decision maker exists. In addition, separate AHP-SWOT applications for individuals or interest groups can provide a good basis for examining the vision and expectation differences of different stakeholders regarding a particular decisionmaking process (Kangas et al., 2001).

The AHP-SWOT combination is carried out in five stages (Figure 1) (Kangas et al., 2001 and Yılmaz, 2007).



Figure 1. Application stages of AHP-SWOT

**Stage 1**–SWOT analysis: The SWOT groups (Strengths, Weaknesses, Opportunities and Threats) are created. SWOT factors of each SWOT group that will be included in the analysis are ranked as neutral as possible.

**Stage 2**–Pairwise comparisons between SWOT factors are performed using Saaty's (2008) nine point scale (Table 1) separately within each SWOT group. The comparisons are used as input to

the scope, and then the relative priorities of SWOT factors are calculated using the eigenvector approach of AHP technique.

| Intensity of<br>Importance | Definition                | Explanation                                                                                      |
|----------------------------|---------------------------|--------------------------------------------------------------------------------------------------|
| 1                          | Equal Importance          | Two activities contribute equally to the objective                                               |
| 3                          | Moderate<br>Importance    | Experience and judgment slightly favour one activity over another                                |
| 5                          | Strong Importance         | Experience and judgment strongly favour one activity over another                                |
| 7                          | Very Strong<br>Importance | An activity is favoured very strongly over another; its dominance demonstrated in practice       |
| 9                          | Extreme<br>Importance     | The evidence favouring one activity over another is of the highest possible order of affirmation |
| 2, 4, 6, 8                 | Intermediate<br>Values    | Intermediate values                                                                              |

## Table 1Scale of two-paired comparison at AHP (Saaty, 2008)

**Stage 3–** The next stage is the calculation of a list of the relative weights, importance, or value of the S, W, O and T factor groups (technically, this list is called an eigenvector). In this process, if S is absolutely more important than W and is rated at 9, then W must be absolutely less important than S and is valued at 1/9. These pairwise comparisons are carried out for all SWOT factors to be considered, and the matrix is completed. Relative priorities of S, W, O and T factors are based on eigenvector values of the pairwise comparisons.

**Stage 4**–In this stage the strategy alternatives for each SWOT factor are evaluated. Here, the relative priority value of each SWOT group is separately multiplied by the relative priority of each of the SWOT factors in this group. Thus, the overall priority value of each SWOT factor in the related SWOT group is derived. This process is repeated for each of the SWOT groups. Finally, the overall priority values of all the SWOT factors (of which total value is equal to 1) are obtained.

At the end of each AHP calculation stage there is a need to calculate a Consistency Ratio (CR) to measure how consistent the judgments have been relative to large samples of purely random judgments. Saaty has proved that the consistent reciprocal matrix, the largest Eigen value is equal to the size of the comparison matrix, or  $\lambda max-n$ . The measure of consistency, called the Consistency Index (CI), is a deviation or degree of consistency using the following formula:

$$CI = (\lambda max - n) / (n - 1) \tag{1}$$

Saaty proposes that CI be used by comparing it with the appropriate one. The appropriate CI is called the Random Consistency Index (RI) (Table 2).

Table 2Random consistency index (Teknomo, 2006)

| n  | 1 | 2 | 3    | 4   | 5    | 6    | 7    | 8    | 9    | 10   |
|----|---|---|------|-----|------|------|------|------|------|------|
| RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |

Then, he proposes what is called CR, which is a comparison between CI and RI: CR = CI / RI

International Journal of the Analytic Hierarchy Process ISSN 1936-6744 (2)

If the value of CR is smaller or equal to 0.1, the inconsistency is acceptable. If the CR is greater than 0.1, the judgments are untrustworthy because they are too close to randomness. The subjective judgment is valueless or must be repeated. Saaty suggests that if that ratio exceeds 0.1 the set of judgments may be too inconsistent to be reliable. A CR of 0 means that the judgments are perfectly consistent.

**Stage 5**–This stage includes general priority calculations for the strategy alternatives. AHP uses a principle of hierarchic composition to derive composite priorities of alternatives with respect to multiple criteria from their priorities with respect to each criterion. It consists of multiplying each priority of an alternative by the priority of its corresponding criterion and adding over all the criteria to obtain the overall priority of that alternative (Saaty, 2003).

In this study, weights of strategy alternatives are calculated using the following formula adapted from Osuna and Aranda (2007):

**v**<sub>1</sub>: *The global (relative) value of the Strategy j* (
$$j = 1, 2, ..., n$$
)

$$\mathbf{V}_{j} = \mathbf{W}_{S} \sum_{i=1}^{i-ms} s_{i} \, \mathbf{U}_{S_{i,j}} + \mathbf{W}_{W} \sum_{i=1}^{i-mw} \mathbf{W}_{W_{i}} \, \mathbf{U}_{W_{i,j}} + \mathbf{W}_{0} \sum_{i=1}^{i-mo} \mathbf{W}_{0i} \, \mathbf{U}_{oi,j} + \mathbf{W}_{T} \sum_{i=1}^{i-mt} \mathbf{W}_{Ti} \, \mathbf{U}_{Ti,j}$$
(3)

Normalized value of the Strategy Weights:

$$N_j = \frac{V_j}{\sum_{j=1}^n V_j} \tag{4}$$

Where  $N_{i}$ : Normalized weight of the  $j^{tn}$ strategy, **m**: Number of SWOT factors, **n**: Number of strategies.

# **3.** Empirical study: stakeholder-based decision making in BLB's management

This study aims to provide a better understanding of i) the critical problems of the BLB, ii) the most important advantages of the basin in terms of 'Strengths' and 'Opportunities', iii) the problems regarding BLB's management, iv) the most important disadvantages of the basin in terms of 'Weaknesses' and 'Threats', v) the possible strategies that would ensure major positive changes towards the basin's sustainability, vi) knowledge, perceptions and behaviours of the stakeholders (individual and institutional level), and vii) the optimal adaptive watershed management strategy that would be sensitive to the views of all stakeholders in the basin within the context of the field work in BLB. Household, local government and expert questionnaires are performed to achieve these purposes.

#### 3.1 The case study area: Beyşehir Lake Basin (BLB)

Beyşehir Lake, located in the southwest of Konya Closed Basin, is the largest freshwater lake and drinking water reservoir in Turkey. The basin, belonging to the Konya and Isparta province borders (Figure 2), is significant both for humans as a source of fresh water, and the environment, due to its wetland ecosystem (Babaoğlu, 2007). The lake has international importance according to the Ramsar Convention criteria. It also holds the statuses of Important Bird Area (IBA) and Important Plant Area (IPA). Various zones of the lake and its basin are protected under the 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup> Degree Natural Site statuses, and the area has several declared National Parks namely, Beyşehir Lake and Kızıldağ. Also, archaeological sites exist in the basin, and Beyşehir Lake has a drinking and potable water conservation area character.

IJAHP Article: Yavuz, Baycan/Application of combined Analytic Hierarchy Process (AHP) and SWOT for integrated watershed management



Figure 2. Location of BLB in Turkey

In recent years, BLB has suffered from some environmental and socio-economic problems. Inappropriate water policy and non-point source pollution in the lake which have led to variations in water levels have become striking environmental issues at the basin.

#### **3.2.** Participatory SWOT Analysis

The ultimate success of a watershed management largely depends on the accuracy of an effective situational assessment. To assess the BLB substantially, first a participatory SWOT analysis was conducted through expert interviews including a civil engineer, forest engineer, urban planner, hydrologist, geologist and tourism experts. The local authority interviews included the mayor, village headman and an employee, and household interviews were also conducted. Next, the judgments of experts, local authorities and local communities regarding SWOT factors were aggregated. This aggregation helped cope with the difficulty resulting from the original long list of SWOT factors in AHP technique. The experts' SWOT judgments that were close to each other were combined thematically to reduce the number of factors, and in this way BLB's current status was summarized on the basis of a comprehensive and detailed SWOT analysis. Consequently, six Strengths, seven Weaknesses, six Opportunities and eight Threats factors were obtained. The SWOT analysis performed for BLB is presented in Table 3.

Table 3 Participatory SWOT analysis for BLB

| Weaknesses [W]                                                                                                                          | Strengths [S]                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| [W1] Inequalities in water use                                                                                                          | [S1] Geographical position and accessibility                             |
| [W2] Lack of importance attached to tourism as an                                                                                       | [S2] Water supply                                                        |
| instrument in the development of the basin                                                                                              | [S3] The environmental importance of the Beyşehir Lake                   |
| [W3] Lack or inadequacy of infrastructure services                                                                                      | [S4] Supporting means of subsistence such as agriculture,                |
| [W4] Scarcity of employment opportunities                                                                                               | animal husbandry, fishing                                                |
| [W5] Problems in the institutional structure and legal                                                                                  | [S5] Historical importance                                               |
| system related to problem solving and management in the                                                                                 | [ <b>S6</b> ] Suitable environment for nature friendly economic          |
| basin                                                                                                                                   | activities                                                               |
| <b>[W6]</b> Inadequacy of financial resources for activities to                                                                         |                                                                          |
| protect the lake                                                                                                                        |                                                                          |
| <b>[W7]</b> Limitations to construction facilities in the basin with                                                                    |                                                                          |
| National Park statuses, inability to efficiently benefit from                                                                           |                                                                          |
| the lakeshore                                                                                                                           |                                                                          |
| Opportunities [O]                                                                                                                       | Threats [T]                                                              |
| [O1] Positional advantage                                                                                                               | [T1] Migration of the population to the outside of the basin             |
| [O2] Construction of New Konya- Antalya (Gembos)                                                                                        | [T2] Climate changes                                                     |
| Motorway                                                                                                                                | <b>[T3]</b> Decline in the amount of lake water                          |
| [02] Developed a Devivation Tunnel                                                                                                      |                                                                          |
| [O3] Derebucak Derivation Tunnel                                                                                                        | [T4] Water pollution                                                     |
| <b>[O4]</b> Its suitability in terms of tourism development                                                                             | [T5] Overhunting                                                         |
| <ul><li>[O4] Its suitability in terms of tourism development</li><li>[O5] Plans and projects to protect and develop the basin</li></ul> | <b>[T5]</b> Overhunting<br><b>[T6]</b> Destruction of the lake ecosystem |
| <b>[O4]</b> Its suitability in terms of tourism development                                                                             | [T5] Overhunting                                                         |
| <ul><li>[O4] Its suitability in terms of tourism development</li><li>[O5] Plans and projects to protect and develop the basin</li></ul> | <b>[T5]</b> Overhunting<br><b>[T6]</b> Destruction of the lake ecosystem |

#### 3.3 Survey methodology

In this study, we structured an analytical hierarchy for the BLB's IWM process based on a SWOT analysis. We also used AHP to estimate a global value for each of the strategy alternatives. Initially, we used TOWS matrix, developed by Weihrich (1982), to describe watershed management options based on the SWOT factors. TOWS matrix provides means to develop strategies based on logical combinations of SWOT factors related to internal strengths (or weaknesses) with factors related to external opportunities (or threats) (Wickramasinghe, 2008). TOWS matrix identifies four conceptually distinct strategic groups to create the strategy alternatives including, i) Strength-Opportunity (SO), ii) Strength-Threats (ST), iii) Weaknesses-Opportunities (WO), and iv) Weaknesses-Threats (WT). In this context, considering the expert views, we have proposed six strategy alternatives (ALT). These alternatives consider the advantages of the Strengths and Opportunities while also reinforcing the Weaknesses in order to develop the best defence strategy to the Threats (Table 4).

#### Table 4

Strategy formulation using TOWS matrix

| Strategy groups                                                                                                                                     | Strategy alternatives                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| <b>SO Strategies: Maxi-Maxi</b><br>Strategies use strengths to maximize opportunities                                                               | [ALT 1] Agricultural development<br>[ALT 2] Environment friendly<br>tourism development: rural tourism                            |
| <b>WO Strategies: Mini-Maxi</b><br>Strategies reduce internal weaknesses or develop missing<br>strengths are used to minimize external threats      | [ALT 3] Collaborative watershed management                                                                                        |
| <b>ST Strategies: Maxi-Mini</b><br>Strategies use internal strengths to minimize threats                                                            | [ALT 4] Decreasing the water consumption in urban area                                                                            |
| <b>WT Strategies: Mini-Mini</b><br>Strategies reduce the internal weaknesses to avoid external<br>threats (defensive strategy, worst case scenario) | [ALT 5] Improving water quality-<br>control invasive pollutant<br>[ALT 6] Improving water usage in<br>rural areas and agriculture |

AHP begins with the development of a decision hierarchy including a *main goal, sub-objectives and strategy alternatives*. Figure 3 and Table 3 show the decision hierarchy used in the study. The hierarchy for the described problem was structured in four levels. The top level refers to the main goal, to develop the best watershed management strategy that enables both the environmental and socio-economic sustainability of the BLB. The next level consists of decision objectives that take advantage of the Strengths (S), to reinforce the Weaknesses (W), to use the advantage of Opportunities (O) and to develop the best defense to the Threats (T). SWOT factors, described in SWOT analysis, take part in the third level. Finally, the fourth level consists of the strategy alternatives (ALT). How important are the internal Strengths & Weaknesses and the Opportunities & Threats arising from the external environment, or to what extent should they be ignored to achieve the specified purposes? What are the *most important* problems of the basin? What is *the safest course* that would lead to improvement of the lake's environmental conditions and the basin residents' living conditions? AHP and SWOT integration has been used to answer these research questions from the perspectives of stakeholders.

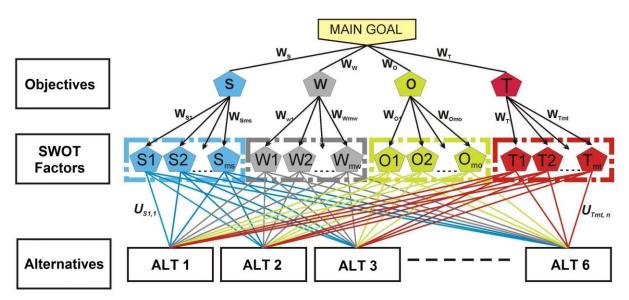



Figure 3. Hierarchical structure to prioritize the SWOT factors of BLB's sustainability

| <b>W</b> <sub>S</sub> , <b>W</b> <sub>W</sub> , <b>W</b> <sub>0</sub> and <b>W</b> <sub>T</sub> : relative importance of each group of factors (S, W, O and T) for the  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| achievement of the strategic objective                                                                                                                                  |
| ( <b>W</b> <sub>S1</sub> , <b>W</b> <sub>S2</sub> ,, <b>W</b> <sub>Sms</sub> ,): relative importance of the Strengths factors (S1, S2,, Sms) within their group (S)     |
| $(\mathbf{W_{W1}}, \mathbf{W_{W2}},, \mathbf{W_{Wmw}})$ : relative importance of the Weaknesses factors (W1, W2,, Wmw) within their group (W)                           |
| ( <b>W</b> <sub>01</sub> , <b>W</b> <sub>02</sub> ,, <b>W</b> <sub>0mo</sub> ,): relative importance of the Opportunities factors (O1, O2,, Omo) within their group (O) |
| ( <b>W</b> <sub>T1</sub> , <b>W</b> <sub>T2</sub> ,, <b>W</b> <sub>Tmt</sub> ,): relative importance of the Threats factors (T1, T2,, Tmt) within their group (T)       |
| For any Strategy $j$ ( $j = 1, 2,, n$ ); degree of relationship between Factor and Strategy :                                                                           |
| $\mathbf{U}_{\mathbf{St},\mathbf{j}}$ : Efficiency of Strategy j in taking the advantage of the Strength factor Si (i= 1, 2,, ms)                                       |
| $\mathbf{U}_{\mathbf{Wij}}$ : Efficiency of Strategy j in lessening the effects of the Weakness factor Wi (i = 1, 2,, mw)                                               |
| $U_{01,j}$ : Efficiency of Strategy j in taking the advantage of the Opportunity factor Oi (i = 1, 2,, mo)                                                              |
| $\mathbf{U}_{\mathbf{T}_{1,j}}$ : Efficiency of Strategy j in facing the Threat factor Ti (i = 1, 2,, mt)                                                               |

The data for the analysis was gathered from a survey conducted in 44 different settlements in BLB in March and April of 2010. In order to determine the CWM strategy from the perspective of the stakeholders the following questionnaires were performed: i) 457 household (approximately 1.7 % sample size) questionnaires, ii) 27 local authorities (mayor, village headman and employee) questionnaires, and iii) 22 expert (civil engineer, forest engineer, urban planner, hydrologist, geologist, tourism expert, etc The household and local authority questionnaires were performed face to face by visiting all of the settlements, whereas the expert questionnaires were conducted using different channels such as phone calls and e-mails in addition to face to face interviews. Following a pilot study by the authors, a professional survey team was trained and the rest of the survey was completed by this professional team. The survey

sheet was designed in order to be appropriate to the AHP-SWOT technique, and the decision hierarchy has been developed for BLB (see for further information Appendix A). For pairwise comparisons, the questionnaire consists of two parts: i) comparison of the two factors in order to determine environmental and socio-cultural sustainability of BLB (Goal), the most dominant factor (in the case of strength and opportunity) or the least favourable factor (in the case of weakness and threat), and ii) the intensity of importance. In this context, the survey sheet consists of tables comparing each factor in a particular SWOT category with other factors in the same category. Survey participants were asked to compare the stated factor to other factors and evaluate their importance from their perspective. For example, during the pairwise comparisons of S1 and S2 factors, under the Strengths heading, the responder first decided which factor was more important, then evaluated their relative importance on a scale of 1-9. The success of any SWOT factors in determining the best strategy was measured on a scale of 0-9. Reliability of the responses to the questionnaire was tested with the "consistency ratio" (CR) formula (Formula 1 and Formula 2) as prescribed by the AHP technique. The CRs of the matrices were below the limit value of 0.1. Therefore, the judgments are acceptably consistent.

Table 5 shows the sampling sites, household size and number of local authority questionnaires, and Figure 4 shows the study area and sampling sites.

| Settlement:   | Η   | LA | Settlement: | Η  | Q | Settlement: | Q  | LA | Settlement: | Η   | LA |
|---------------|-----|----|-------------|----|---|-------------|----|----|-------------|-----|----|
| Akburun       | 6   | -  | Çiftliközü  | 4  | - | Hüyük       | 12 | 2  | Sağlık      | 4   | 1  |
| Bademli       | 4   | -  | Derbent     | 13 | 1 | İlmen       | 4  | -  | Sarıkabalı  | 4   | -  |
| Belceğiz      | 5   | -  | Doğanbey    | 13 | - | İmrenler    | 5  | -  | Selki       | 6   | -  |
| Beyşehir      | 131 | -  | Emen        | 5  | - | Karadiken   | 4  | -  | Sevindik    | 3   | -  |
| Budak         | 6   | 1  | Gedikli     | 4  | 1 | Karayaka    | 3  | -  | Ş.karaağaç  | 48  | 2  |
| Burunsuz      | 5   | -  | Gencek      | 5  | 1 | Kıreli      | 9  | 1  | Tolca       | 5   | 1  |
| Çamlıca       | 6   | 1  | Göçeri      | 5  | - | Kızılören   | 5  | 2  | Üstünler    | 7   | 1  |
| Çarıksaraylar | 10  | 1  | Gölkaşı     | 5  | 1 | Kurucuova   | 6  | -  | Üzümlü      | 20  | -  |
| Çavuş         | 4   | 2  | Gölkonak    | 5  | - | Kuşluca     | 6  | 1  | Yenidoğan   | 6   | 1  |
| Çiçekpınar    | 7   | 2  | Gölyaka     | 3  | 1 | Mutlu       | 4  | 1  | Y.bademli   | 12  | 1  |
| Çiflikköy     | 3   | -  | Huğlu       | 13 | - | Sadıkhacı   | 12 | 1  | Yeşildağ    | 10  | -  |
|               |     |    |             |    |   |             |    |    | TOTAL:      | 457 | 27 |

Table 5

Sampling sites and the sizes of household and local authority questionnaires

\* H: household, LA: local authory

IJAHP Article: Yavuz, Baycan/Application of combined Analytic Hierarchy Process (AHP) and SWOT for integrated watershed management

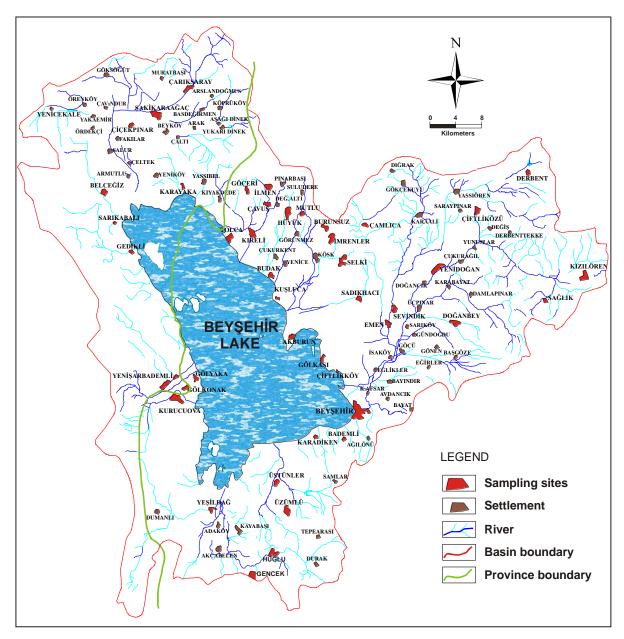



Figure 4. Study area and sampling sites

## 4. Empirical Results and Discussion

An Excel worksheet was used to perform AHP calculations. This section presents the empirical results according to the AHP-SWOT application steps consecutively.

## 4.1 Priorities of SWOT factor groups

Table 6 shows the AHP priorities of the SWOT factor groups in terms of three stakeholder groups. 'To develop the best defence to Threats' [T] is the most highly rated SWOT factor group from the perspective of *local communities* (40.1%), and also the basic determinant of *local authority* views (46.0%). Contrary to the local community and local authority views, 'to use the advantage of Opportunities' [O] is dominant (35.0 %) in the holistic perceptions of the experts. While the other two stakeholder groups define [T] category as their primary decision objective, [T] is ranked second in priority by the experts (28.4%). CWM strategy considers the common benefit of all stakeholders and is responsive to their expectations. Consequently, we

derived the CWM strategy for BLB by congregating stakeholder groups' assessments that were made separately. [T] is the highest overrated SWOT factor group of the CWM strategy priorities calculated from the geometric means of three stakeholder group priorities (37.4 %), and 'to take the advantage of Strengths [S]' is the least rated category (13.6%) (Appendix-B, C, D, E).

|                                               | Sta               | ıkeholder grou    | p s     |                           |
|-----------------------------------------------|-------------------|-------------------|---------|---------------------------|
| Weights                                       | Local communities | Local authorities | Experts | Overall<br>stakeholders * |
| to take the advantage of Strengths            | 0.102             | 0.117             | 0.209   | 0.136                     |
| to reinforce the Weaknesses                   | 0.281             | 0.221             | 0.157   | 0.214                     |
| to use the advantage of <b>O</b> pportunities | 0.216             | 0.202             | 0.350   | 0.248                     |
| to develop the best defence to Threats        | 0.401             | 0.460             | 0.284   | 0.374                     |

#### Table 6

Weights of the decision objectives from the perspectives of stakeholders

\* Each value is the geometric mean of the row.

#### 4.2 Priorities of the SWOT factors

Local weight dispersions regarding SWOT factors explicitly show the importance of [T4] 'water pollution' and [T3] 'decline in the amount of lake water' factors from the perspective of *local communities. Local authorities* emphasized the importance of [T] category like local communities, and more highly rated the [T4] 'water pollution' and [T6] 'destruction of the lake ecosystem' [T] factors. *Experts* emphasized the importance of the [O] category. This group rated [O5] 'plans and projects to protect and develop the basin', and [O4] 'its suitability in terms of tourism development' the highest. While [T] is accepted as the most important overall SWOT category with respect to *CWM strategy*, all of the stakeholders rated [T4] 'water pollution', [T3] 'decline in the amount of lake water' and [T6] 'destruction of the lake ecosystem' the highest factors in this category (Appendix-B, C, D, E). Figure 5 shows the differences in the SWOT factor prioritizations of SWOT factors are: i) Experts supported the [O] factors with the highest scores and, ii) Local authorities supported the [T] factors with the highest scores compared to other stakeholders.

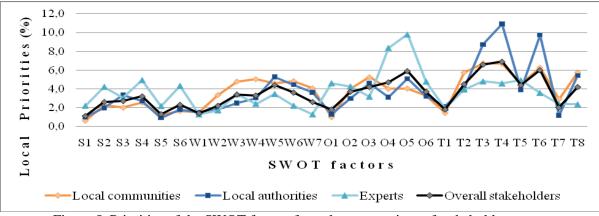



Figure 5. Priorities of the SWOT factors from the perspectives of stakeholders

#### 4.3 Global weight dispersions of strategy alternatives with respect to CWM strategy

Our findings suggest that amongst six strategy alternatives, the 'Collaborative Watershed Management (Public-Corporate-Experts Cooperation) [ALT 3], 'reduces internal weaknesses or develops missing strengths to minimize external threats', is perceived as the most important approach (17.4 %) by all stakeholders to solve the basin's problems (for further information see Appendix-F, G). This preference points out that all stakeholders are aware of the necessity of coordination and cooperation to gain effective watershed planning and management activities.

Stakeholders agree that 'the suitability of the basin to the development of tourism' [O4] is an important opportunity. Thus, they rated the 'Environment friendly tourism development: rural tourism' [ALT 2] strategy, uses strengths to maximize opportunities, after [ALT 3] (16.9 %). This preference points out the importance of providing income sources, sensitive to the basin's natural resources, for the local people.

'Improving water usage in rural areas and agriculture' [ALT 6] strategy, reduces the internal weaknesses to avoid external threats, is rated third by the stakeholders (16.8 %). While [T4] 'water pollution' is perceived as the primary threat to the sustainability of the basin, 'improving water quality-control invasive pollutant' [ALT 5] strategy, reduces the internal weaknesses to avoid external threats, is ranked fifth in stakeholders' priorities (16.4 %).

'Decreasing the water consumption in urban areas' [ALT 4] strategy, uses internal strengths to minimize threats, is the lowest rated (% 16.1) strategy. Despite the fact that stakeholders rated [T3] 'decline in the amount of lake water' (6.6 %) more highly, and [T6] 'destruction of the lake ecosystem' (6.0 %) factors, they have not supported [ALT 4], 'developed to improve the amount of water in the basin' enough. Priorities of the stakeholders for the alternatives/strategies developed to restore the water amount show that 'rural areas' and the 'agricultural water consumption' are perceived as the main reasons for the decrease in water amount.

#### 4.4 Comparison of the stakeholders' alternative preferences

Table 7 and Figure 6 show the results of the sensitivity analysis of each watershed management option. This analysis demonstrates how the strategy alternatives were prioritized relative to other alternatives with respect to each objective as well as the overall objective from the perspective of stakeholders. According to the sensitivity analysis, the experts have the same prioritization with the CWM strategy which represents a shared view of all stakeholders. However, local authorities have the same prioritization with the CWM strategy, only regarding their preferences of ALT 3 and ALT 2 at the first and second row.

|              |                   | Stakehold         | 0.140   |                       |
|--------------|-------------------|-------------------|---------|-----------------------|
| Strategic    |                   |                   |         |                       |
| Alternatives | Local communities | Local authorities | Experts | Overall stakeholders* |
| [ALT 1]      | 0.1634            | 0.1660            | 0.1640  | 0.1645                |
| [ALT 2]      | 0.1613            | 0.1686            | 0.1784  | 0.1693                |
| [ALT 3]      | 0.1689            | 0.1713            | 0.1817  | 0.1739                |
| [ALT 4]      | 0.1690            | 0.1654            | 0.1487  | 0.1608                |
| [ALT 5]      | 0.1679            | 0.1651            | 0.1576  | 0.1635                |
| [ALT 6]      | 0.1696            | 0.1635            | 0.1697  | 0.1676                |

## Table 7

Global priorities of the strategic alternatives from the perspectives of stakeholders

\* Each value is the geometric mean of the row.

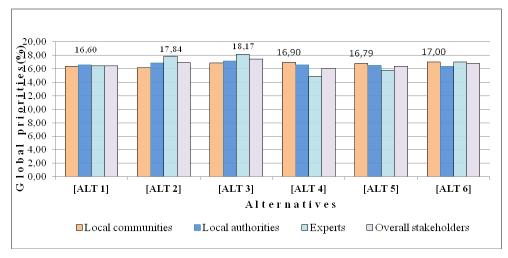



Figure 6. Sensitivity analysis

While comparing the global weight dispersions of alternatives in terms of stakeholder groups, we have determined the differences presented below (Figure 6):

i) 'Agricultural development' [ALT 1] strategy was supported at the highest level (16.60 %) by the *local authorities*.

ii) 'Environment friendly tourism development: rural tourism' [ALT 2] strategy was supported at the highest level (17.84 %) by the *experts*.

iii) 'Collaborative watershed management' [ALT 3] strategy was supported at the highest level (18.17 %) by the *experts*.

iv) 'Decreasing the water consumption in urban area' [ALT 4] strategy was supported at the highest level (16.90 %) by the *local communities*.

v) 'Improving water quality- control invasive pollutant' [ALT 5] strategy was supported at the highest level (16.79 %) by the *local communities*.

vi) 'Improving water usage in rural areas and agriculture' [ALT 6] strategy was supported at the highest level (16.97 %) by the *experts*.

Amongst the alternatives (Mini-Mini, Mini-Maxi, Maxi-Maxi and Maxi-Mini) aiming to provide sustainability of BLB, local authorities mostly preferred 'Maxi-Maxi' and 'Mini-Mini' strategies whereas an aggregate of the stakeholders mostly preferred 'Mini-Maxi' strategies (Table 8). However, any significant difference in other stakeholder groups' preferences was not observed.

#### Table 8

Rankings by different stakeholders regarding alternatives

| Ranking | Local communities | Local authorities | Experts          | Overall stakeholders<br>(CWM strategy)* |
|---------|-------------------|-------------------|------------------|-----------------------------------------|
| 1       | [0.1696]          | [0.1713]          | [0.1817]         | [0.1739]                                |
| 1       | ALT 6: Mini-Mini  | ALT 3: Mini-Maxi  | ALT 3: Mini-Maxi | ALT 3: Mini-Maxi                        |
| 2       | [0.1690]          | [0.1686]          | [0.1784]         | [0.1693]                                |
| 2       | ALT 4: Maxi-Mini  | ALT 2: Maxi-Maxi  | ALT 2: Maxi-Maxi | ALT 2: Maxi-Maxi                        |
| 3       | [0.1689]          | [0.1660]          | [0.1697]         | [0.1676]                                |
| 5       | ALT 3: Mini-Maxi  | ALT 1: Maxi-Maxi  | ALT 6: Mini-Mini | ALT 6: Mini-Mini                        |
| 4       | [0.1679]          | [0.1654]          | [0.1640]         | [0.1645]                                |
| 4       | ALT 5: Mini-Mini  | ALT 4: Maxi-Mini  | ALT 1: Maxi-Maxi | ALT 1: Maxi-Maxi                        |
| 5       | [0.1634]          | [0.1651]          | [0.1576]         | [0.1635]                                |
| 5       | ALT 1: Maxi-Maxi  | ALT 5: Mini-Mini  | ALT 5: Mini-Mini | ALT 5: Mini-Mini                        |
| 6       | [0.1613]          | [0.1635]          | [0.1487]         | [0.1608]                                |
| 0       | ALT 2: Maxi-Maxi  | ALT 6: Mini-Mini  | ALT 4: Maxi-Mini | ALT 4: Maxi-Mini                        |

\* Each value is the geometric mean of the row.

'Agricultural development' [ALT 1] is a strategy that was preferred at a medium and low degree by all stakeholders. 'Environment friendly tourism development: rural tourism' [ALT 2] is a strategy that was more highly rated by experts and local authorities while ignored by local communities. 'Collaborative watershed management' [ALT 3] is a strategy that was highly rated by all stakeholder groups. 'Decreasing the water consumption in urban area' [ALT 4] is a strategy that was more highly rated by the local communities, however preferred by the local authorities and experts at a medium and low degree. 'Improving water quality- control invasive pollutant' [ALT 5] is a strategy that was adopted as a medium and low degree preference by all stakeholders. 'Improving water usage in rural areas and agriculture' [ALT 6] is a strategy the local authorities seriously protested.

## 4.5 Performance of the agreed upon watershed management strategy for BLB [ALT 3] on SWOT factors

It is a commonly held view among stakeholders that 'Collaborative watershed management' [ALT 3] is the most successful at: i) developing the best defence to threats of [T4] 'water pollution', [T6] 'destruction of the lake ecosystem', [T3] 'decline in the amount of lake water', [T5] 'overhunting', and [T8] 'interventions to basin's water system from outside the basin', ii) using the advantage of opportunities of [O4] 'its suitability in terms of tourism development', [O3] 'addition of water to the Beyşehir Lake through the Derebucak Derivation Tunnel', [O2] 'construction of New Konya- Antalya (Gembos) Motorway', and [O5] 'plans and projects to protect and develop the basin', and iii) reinforcing the weaknesses of [W5] 'problems in the institutional structure and legal system related to problem solving and management in the basin', and [W6] 'inadequacy of financial resources for activities to protect the lake'. However, the [ALT 3] approach is not considered the most successful at taking advantage of strengths (Figure 7).

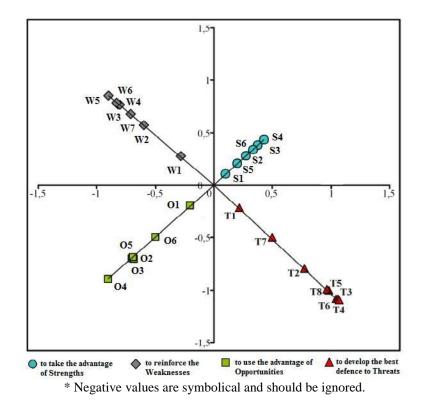



Figure 7. Performance of the agreed upon watershed management strategy [ALT 3] by stakeholders' shared views on SWOT factors

## 5. Concluding remarks and recommendations for future research

This study evaluated the perceptions of three stakeholder groups—local people, local authorities, and experts—towards the successful watershed management in BLB, and explored how professionals/experts and local communities can combine their abilities to resolve the basin's problems, and how they can work in collaboration to achieve the objectives of joint management. As a methodology, a combination of AHP and SWOT analysis was used i) to describe the most appropriate watershed management strategies from the perspectives of different stakeholders, and ii) to determine the CWM strategy as an agreed upon strategy that met expectations of all stakeholders and considered their benefits equally. The results of the study show that amongst a set of proposed strategy alternatives 'collaborative watershed management' [ALT 3] was assumed as the optimal approach to solve the BLB's problems by all stakeholders. Their joint strategy preferences show that 'cooperation between community and public institutions' is the key to success in watershed management.

This study presents a 'knowledge-based, stakeholder-oriented and comprehensive decision support system' which provides assistance for water resource planning. The applied AHP-SWOT approach yields a better understanding of participatory planning and more effective decision-making in IWM studies. AHP-SWOT i) enables the development of guidelines for effective collaboration between stakeholders, thus reduces conflicts, ii) provides a simple, transparent and rapid decision-making process, iii) provides some insights on what can be done to enhance the likelihood of watershed management success, and iv) provides a mechanism to determine an agreed upon watershed management strategy (in this study CWM). Such a transparent decision-making process leads to more sustainable watershed planning and management decisions, encourages increasing community capacity to address the important issues in a constructive way, and therefore greatly increases the acceptability of the policy decisions by the public. Nevertheless, this study is limited with determining an agreed upon watershed management strategy. Due to the independent and hierarchical structure of AHP, watershed management strategies are considered to be independent and the connections among the strategies as well as the strengths, weaknesses, opportunities and threats cannot be evaluated. In order to highlight the interaction and dependence among the strategies, the combined use of ANP (Analytic Network Process) and SWOT can be applied in future studies.

#### Acknowledgements

The authors are grateful to the BLB's stakeholders for their participation to the questionnaire. The earlier version of this manuscript that is titled 'Stakeholder-based Decision Making in Integrated Watershed Management' has been presented at the 51st European Congress of the Regional Science Association International: New Challenges for European Regions and Urban Areas in a Globalised World (30th August - 3rd September 2011, Barcelona, Spain) by the authors.

## APPENDICES

#### APPENDIX–A: Survey sheet

**1.** Please state the most dominant or the least favorable factor (in the case of **S**trength) in order to perform environmental and socio-cultural sustainability of BLB, and compare two factors' intensity of importance.

| Strengths (S) |   | 1= | Equa | al Imp<br>7= \ |   |   |   |   |   | • |   | <b>5</b> = \$<br>e Imp |   | - | oortar | nce; |   | Strengths (S) |
|---------------|---|----|------|----------------|---|---|---|---|---|---|---|------------------------|---|---|--------|------|---|---------------|
|               | 9 | 8  | 7    | 6              | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4                      | 5 | 6 | 7      | 8    | 9 | S2            |
|               | 9 | 8  | 7    | 6              | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4                      | 5 | 6 | 7      | 8    | 9 | <b>S</b> 3    |
| <b>S1</b>     | 9 | 8  | 7    | 6              | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4                      | 5 | 6 | 7      | 8    | 9 | S4            |
|               | 9 | 8  | 7    | 6              | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4                      | 5 | 6 | 7      | 8    | 9 | <b>S</b> 5    |
|               | 9 | 8  | 7    | 6              | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4                      | 5 | 6 | 7      | 8    | 9 | <b>S6</b>     |

**2.** Please state the most dominant or the least favorable factor (in the case of Weakness) in order to perform environmental and socio-cultural sustainability of BLB, and compare two factors' intensity of importance.

| Weaknesses<br>(W) |   | 1= | Equ |   |   | , |   |   |   | nport<br>)= Ex |   |   |   | - | ortar | nce; |   | Weaknesses<br>(W) |
|-------------------|---|----|-----|---|---|---|---|---|---|----------------|---|---|---|---|-------|------|---|-------------------|
|                   | 9 | 8  | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 2              | 3 | 4 | 5 | 6 | 7     | 8    | 9 | W2                |
|                   | 9 | 8  | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 2              | 3 | 4 | 5 | 6 | 7     | 8    | 9 | W3                |
|                   | 9 | 8  | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 2              | 3 | 4 | 5 | 6 | 7     | 8    | 9 | W4                |
| W1                | 9 | 8  | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 2              | 3 | 4 | 5 | 6 | 7     | 8    | 9 | W5                |
|                   | 9 | 8  | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 2              | 3 | 4 | 5 | 6 | 7     | 8    | 9 | W6                |
|                   | 9 | 8  | 7   | 6 | 5 | 4 | 3 | 2 | 1 | 2              | 3 | 4 | 5 | 6 | 7     | 8    | 9 | W7                |

**3.** Please state the most dominant or the least favorable factor (in the case of **O**pportunity) in order to perform environmental and socio-cultural sustainability of BLB, and compare two factors' intensity of importance.

| Opportunities<br>(O) |   | 1= | Equa |   |   | nce;<br>Stron |   |   |   |   |   |   |   |   | oortar | nce; |   | Opportunities<br>(O) |
|----------------------|---|----|------|---|---|---------------|---|---|---|---|---|---|---|---|--------|------|---|----------------------|
|                      | 9 | 8  | 7    | 6 | 5 | 4             | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7      | 8    | 9 | 02                   |
|                      | 9 | 8  | 7    | 6 | 5 | 4             | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7      | 8    | 9 | 03                   |
| 01                   | 9 | 8  | 7    | 6 | 5 | 4             | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7      | 8    | 9 | 04                   |
|                      | 9 | 8  | 7    | 6 | 5 | 4             | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7      | 8    | 9 | 05                   |
|                      | 9 | 8  | 7    | 6 | 5 | 4             | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7      | 8    | 9 | 06                   |

4. Please state the most dominant or the least favorable factor (in the case of Threats) in order to perform environmental and socio-cultural sustainability of BLB, and compare two factors' intensity of importance.

| Threats (T) |   | 1= Equal Importance; 3= Moderate Importance; 5= Strong Importance;<br>7= Very Strong Importance; 9= Extreme Importance |   |   |   |   |   |   |   |   |   |   |    | Threats (T) |   |   |   |    |
|-------------|---|------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|----|-------------|---|---|---|----|
|             | 9 | 0     8     7     6     5     4     3     2     1     2     3     4     5     6     7     8     9                      |   |   |   |   |   |   |   |   |   |   | T2 |             |   |   |   |    |
|             | 9 | 8                                                                                                                      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5  | 6           | 7 | 8 | 9 | Т3 |
|             | 9 | 8                                                                                                                      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5  | 6           | 7 | 8 | 9 | T4 |
| T1          | 9 | 8                                                                                                                      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5  | 6           | 7 | 8 | 9 | Т5 |
|             | 9 | 8                                                                                                                      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5  | 6           | 7 | 8 | 9 | T6 |
|             | 9 | 8                                                                                                                      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5  | 6           | 7 | 8 | 9 | T7 |
|             | 9 | 8                                                                                                                      | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5  | 6           | 7 | 8 | 9 | T8 |

5. Please evaluate the importance of Strengths, Weaknesses, Opportunities and Threats of the basin to reach the goal of "to develop the best watershed management strategy enables BLB's environmental and socio-economic sustainability together".

|   | 1= Equal Importance; 3= Moderate Importance; 5= Strong Importance; 7= Very Strong Importance;<br>9= Extreme Importance |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |                                               |   |
|---|------------------------------------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|-----------------------------------------------|---|
|   |                                                                                                                        | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | to reinforce the<br>Weaknesses                | w |
| S | <b>S</b> to take the advantage of the Strengths                                                                        | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | to use the advantage of<br>Opportunities      | 0 |
|   | <u> </u>                                                                                                               | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | to develop the best<br>defense to the Threats | Т |

Please evaluate the performances of the strategy alternatives (ALT 1, ALT 2, ALT 3, ALT 4, ALT 5, ALT 6) to take the advantage of the **S**trengths, to reinforce the **W**eaknesses, to use the advantage of **O**pportunities or to develop the best defense to the Threats via the following scale: [*Degree of relationship:* 0: No; 1: Very weak; 3: Weak; 5: Medium; 7: Strong; 9: Very strong ]

| <b>6.</b> How                                       | much successful is the "A       | gricultural development" strate                            | gy (ALT 1);                                             |
|-----------------------------------------------------|---------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| <b>6.1.</b> to take the advantage of the Strengths? | 6.2to reinforce the Weaknesses? | <b>6.3.</b> to use the advantage of <b>O</b> pportunities? | <b>6.4.</b> to develop the best defense to the Threats? |
| ALT 1-S1                                            | ALT 1-W1                        | ALT 1-01                                                   | ALT 1–T1                                                |
| ALT 1-S2                                            | ALT 1-W2                        | ALT 1-02                                                   | ALT 1–T2                                                |
| ALT 1-S3                                            | ALT 1-W3                        | ALT 1-03                                                   | ALT 1–T3                                                |
| ALT 1-S4                                            | ALT 1-W4                        | ALT 1-04                                                   | ALT 1–T4                                                |
| ALT 1-85                                            | ALT 1-W5                        | ALT 1-05                                                   | ALT 1-T5                                                |
| ALT 1-S6                                            | ALT 1-W6                        | ALT 1-06                                                   | ALT 1-T6                                                |
|                                                     | ALT 1-W7                        |                                                            | ALT 1-T7                                                |
|                                                     |                                 | _                                                          | ALT 1–T8                                                |

| 7. How much s                                       | successful is the "Environme    | nt friendly tourism development'                           | ' strategy (ALT 2);                                     |
|-----------------------------------------------------|---------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| <b>7.1.</b> to take the advantage of the Strengths? | 7.2to reinforce the Weaknesses? | <b>7.3.</b> to use the advantage of <b>O</b> pportunities? | <b>7.4.</b> to develop the best defense to the Threats? |
| ALT 2-S1                                            | ALT 2-W1                        | ALT 2-01                                                   | ALT 2-T1                                                |
| ALT 2-S2                                            | ALT 2-W2                        | ALT 2-O2                                                   | ALT 2-T2                                                |
| ALT 2-83                                            | ALT 2-W3                        | ALT 2-03                                                   | ALT 2-T3                                                |
| ALT 2-84                                            | ALT 2-W4                        | ALT 2-04                                                   | ALT 2-T4                                                |
| ALT 2-85                                            | ALT 2-W5                        | ALT 2-05                                                   | ALT 2-T5                                                |
| ALT 2-86                                            | ALT 2-W6                        | ALT 2-06                                                   | ALT 2-T6                                                |
|                                                     | ALT 2-W7                        |                                                            | ALT 2-T7                                                |
|                                                     |                                 | _                                                          | ALT 2-T8                                                |

| 8. How much                                         | n successful is the "Collaboration of the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the successful is the succes | ative watershed management" st                             | rategy (ALT 3);                                         |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| <b>8.1.</b> to take the advantage of the Strengths? | 8.2to reinforce the Weaknesses?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>8.3.</b> to use the advantage of <b>O</b> pportunities? | <b>8.4.</b> to develop the best defense to the Threats? |
| ALT 3-81                                            | ALT 3-W1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALT 3-01                                                   | ALT 3-T1                                                |
| ALT 3-S2                                            | ALT 3-W2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALT 3-02                                                   | ALT 3-T2                                                |
| ALT 3-83                                            | ALT 3-W3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALT 3-03                                                   | ALT 3-T3                                                |
| ALT 3-84                                            | ALT 3-W4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALT 3-04                                                   | ALT 3-T4                                                |
| ALT 3-85                                            | ALT 3-W5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALT 3-05                                                   | ALT 3-T5                                                |
| ALT 3-86                                            | ALT 3-W6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALT 3-06                                                   | ALT 3-T6                                                |
|                                                     | ALT 3-W7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | ALT 3-T7                                                |
|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                          | ALT 3-T8                                                |

| 9. How much succe       | 9. How much successful is the "Decreasing the water consumption in urban area" strategy (ALT 4); |                                  |                         |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------|----------------------------------|-------------------------|--|--|--|--|--|--|
| <b>9.1.</b> to take the | <b>9.2.</b> to reinforce the                                                                     | <b>9.3.</b> to use the advantage | 9.4 to develop the best |  |  |  |  |  |  |
| advantage of the        | Weaknesses?                                                                                      | of <b>O</b> pportunities?        | defense to the Threats? |  |  |  |  |  |  |

| Strengths? |          |          |          |
|------------|----------|----------|----------|
| ALT 4-S1   | ALT 4-W1 | ALT 4-01 | ALT 4-T1 |
| ALT 4-S2   | ALT 4-W2 | ALT 4-02 | ALT 4-T2 |
| ALT 4-83   | ALT 4-W3 | ALT 4-03 | ALT 4-T3 |
| ALT 4-S4   | ALT 4-W4 | ALT 4-04 | ALT 4-T4 |
| ALT 4-85   | ALT 4-W5 | ALT 4-05 | ALT 4-T5 |
| ALT 4-S6   | ALT 4-W6 | ALT 4-06 | ALT 4-T6 |
|            | ALT 4-W7 |          | ALT 4-T7 |
|            |          | _        | ALT 4-T8 |

| <b>10.</b> How much succe                            | essful is the "Improving wat             | er quality- control invasive poll                           | utant" strategy (ALT 5);                                         |
|------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|
| <b>10.1.</b> to take the advantage of the Strengths? | <b>10.2</b> to reinforce the Weaknesses? | <b>10.3.</b> to use the advantage of <b>O</b> pportunities? | <b>10.4.</b> to develop the best defense to the <b>T</b> hreats? |
| ALT 5-S1                                             | ALT 5-W1                                 | ALT 5-01                                                    | ALT 5-T1                                                         |
| ALT 5-S2                                             | ALT 5-W2                                 | ALT 5-02                                                    | ALT 5-T2                                                         |
| ALT 5-83                                             | ALT 5-W3                                 | ALT 5-03                                                    | ALT 5-T3                                                         |
| ALT 5-84                                             | ALT 5-W4                                 | ALT 5-04                                                    | ALT 5-T4                                                         |
| ALT 5-85                                             | ALT 5-W5                                 | ALT 5-05                                                    | ALT 5-T5                                                         |
| ALT 5-86                                             | ALT 5-W6                                 | ALT 5-06                                                    | ALT 5-T6                                                         |
| <u>.</u>                                             | ALT 5-W7                                 |                                                             | ALT 5-T7                                                         |
|                                                      |                                          | -                                                           | ALT 5-T8                                                         |

| 11. How much succes                                  | ssful is the "Improving wate              | er usage in rural areas and a                           | gricul                                                     | ture" strategy (ALT 6); |  |  |
|------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------|--|--|
| <b>11.1.</b> to take the advantage of the Strengths? | <b>11.2.</b> to reinforce the Weaknesses? | <b>11.3</b> to use the advant of <b>O</b> pportunities? | <b>11.3</b> to use the advantage of <b>O</b> pportunities? |                         |  |  |
| ALT 6-S1                                             | ALT 6-W1                                  | ALT 6-01                                                |                                                            | ALT 6-T1                |  |  |
| ALT 6-S2                                             | ALT 6-W2                                  | ALT 6-02                                                |                                                            | ALT 6-T2                |  |  |
| ALT 6-S3                                             | ALT 6-W3                                  | ALT 6-03                                                |                                                            | ALT 6-T3                |  |  |
| ALT 6-S4                                             | ALT 6-W4                                  | ALT 6-04                                                |                                                            | ALT 6-T4                |  |  |
| ALT 6-85                                             | ALT 6-W5                                  | ALT 6-05                                                |                                                            | ALT 6-T5                |  |  |
| ALT 6-S6                                             | ALT 6-W6                                  | ALT 6-06                                                |                                                            | ALT 6-T6                |  |  |
|                                                      | ALT 6-W7                                  |                                                         |                                                            | ALT 6-T7                |  |  |
|                                                      | · · · ·                                   | _                                                       |                                                            | ALT 6-T8                |  |  |

|               | Strengths       | Weaknesses        | Opportunities     | Threats          | Weights |
|---------------|-----------------|-------------------|-------------------|------------------|---------|
| Strengths     | 1.00            | 0.36              | 0.47              | 0.26             | 0.102   |
| Weaknesses    | 2.74            | 1.00              | 1.30              | 0.70             | 0.281   |
| Opportunities | 2.11            | 0.77              | 1.00              | 0.54             | 0.216   |
| Threats       | 3.91            | 1.42              | 1.86              | 1.00             | 0.401   |
|               | CR = 0.0016 Con | sistent (Lambda n | nax=3.99565, RI = | 0.9, CI=0.00145) |         |

#### APPENDIX–B: AHP matrices of local communities SWOT group weights matrix of local communities

#### Strengths matrix of local communities

|            | S1        | S2            | <b>S</b> 3  | <b>S4</b>     | <b>S5</b>      | <b>S6</b> | Weights |
|------------|-----------|---------------|-------------|---------------|----------------|-----------|---------|
| <b>S1</b>  | 1.00      | 0.27          | 0.30        | 0.24          | 0.49           | 0.36      | 0.006   |
| S2         | 3.72      | 1.00          | 1.12        | 0.88          | 1.84           | 1.35      | 0.022   |
| <b>S</b> 3 | 3.33      | 0.90          | 1.00        | 0.78          | 1.65           | 1.21      | 0.020   |
| <b>S4</b>  | 4.25      | 1.14          | 1.28        | 1.00          | 2.10           | 1.54      | 0.026   |
| S5         | 2.02      | 0.54          | 0.61        | 0.48          | 1.00           | 0.73      | 0.012   |
| <b>S6</b>  | 2.75      | 0.74          | 0.83        | 0.65          | 1.36           | 1.00      | 0.017   |
|            | CR = 0.00 | 008 Consisten | t (Lambda m | ax=5.99505, I | RI =1.24, CI = | =0.00099) |         |

#### Weaknesses matrix of local communities

|    | W1     | W2          | W3           | W4         | W5          | W6           | W7     | Weights |
|----|--------|-------------|--------------|------------|-------------|--------------|--------|---------|
| W1 | 1.00   | 0.45        | 0.32         | 0.30       | 0.33        | 0.31         | 0.37   | 0.015   |
| W2 | 2.20   | 1.00        | 0.70         | 0.66       | 0.73        | 0.69         | 0.82   | 0.033   |
| W3 | 3.14   | 1.43        | 1.00         | 0.95       | 1.05        | 0.99         | 1.18   | 0.048   |
| W4 | 3.32   | 1.51        | 1.05         | 1.00       | 1.10        | 1.04         | 1.24   | 0.050   |
| W5 | 3.01   | 1.37        | 0.96         | 0.91       | 1.00        | 0.95         | 1.13   | 0.046   |
| W6 | 3.18   | 1.44        | 1.01         | 0.96       | 1.06        | 1.00         | 1.19   | 0.048   |
| W7 | 2.67   | 1.21        | 0.85         | 0.81       | 0.89        | 0.84         | 1.00   | 0.041   |
|    | CR = 0 | 0.0012 Cons | sistent (Lam | bda max=6. | 990747, RI= | =1.32, CI=0. | 00154) |         |

#### Opportunities matrix of local communities

|    |           |               |              | of focul com  |               |           |         |
|----|-----------|---------------|--------------|---------------|---------------|-----------|---------|
|    | 01        | 02            | 03           | 04            | 05            | <b>O6</b> | Weights |
| 01 | 1.00      | 0.25          | 0.19         | 0.25          | 0.25          | 0.30      | 0.010   |
| 02 | 4.08      | 1.00          | 0.77         | 1.01          | 1.00          | 1.24      | 0.040   |
| 03 | 5.29      | 1.30          | 1.00         | 1.31          | 1.30          | 1.61      | 0.052   |
| 04 | 4.04      | 0.99          | 0.76         | 1.00          | 0.99          | 1.23      | 0.040   |
| 05 | 4.07      | 1.00          | 0.77         | 1.01          | 1.00          | 1.24      | 0.040   |
| O6 | 3.28      | 0.80          | 0.62         | 0.81          | 0.81          | 1.00      | 0.033   |
|    | CR = 0.00 | 022 Consisten | ıt (Lambda m | ax=6.01386, I | RI=1.24, CI=0 | ).002772) |         |

#### Threats matrix of local communities

|    | T1   | T2         | Т3         | T4        | Т5        | T6         | T7         | T8    | Weights |  |  |  |  |
|----|------|------------|------------|-----------|-----------|------------|------------|-------|---------|--|--|--|--|
| T1 | 1.00 | 0.25       | 0.21       | 0.21      | 0.32      | 0.23       | 0.49       | 0.25  | 0.014   |  |  |  |  |
| T2 | 4.00 | 1.00       | 0.86       | 0.86      | 1.27      | 0.92       | 1.98       | 1.00  | 0.057   |  |  |  |  |
| T3 | 4.67 | 1.17       | 1.00       | 1.00      | 1.48      | 1.07       | 2.31       | 1.17  | 0.067   |  |  |  |  |
| T4 | 4.65 | 1.16       | 1.00       | 1.00      | 1.47      | 1.07       | 2.30       | 1.16  | 0.067   |  |  |  |  |
| T5 | 3.16 | 0.79       | 0.68       | 0.68      | 1.00      | 0.73       | 1.56       | 0.79  | 0.045   |  |  |  |  |
| T6 | 4.36 | 1.09       | 0.93       | 0.94      | 1.38      | 1.00       | 2.15       | 1.09  | 0.063   |  |  |  |  |
| T7 | 2.02 | 0.51       | 0.43       | 0.43      | 0.64      | 0.46       | 1.00       | 0.50  | 0.029   |  |  |  |  |
| T8 | 4.00 | 1.00       | 0.86       | 0.86      | 1.27      | 0.92       | 1.98       | 1.00  | 0.058   |  |  |  |  |
|    | CR   | R = 0.0021 | Consistent | (Lambda 1 | max=7.978 | 85, RI=1.4 | 1, CI=0.00 | )302) |         |  |  |  |  |

| Performances of the strategy alternatives on SWOT factors from the view point of local communities Strategy evaluation matrix of local communities |         |         |         |         |         |         |                 |        |        |        |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|-----------------|--------|--------|--------|--------|--------|--------|
| Factors                                                                                                                                            | [ALT 1] | [ALT 2] | [ALT 3] | [ALT 4] | [ALT 5] | [ALT 6] | Factors         | [ALT1] | [ALT2] | [ALT3] | [ALT4] | [ALT5] | [ALT6] |
| <b>S1</b>                                                                                                                                          | 6.99    | 6.91    | 7.22    | 7.33    | 7.21    | 7.25    | <b>S1</b>       | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  | 0.001  |
| <b>S2</b>                                                                                                                                          | 6.99    | 6.91    | 7.22    | 7.33    | 7.21    | 7.25    | <b>S2</b>       | 0.004  | 0.004  | 0.004  | 0.004  | 0.004  | 0.004  |
| <b>S3</b>                                                                                                                                          | 6.99    | 6.91    | 7.22    | 7.33    | 7.21    | 7.25    | <b>S3</b>       | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  |
| <b>S4</b>                                                                                                                                          | 6.99    | 6.91    | 7.22    | 7.33    | 7.21    | 7.25    | <b>S4</b>       | 0.004  | 0.004  | 0.004  | 0.004  | 0.004  | 0.004  |
| <b>S5</b>                                                                                                                                          | 6.99    | 6.91    | 7.22    | 7.33    | 7.21    | 7.25    | <b>S5</b>       | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |
| <b>S6</b>                                                                                                                                          | 6.99    | 6.91    | 7.22    | 7.33    | 7.21    | 7.25    | <b>S6</b>       | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  |
| W1                                                                                                                                                 | 6.83    | 6.73    | 7.10    | 7.11    | 6.92    | 7.12    | W1              | 0.002  | 0.002  | 0.003  | 0.003  | 0.003  | 0.003  |
| W2                                                                                                                                                 | 6.83    | 6.73    | 7.10    | 7.11    | 6.92    | 7.12    | W2              | 0.005  | 0.005  | 0.006  | 0.006  | 0.006  | 0.006  |
| W3                                                                                                                                                 | 6.83    | 6.73    | 7.10    | 7.11    | 6.92    | 7.12    | W3              | 0.008  | 0.008  | 0.008  | 0.008  | 0.008  | 0.008  |
| W4                                                                                                                                                 | 6.83    | 6.73    | 7.10    | 7.11    | 6.92    | 7.12    | W4              | 0.008  | 0.008  | 0.009  | 0.009  | 0.008  | 0.009  |
| W5                                                                                                                                                 | 6.83    | 6.73    | 7.10    | 7.11    | 6.92    | 7.12    | W5              | 0.007  | 0.007  | 0.008  | 0.008  | 0.008  | 0.008  |
| W6                                                                                                                                                 | 6.83    | 6.73    | 7.10    | 7.11    | 6.92    | 7.12    | W6              | 0.008  | 0.008  | 0.008  | 0.008  | 0.008  | 0.008  |
| W7                                                                                                                                                 | 6.83    | 6.73    | 7.10    | 7.11    | 6.92    | 7.12    | W7              | 0.007  | 0.007  | 0.007  | 0.007  | 0.007  | 0.007  |
| 01                                                                                                                                                 | 7.19    | 6.99    | 7.22    | 7.27    | 7.40    | 7.24    | 01              | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |
| 02                                                                                                                                                 | 7.19    | 6.99    | 7.22    | 7.27    | 7.40    | 7.24    | 02              | 0.007  | 0.007  | 0.007  | 0.007  | 0.007  | 0.007  |
| 03                                                                                                                                                 | 7.19    | 6.99    | 7.22    | 7.27    | 7.40    | 7.24    | 03              | 0.009  | 0.008  | 0.009  | 0.009  | 0.009  | 0.009  |
| 04                                                                                                                                                 | 7.19    | 6.99    | 7.22    | 7.27    | 7.40    | 7.24    | 04              | 0.007  | 0.006  | 0.007  | 0.007  | 0.007  | 0.007  |
| 05                                                                                                                                                 | 7.19    | 6.99    | 7.22    | 7.27    | 7.40    | 7.24    | 05              | 0.007  | 0.007  | 0.007  | 0.007  | 0.007  | 0.007  |
| <b>O6</b>                                                                                                                                          | 7.19    | 6.99    | 7.22    | 7.27    | 7.40    | 7.24    | <b>O6</b>       | 0.005  | 0.005  | 0.005  | 0.005  | 0.006  | 0.005  |
| T1                                                                                                                                                 | 6.99    | 6.97    | 7.31    | 7.26    | 7.24    | 7.36    | T1              | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |
| T2                                                                                                                                                 | 6.99    | 6.97    | 7.31    | 7.26    | 7.24    | 7.36    | T2              | 0.009  | 0.009  | 0.010  | 0.010  | 0.010  | 0.010  |
| Т3                                                                                                                                                 | 6.99    | 6.97    | 7.31    | 7.26    | 7.24    | 7.36    | Т3              | 0.011  | 0.011  | 0.011  | 0.011  | 0.011  | 0.011  |
| T4                                                                                                                                                 | 6.99    | 6.97    | 7.31    | 7.26    | 7.24    | 7.36    | T4              | 0.011  | 0.011  | 0.011  | 0.011  | 0.011  | 0.011  |
| Т5                                                                                                                                                 | 6.99    | 6.97    | 7.31    | 7.26    | 7.24    | 7.36    | Т5              | 0.007  | 0.007  | 0.008  | 0.008  | 0.008  | 0.008  |
| T6                                                                                                                                                 | 6.99    | 6.97    | 7.31    | 7.26    | 7.24    | 7.36    | T6              | 0.010  | 0.010  | 0.011  | 0.011  | 0.011  | 0.011  |
| <b>T7</b>                                                                                                                                          | 6.99    | 6.97    | 7.31    | 7.26    | 7.24    | 7.36    | <b>T7</b>       | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  |
| T8                                                                                                                                                 | 6.99    | 6.97    | 7.31    | 7.26    | 7.24    | 7.36    | T8              | 0.009  | 0.009  | 0.010  | 0.010  | 0.010  | 0.010  |
|                                                                                                                                                    |         |         |         |         |         |         | Total<br>Weight | 0.1634 | 0.1613 | 0.1689 | 0.1690 | 0.1679 | 0.1696 |

Performances of the strategy alternatives on SWOT factors from the view point of local communities

Strategy evaluation matrix of local communities

2

4

3

6

5

Ranking

|               | Strengths           | Weaknesses         | Opportunities    | Threats    | Weights |
|---------------|---------------------|--------------------|------------------|------------|---------|
| Strengths     | 1.00                | 0.53               | 0.58             | 0.25       | 0.117   |
| Weaknesses    | 1.89                | 1.00               | 1.09             | 0.48       | 0.221   |
| Opportunities | 1.73                | 0.92               | 1.00             | 0.44       | 0.202   |
| Threats       | 3.93                | 2.08               | 2.27             | 1.00       | 0.460   |
| C             | R= 0.0009 Consister | nt (Lambda max=3.9 | 99756, RI=0.9, C | I=0.00081) |         |

#### APPENDIX–C: AHP matrices of local authorities SWOT group weights matrix of local authorities

#### Strengths matrix of local authorities

|            | <b>S1</b> | S2            | <b>S</b> 3    | <b>S4</b>    | <b>S5</b>      | <b>S6</b> | Weights |
|------------|-----------|---------------|---------------|--------------|----------------|-----------|---------|
| <b>S1</b>  | 1.00      | 0.50          | 0.30          | 0.37         | 1.09           | 0.55      | 0.010   |
| S2         | 2.00      | 1.00          | 0.59          | 0.74         | 2.18           | 1.10      | 0.020   |
| <b>S</b> 3 | 3.39      | 1.69          | 1.00          | 1.25         | 3.70           | 1.86      | 0.033   |
| <b>S4</b>  | 2.72      | 1.36          | 0.80          | 1.00         | 2.97           | 1.49      | 0.027   |
| <b>S</b> 5 | 0.92      | 0.46          | 0.27          | 0.34         | 1.00           | 0.50      | 0.009   |
| <b>S6</b>  | 1.82      | 0.91          | 0.54          | 0.67         | 1.99           | 1.00      | 0.018   |
|            | CR = 0.0  | 0024 Consiste | ent (Lambda r | nax=6.01504, | , RI=1.24, CI= | =0.0030)  |         |

Weaknesses matrix of local authorities

|    | W1                                                               | W2   | W3   | W4   | W5   | W6   | W7   | Weights |  |  |  |  |
|----|------------------------------------------------------------------|------|------|------|------|------|------|---------|--|--|--|--|
| W1 | 1.00                                                             | 0.82 | 0.59 | 0.48 | 0.28 | 0.33 | 0.40 | 0.015   |  |  |  |  |
| W2 | 1.23                                                             | 1.00 | 0.72 | 0.59 | 0.34 | 0.40 | 0.49 | 0.018   |  |  |  |  |
| W3 | 1.70                                                             | 1.39 | 1.00 | 0.83 | 0.47 | 0.56 | 0.69 | 0.025   |  |  |  |  |
| W4 | 2.06                                                             | 1.69 | 1.21 | 1.00 | 0.57 | 0.68 | 0.83 | 0.030   |  |  |  |  |
| W5 | 3.61                                                             | 2.95 | 2.12 | 1.75 | 1.00 | 1.19 | 1.46 | 0.053   |  |  |  |  |
| W6 | 3.04                                                             | 2.48 | 1.78 | 1.47 | 0.84 | 1.00 | 1.23 | 0.044   |  |  |  |  |
| W7 | 2.48                                                             | 2.02 | 1.45 | 1.20 | 0.69 | 0.82 | 1.00 | 0.036   |  |  |  |  |
|    | CR = 0.0024  Consistent (Lambda max=7.01918, RI=1.32, CI=0.0032) |      |      |      |      |      |      |         |  |  |  |  |

#### Opportunities matrix of local authorities

|    | opportainties mark of room autorities |               |              |              |              |           |         |  |  |  |  |  |
|----|---------------------------------------|---------------|--------------|--------------|--------------|-----------|---------|--|--|--|--|--|
|    | 01                                    | 02            | 03           | 04           | 05           | <b>O6</b> | Weights |  |  |  |  |  |
| 01 | 1.00                                  | 0.43          | 0.28         | 0.41         | 0.25         | 0.40      | 0.013   |  |  |  |  |  |
| 02 | 2.32                                  | 1.00          | 0.65         | 0.96         | 0.58         | 0.92      | 0.030   |  |  |  |  |  |
| 03 | 3.59                                  | 1.54          | 1.00         | 1.48         | 0.90         | 1.43      | 0.046   |  |  |  |  |  |
| 04 | 2.43                                  | 1.05          | 0.68         | 1.00         | 0.61         | 0.97      | 0.031   |  |  |  |  |  |
| 05 | 3.98                                  | 1.71          | 1.11         | 1.64         | 1.00         | 1.58      | 0.051   |  |  |  |  |  |
| O6 | 2.51                                  | 1.08          | 0.70         | 1.04         | 0.63         | 1.00      | 0.032   |  |  |  |  |  |
|    | CR= 0.0                               | 015 Consister | nt (Lambda m | nax=6.00941, | RI=1.24, CI= | 0.1518)   |         |  |  |  |  |  |

|    | Tinears matrix of local authorities |            |              |          |             |             |            |       |         |  |  |  |
|----|-------------------------------------|------------|--------------|----------|-------------|-------------|------------|-------|---------|--|--|--|
|    | T1                                  | T2         | T3           | T4       | T5          | T6          | T7         | T8    | Weights |  |  |  |
| T1 | 1.00                                | 0.53       | 0.24         | 0.19     | 0.54        | 0.22        | 1.81       | 0.39  | 0.021   |  |  |  |
| T2 | 1.89                                | 1.00       | 0.46         | 0.37     | 1.03        | 0.41        | 3.41       | 0.74  | 0.040   |  |  |  |
| T3 | 4.12                                | 2.18       | 1.00         | 0.80     | 2.24        | 0.90        | 7.44       | 1.62  | 0.087   |  |  |  |
| T4 | 5.15                                | 2.73       | 1.25         | 1.00     | 2.80        | 1.12        | 9.29       | 2.02  | 0.109   |  |  |  |
| T5 | 1.84                                | 0.98       | 0.45         | 0.36     | 1.00        | 0.40        | 3.32       | 0.72  | 0.039   |  |  |  |
| T6 | 4.59                                | 2.43       | 1.11         | 0.89     | 2.49        | 1.00        | 8.28       | 1.80  | 0.097   |  |  |  |
| T7 | 0.55                                | 0.29       | 0.13         | 0.11     | 0.30        | 0.12        | 1.00       | 0.22  | 0.012   |  |  |  |
| T8 | 2.55                                | 1.35       | 0.62         | 0.50     | 1.39        | 0.56        | 4.60       | 1.00  | 0.054   |  |  |  |
|    | CR                                  | = 0.0019 ( | Consistent ( | Lambda m | ax = 8.0188 | 34, RI=1.41 | , CI=0.002 | 2692) |         |  |  |  |

#### Threats matrix of local authorities

| Performances of the strategy alternatives on SwO1 factors from the view point of local authorities Strategy evaluation matrix of local authorities |         |         |         |         |         |         |                 |        |        |        |        |        |        |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|-----------------|--------|--------|--------|--------|--------|--------|
| SWOT Factors                                                                                                                                       | [ALT 1] | [ALT 2] | [ALT 3] | [ALT 4] | [ALT 5] | [ALT 6] | SWOT<br>Factors | [ALT1] | [ALT2] | [ALT3] | [ALT4] | [ALT5] | [ALT6] |
| S1                                                                                                                                                 | 6.43    | 6.71    | 7.29    | 7.29    | 7.14    | 6.96    | S1              | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |
| S2                                                                                                                                                 | 6.33    | 6.73    | 7.00    | 7.27    | 7.00    | 6.73    | S2              | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  |
| <b>S</b> 3                                                                                                                                         | 6.60    | 8.07    | 7.40    | 7.00    | 7.40    | 6.53    | <b>S3</b>       | 0.005  | 0.006  | 0.006  | 0.005  | 0.006  | 0.005  |
| <b>S4</b>                                                                                                                                          | 7.53    | 6.60    | 7.00    | 7.40    | 7.00    | 7.00    | <b>S4</b>       | 0.005  | 0.004  | 0.004  | 0.005  | 0.004  | 0.004  |
| S5                                                                                                                                                 | 7.40    | 7.67    | 7.53    | 6.47    | 6.87    | 6.60    | <b>S</b> 5      | 0.002  | 0.002  | 0.002  | 0.001  | 0.001  | 0.001  |
| <b>S6</b>                                                                                                                                          | 6.73    | 7.00    | 7.40    | 7.00    | 7.13    | 6.73    | <b>S6</b>       | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  |
| W1                                                                                                                                                 | 6.57    | 6.86    | 7.50    | 7.07    | 7.46    | 7.32    | W1              | 0.002  | 0.002  | 0.003  | 0.002  | 0.003  | 0.002  |
| W2                                                                                                                                                 | 6.60    | 7.00    | 6.73    | 6.47    | 6.33    | 6.47    | W2              | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  | 0.003  |
| W3                                                                                                                                                 | 7.40    | 7.93    | 7.27    | 7.67    | 7.40    | 7.33    | W3              | 0.004  | 0.004  | 0.004  | 0.004  | 0.004  | 0.004  |
| W4                                                                                                                                                 | 6.73    | 6.73    | 7.27    | 7.00    | 7.00    | 7.53    | W4              | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  |
| W5                                                                                                                                                 | 6.20    | 6.87    | 7.00    | 6.20    | 6.33    | 7.00    | W5              | 0.008  | 0.009  | 0.009  | 0.008  | 0.008  | 0.009  |
| W6                                                                                                                                                 | 6.73    | 7.40    | 7.53    | 6.73    | 6.73    | 7.40    | W6              | 0.007  | 0.008  | 0.008  | 0.007  | 0.007  | 0.008  |
| W7                                                                                                                                                 | 5.93    | 6.87    | 6.60    | 6.87    | 7.13    | 7.20    | W7              | 0.005  | 0.006  | 0.006  | 0.006  | 0.006  | 0.006  |
| 01                                                                                                                                                 | 7.00    | 7.07    | 7.43    | 7.25    | 7.39    | 6.93    | 01              | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |
| 02                                                                                                                                                 | 7.13    | 7.00    | 6.87    | 5.87    | 7.00    | 6.07    | 02              | 0.005  | 0.005  | 0.005  | 0.004  | 0.005  | 0.005  |
| 03                                                                                                                                                 | 7.13    | 7.40    | 7.53    | 7.27    | 7.27    | 6.87    | 03              | 0.008  | 0.008  | 0.008  | 0.008  | 0.008  | 0.007  |
| 04                                                                                                                                                 | 7.40    | 7.27    | 7.53    | 7.40    | 7.53    | 6.73    | 04              | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  |
| 05                                                                                                                                                 | 7.53    | 7.53    | 7.40    | 6.87    | 7.27    | 7.53    | 05              | 0.009  | 0.009  | 0.009  | 0.008  | 0.008  | 0.009  |
| <b>O6</b>                                                                                                                                          | 6.93    | 6.40    | 6.20    | 6.53    | 6.53    | 6.27    | 06              | 0.006  | 0.005  | 0.005  | 0.005  | 0.005  | 0.005  |
| <b>T1</b>                                                                                                                                          | 6.36    | 6.71    | 7.07    | 6.75    | 7.14    | 7.04    | T1              | 0.003  | 0.003  | 0.004  | 0.003  | 0.004  | 0.004  |
| T2                                                                                                                                                 | 5.93    | 5.40    | 5.80    | 5.93    | 6.07    | 5.80    | T2              | 0.007  | 0.006  | 0.007  | 0.007  | 0.007  | 0.007  |
| Т3                                                                                                                                                 | 7.00    | 6.73    | 7.27    | 7.27    | 6.67    | 7.13    | T3              | 0.015  | 0.014  | 0.015  | 0.015  | 0.014  | 0.015  |
| <b>T4</b>                                                                                                                                          | 7.27    | 7.27    | 7.53    | 6.80    | 7.00    | 6.73    | T4              | 0.019  | 0.019  | 0.019  | 0.017  | 0.018  | 0.017  |
| T5                                                                                                                                                 | 6.73    | 7.13    | 6.73    | 6.33    | 6.33    | 6.40    | T5              | 0.007  | 0.007  | 0.007  | 0.006  | 0.006  | 0.006  |
| T6                                                                                                                                                 | 7.13    | 6.73    | 7.00    | 7.13    | 6.73    | 6.00    | T6              | 0.017  | 0.016  | 0.017  | 0.017  | 0.016  | 0.014  |
| T7                                                                                                                                                 | 5.47    | 6.07    | 5.93    | 5.53    | 5.13    | 6.07    | T7              | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  | 0.002  |
| T8                                                                                                                                                 | 6.87    | 7.07    | 6.87    | 6.86    | 6.36    | 6.86    | T8              | 0.009  | 0.009  | 0.009  | 0.009  | 0.008  | 0.009  |
|                                                                                                                                                    |         |         |         |         |         |         | Total weight    | 0.1660 | 0.1686 | 0.1713 | 0.1654 | 0.1651 | 0.1635 |

Performances of the strategy alternatives on SWOT factors from the view point of local authorities

Strategy evaluation matrix of local authorities

Vol. 6 Issue 1 2014 http://dx.doi.org/10.13033/ijahp.v6i1.194

3

2

4

5

6

Ranking

|                                                                      |                                                                                                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | trengtl                                                                                                              | ıs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W                                                                                                                                                                                                                      | eaknes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ses                                                                                                                                                                                                                                                                                                                    | Op                                                                                                                           | portun                                                                                                         | ities                                                                   | Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reats                                                                                                                                                                                                             | Weights                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stren                                                                | gths                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        | 1.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | 0.60                                                                                                           |                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .73                                                                                                                                                                                                               | 0.209                                                                                                                                                                                                                                                                                                                                                                                 |
| Weakn                                                                | esses                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.75                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | 0.45                                                                                                           |                                                                         | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .55                                                                                                                                                                                                               | 0.157                                                                                                                                                                                                                                                                                                                                                                                 |
| Opport                                                               | unities                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.68                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        | 2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | 1.00                                                                                                           |                                                                         | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .23                                                                                                                                                                                                               | 0.350                                                                                                                                                                                                                                                                                                                                                                                 |
| Thre                                                                 | ats                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.36                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | 0.81                                                                                                           |                                                                         | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .00                                                                                                                                                                                                               | 0.284                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                      | CF                                                                                                                      | R = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0004 Co                                                                                                              | onsiste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt (Lar                                                                                                                                                                                                                | nbda m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nax=3                                                                                                                                                                                                                                                                                                                  | .9990                                                                                                                        | 4, RI=                                                                                                         | ).9, C                                                                  | I=0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 032)                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                      |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                      |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                                                                                                                      | hs mati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rix of                                                                                                                                                                                                                                                                                                                 | exper                                                                                                                        | ts                                                                                                             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                      | S1                                                                                                                      | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S2                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S.                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        | 54                                                                                                                           |                                                                                                                | S5                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>S6</b>                                                                                                                                                                                                         | Weight                                                                                                                                                                                                                                                                                                                                                                                |
| <b>S1</b>                                                            | 1.0                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                    | 2'2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.                                                                                                                                                                                                                                                                                                                     | 44                                                                                                                           |                                                                                                                | .02                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.51                                                                                                                                                                                                              | 0.022                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>S2</b>                                                            | 1.9                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.3                                                                                                                                                                                                                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                                                                                                                                                                                                                                     | 85                                                                                                                           |                                                                                                                | .95                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.97                                                                                                                                                                                                              | 0.042                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>S3</b>                                                            | 1.3                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.7                                                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                                                                                                    | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                                                                                                                                                                                                                                     | 61                                                                                                                           |                                                                                                                | .40                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.70                                                                                                                                                                                                              | 0.030                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>S4</b>                                                            | 2.2                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1                                                                                                                  | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.6                                                                                                                                                                                                                    | 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.                                                                                                                                                                                                                                                                                                                     | 00                                                                                                                           |                                                                                                                | 2.29                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.14                                                                                                                                                                                                              | 0.049                                                                                                                                                                                                                                                                                                                                                                                 |
| S5                                                                   | 0.9                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.7                                                                                                                                                                                                                    | /1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.                                                                                                                                                                                                                                                                                                                     | 44                                                                                                                           |                                                                                                                | .00                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                              | 0.022                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>S6</b>                                                            | 1.9                                                                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0                                                                                                                  | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.4                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.                                                                                                                                                                                                                                                                                                                     | 88                                                                                                                           |                                                                                                                | 2.00                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                              | 0.043                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                      | CR                                                                                                                      | R = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 014 Co                                                                                                               | nsister                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nt (Lam                                                                                                                                                                                                                | bda ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ax=6.0                                                                                                                                                                                                                                                                                                                 | 00894                                                                                                                        | , RI=1                                                                                                         | .24, C                                                                  | I=0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )178)                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                      |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                      |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                        | sses ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              |                                                                                                                |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                      | W1                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W2                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W3                                                                                                                                                                                                                     | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | /5                                                                                                             | W                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W7                                                                                                                                                                                                                | Weigh                                                                                                                                                                                                                                                                                                                                                                                 |
| W1                                                                   | 1.00                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.74                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ).37                                                                                                                                                                                                                   | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        | 0.                                                                                                                           | 36                                                                                                             | 0.5                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                              | 0.013                                                                                                                                                                                                                                                                                                                                                                                 |
| W2                                                                   | 1.35                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.00                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .50                                                                                                                                                                                                                    | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '1                                                                                                                                                                                                                                                                                                                     | 0.4                                                                                                                          | 49                                                                                                             | 0.7                                                                     | '8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.35                                                                                                                                                                                                              | 0.017                                                                                                                                                                                                                                                                                                                                                                                 |
| W3                                                                   | 2.72                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.01                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .00                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .3                                                                                                                                                                                                                                                                                                                     | 0.                                                                                                                           | 99                                                                                                             | 1.5                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.71                                                                                                                                                                                                              | 0.034                                                                                                                                                                                                                                                                                                                                                                                 |
| W4                                                                   | 1.90                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.41                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .70                                                                                                                                                                                                                    | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                      | 0.                                                                                                                           | 69                                                                                                             | 1.0                                                                     | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.89                                                                                                                                                                                                              | 0.024                                                                                                                                                                                                                                                                                                                                                                                 |
| W5                                                                   | 2.74                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.03                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .01                                                                                                                                                                                                                    | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .4                                                                                                                                                                                                                                                                                                                     | 1.                                                                                                                           | 00                                                                                                             | 1.5                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.73                                                                                                                                                                                                              | 0.035                                                                                                                                                                                                                                                                                                                                                                                 |
| W6                                                                   | 1.74                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.29                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | 1.00 1.5                                                                                                       |                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                      |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.29                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .64                                                                                                                                                                                                                    | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                      | 0.                                                                                                                           | 63                                                                                                             | 1.0                                                                     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.74                                                                                                                                                                                                              | 0.022                                                                                                                                                                                                                                                                                                                                                                                 |
| W7                                                                   | 1.00                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.74                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.64<br>0.37                                                                                                                                                                                                           | 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                          |                                                                                                                | 1.0<br>0.5                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.74<br>1.00                                                                                                                                                                                                      | 0.022                                                                                                                                                                                                                                                                                                                                                                                 |
| W7                                                                   |                                                                                                                         | = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .37                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                      | 0.                                                                                                                           | 37                                                                                                             | 0.5                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                       |
| W7                                                                   |                                                                                                                         | = 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.74                                                                                                                 | 0<br>nsisten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ).37<br>t (Laml                                                                                                                                                                                                        | 0.5<br>oda ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>x=7.0                                                                                                                                                                                                                                                                                                             | 0.:<br>2291,                                                                                                                 | 37<br>, RI=1.                                                                                                  | 0.5                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                       |
| W7                                                                   | CR                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.74<br>)29 Cor                                                                                                      | 0<br>nsisten<br>Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.37<br>t (Laml<br>oportun                                                                                                                                                                                             | 0.5<br>oda ma<br>iities m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3<br>x=7.0<br>atrix                                                                                                                                                                                                                                                                                                    | 0.1<br>2291,<br>of exp                                                                                                       | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>3818)                                                                                                                                                                                                     | 0.013                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                      | CR:                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.74<br>029 Cor                                                                                                      | 0<br>nsisten<br>Op<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.37<br>t (Lamb<br>oportun<br>O                                                                                                                                                                                        | 0.5<br>oda ma<br>ities m<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>x=7.0<br>atrix                                                                                                                                                                                                                                                                                                    | 0.2291,<br>2291,<br>of exp<br><b>04</b>                                                                                      | 37<br>, RI=1.<br>perts                                                                                         | 0.5<br>32, Cl                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>3818)<br>06                                                                                                                                                                                               | 0.013<br>Weigh                                                                                                                                                                                                                                                                                                                                                                        |
| 01                                                                   | CR:<br>01<br>1.0                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.74<br>)29 Cor<br>0<br>1.(                                                                                          | 0<br>nsisten<br>0<br>2<br>08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37<br>t (Laml<br>oportun<br>0<br>1.4                                                                                                                                                                                 | 0.5<br>bda ma<br>ities m<br>3<br>45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 3 \\ x=7.0 \\ atrix \\ \hline 0 \\ \end{array}$                                                                                                                                                                                                                                                      | 0<br>2291,<br>of exp<br><b>04</b><br>.55                                                                                     | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>05<br>0.47                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>3818)<br><b>06</b><br>0.96                                                                                                                                                                                | 0.013<br>Weigh<br>0.046                                                                                                                                                                                                                                                                                                                                                               |
| 01<br>02                                                             | CR:<br>01<br>1.0<br>0.9                                                                                                 | <b>1</b><br>00<br>03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.74<br>029 Cor<br>0<br>1.0<br>1.0                                                                                   | 0<br>nsisten<br>0<br>2<br>08<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.37<br>t (Laml<br>oportun<br><b>0</b><br>1.4<br>1.5                                                                                                                                                                   | 0.5<br>bda ma<br>ities m<br>3<br>45<br>34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x=7.0<br>atrix (<br>0<br>0                                                                                                                                                                                                                                                                                             | 0<br>2291,<br>of exp<br>04<br>.55<br>.51                                                                                     | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>05<br>0.47<br>0.43                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>3818)<br>06<br>0.96<br>0.89                                                                                                                                                                               | 0.013<br>Weigh<br>0.046<br>0.043                                                                                                                                                                                                                                                                                                                                                      |
| 01<br>02<br>03                                                       | CR:<br>01<br>1.0<br>0.9<br>0.6                                                                                          | <b>1</b><br>00<br>13<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.74<br>029 Cor<br>1.0<br>1.0<br>0.7                                                                                 | 0<br>asisten<br>0<br>2<br>08<br>00<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.37<br>t (Lamb<br>oportun<br>0<br>1.4<br>1.3                                                                                                                                                                          | 0.5<br>oda ma<br>iities m<br>3<br>45<br>34<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3<br>x=7.0<br>atrix (<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                              | 0.2291,<br>2291,<br>0f exp<br>04<br>.55<br>.51<br>.38                                                                        | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>05<br>0.47<br>0.43<br>0.32                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00<br>3818)<br>06<br>0.96<br>0.89<br>0.66                                                                                                                                                                       | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032                                                                                                                                                                                                                                                                                                                                             |
| 01<br>02<br>03<br>04                                                 | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8                                                                                   | <b>1</b><br>00<br>33<br>39<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74<br>029 Corr<br>1.0<br>1.0<br>0.7<br>1.9                                                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.37<br>t (Lamb<br>portum<br>1.4<br>1.1<br>1.0<br>2.6                                                                                                                                                                  | 0.5<br>oda ma<br>ities m<br><b>3</b><br>45<br>34<br>00<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c} \hline 3 \\ x=7.0 \\ \hline atrix \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline 1 \\ \hline \end{array}$                                                                                                                                                                               | 0<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00                                                                       | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>05<br>0.47<br>0.43<br>0.32<br>0.85                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00           3818)           O6           0.96           0.89           0.66           1.75                                                                                                                     | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084                                                                                                                                                                                                                                                                                                                                    |
| 01<br>02<br>03<br>04<br>05                                           | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1                                                                            | 1<br>00<br>3<br>3<br>9<br>2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74<br>)29 Cor<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3                                                                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.37<br>t (Laml<br>pportun<br>0<br>1.4<br>1.1<br>1.1<br>1.0<br>2.0<br>3.0                                                                                                                                              | 0.5<br>oda ma<br>iities m<br>3<br>45<br>34<br>00<br>64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c c} 3 \\ x=7.0 \\ atrix \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{array}$                                                                                                                                                                                                                                          | 0<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17                                                                | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>0.5<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00           3818)           O6           0.96           0.89           0.66           1.75           2.05                                                                                                      | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084<br>0.084                                                                                                                                                                                                                                                                                                                           |
| 01<br>02<br>03<br>04                                                 | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0                                                                     | 1<br>0<br>3<br>99<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74<br>)29 Cor<br>1.0<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3<br>1.1                                                     | 0<br>asisten<br>0<br>2<br>08<br>00<br>75<br>07<br>31<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37<br>t (Laml<br>pportun<br>0<br>1.4<br>1.1<br>1.0<br>2.0<br>3.0<br>1.4                                                                                                                                              | 0.5<br>oda ma<br>iities m<br><b>3</b><br>45<br>34<br>00<br>54<br>09<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c c} 3 \\ x=7.0 \\ \hline atrix \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{array} $                                                                                                                                                                                                                            | 0<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57                                                         | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00           3818)           06           0.96           0.89           0.66           1.75           2.05           1.00                                                                                       | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084                                                                                                                                                                                                                                                                                                                                    |
| 01<br>02<br>03<br>04<br>05                                           | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0                                                                     | 1<br>0<br>3<br>99<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74<br>)29 Cor<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3                                                                   | 0<br>asisten<br>0<br>2<br>08<br>00<br>75<br>07<br>31<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37<br>t (Laml<br>pportun<br>0<br>1.4<br>1.1<br>1.0<br>2.0<br>3.0<br>1.4                                                                                                                                              | 0.5<br>oda ma<br>iities m<br><b>3</b><br>45<br>34<br>00<br>54<br>09<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c c} 3 \\ x=7.0 \\ \hline atrix \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{array} $                                                                                                                                                                                                                            | 0<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57                                                         | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00           3818)           06           0.96           0.89           0.66           1.75           2.05           1.00                                                                                       | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084<br>0.084                                                                                                                                                                                                                                                                                                                           |
| 01<br>02<br>03<br>04<br>05                                           | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0                                                                     | 1<br>0<br>3<br>99<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74<br>)29 Cor<br>1.0<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3<br>1.1                                                     | 0<br>asisten<br>0<br>2<br>08<br>00<br>75<br>07<br>31<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37<br>t (Laml<br>pportun<br>0<br>1.4<br>1.1<br>1.0<br>2.0<br>3.0<br>1.4                                                                                                                                              | 0.5<br>oda ma<br>iities m<br><b>3</b><br>45<br>34<br>00<br>54<br>09<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c c} 3 \\ x=7.0 \\ \hline atrix \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{array} $                                                                                                                                                                                                                            | 0<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57                                                         | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00           3818)           06           0.96           0.89           0.66           1.75           2.05           1.00                                                                                       | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084<br>0.084                                                                                                                                                                                                                                                                                                                           |
| 01<br>02<br>03<br>04<br>05                                           | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0                                                                     | 1<br>0<br>3<br>99<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74<br>)29 Cor<br>1.0<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3<br>1.1                                                     | 0<br>asisten<br>0<br>2<br>08<br>00<br>75<br>07<br>31<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37<br>t (Laml<br>poportun<br>0<br>1.4<br>1.1<br>1.1<br>2.6<br>3.0<br>1.4<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1                                                                              | 0.5<br>oda ma<br>iities m<br><b>3</b><br>45<br>34<br>00<br>54<br>09<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c}     3 \\     x=7.0 \\     atrix \\     \hline     0 \\     0 \\     0 \\     0 \\     0 \\     1 \\     1 \\     0 \\     ax=6. \end{array} $                                                                                                                                                       | 0.:<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,                                              | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00           3818)           06           0.96           0.89           0.66           1.75           2.05           1.00                                                                                       | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084<br>0.084                                                                                                                                                                                                                                                                                                                           |
| 01<br>02<br>03<br>04<br>05                                           | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0                                                                     | 1<br>0<br>3<br>99<br>2<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.74<br>)29 Cor<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3<br>1.1<br>0008 Co                                                 | 0<br>asisten<br>0<br>2<br>08<br>00<br>75<br>07<br>31<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37<br>t (Laml<br>poportum<br>0<br>1.4<br>1.1<br>1.0<br>2.0<br>3.0<br>1.5<br>nt (Lam                                                                                                                                  | 0.5<br>oda ma<br>iities m<br><b>3</b><br>45<br>34<br>00<br>54<br>09<br>51<br>nbda m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c}     3 \\     x=7.0 \\     atrix \\     \hline     0 \\     0 \\     0 \\     0 \\     0 \\     1 \\     1 \\     0 \\     ax=6. \end{array} $                                                                                                                                                       | 0<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert                                      | 37<br>, RI=1.                                                                                                  | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00           3818)           06           0.96           0.89           0.66           1.75           2.05           1.00                                                                                       | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084<br>0.084                                                                                                                                                                                                                                                                                                                           |
| 01<br>02<br>03<br>04<br>05                                           | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0<br>CI                                                               | $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{3}{4}$ $R = 0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.74<br>)29 Cor<br>1.0<br>1.0<br>0.7<br>1.5<br>2.3<br>1.1<br>0008 Cc<br>2                                            | 0<br>osisten<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37<br>t (Laml<br>poportum<br>0<br>1.4<br>1.1<br>1.0<br>2.6<br>3.0<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1                                                                                | 0.5<br>oda ma<br>iities m<br><b>3</b><br>45<br>34<br>00<br>54<br>09<br>51<br>nbda m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c} 3 \\ atrix \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ ax=6. \\ ax = 6. \\ ax = 6. \\ bx of e \end{array} $                                                                                                                                                                                               | 0<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert                                      | 37<br>, RI=1.<br>perts<br>, RI=1.                                                                              | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49<br>24, Cl |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00           3818)           06           0.96           0.89           0.66           1.75           2.05           1.00           102)                                                                        | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084<br>0.098<br>0.048                                                                                                                                                                                                                                                                                                                  |
| 01<br>02<br>03<br>04<br>05<br>06                                     | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0<br>CI<br>T1                                                         | $ \frac{1}{9} $ $ \frac{3}{2} $ $ \frac{3}{4} $ $ R = 0.0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.74<br>)29 Cor<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3<br>1.1<br>0008 Co<br>2<br>49                                      | 0<br>osisten<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37<br>t (Laml<br>poportun<br>0<br>1.4<br>1.1<br>1.1<br>2.6<br>3.6<br>1.1<br>1.1<br>1.1<br>1.1<br>2.6<br>3.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1                                           | 0.5<br>oda ma<br>iities m<br><b>3</b><br>45<br>34<br>50<br>64<br>51<br>51<br>nbda m<br>ts matri<br><b>54</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 3 \\ x=7.0 \\ atrix \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ ax=6. \\ \hline x \text{ of } \epsilon \\ T5 \\ \end{array}$                                                                                                                                                                     | 0<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert                                      | 37<br>, RI=1.<br>perts<br>, RI=1.<br>s<br>T6                                                                   | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49<br>24, Cl | 18 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <          | 1.00         3818)         06         0.96         0.89         0.66         1.75         2.05         1.00         102)                                                                                          | 0.013<br>Weigh<br>0.046<br>0.043<br>0.032<br>0.084<br>0.098<br>0.048<br>Weigh                                                                                                                                                                                                                                                                                                         |
| 01<br>02<br>03<br>04<br>05<br>06<br>T1<br>T2                         | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0<br>CI<br>T1<br>1.00<br>2.03                                         | $     \begin{array}{c}       1 \\       10 \\       23 \\       3 \\       42 \\       3 \\       44 \\       R = 0.0 \\       \hline       T \\       0.4   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.74<br>)29 Cor<br>1.0<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3<br>1.1<br>0008 Co<br>2<br>49<br>00                         | 00<br>asisten<br>01<br>2<br>08<br>00<br>75<br>07<br>31<br>12<br>0.40<br>0.40<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.37<br>t (Laml<br>poportun<br>0<br>1.4<br>1.1<br>1.0<br>2.6<br>3.0<br>1.4<br>1.1<br>1.0<br>2.6<br>3.0<br>1.4<br>1.1<br>1.0<br>2.6<br>3.0<br>0.0<br>0                                                                  | 0.5           oda ma           ities m           3           45           34           00           64           09           51           mbda m           ts matri           174           42           86                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} (3) \\ x=7.0 \\ atrix \\ (0) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$                                                                                                                                                                                                                      | 0.:<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert<br>9                               | 37<br>perts<br>perts<br>, RI=1.<br>s<br>RI=1.<br>s<br>T6<br>0.54<br>1.10                                       | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49<br>24, Cl | 18 10.81 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00         3818)         O6         0.96         0.89         0.66         1.75         2.05         1.00         102)         T8         0.83         1.68                                                     | 0.013           Weigh           0.046           0.043           0.032           0.084           0.098           0.048           0.048           0.013           0.0143           0.0143           0.0143           0.0148           0.0148           0.0148           0.011           0.013                                                                                           |
| 01<br>02<br>03<br>04<br>05<br>06<br>T1<br>T2<br>T3                   | CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0<br>CH<br>T1<br>1.00<br>2.03<br>2.48                                 | $     \begin{array}{r}       1 \\       10 \\       13 \\       19 \\       12 \\       3 \\       14 \\       R = 0.0 \\       \hline       T \\       0.4 \\       1.0 \\       1.2 \\       \hline       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2$ | 0.74<br>)29 Cor<br>1.0<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3<br>1.1<br>0008 Co<br>2<br>49<br>00<br>22<br>2              | 00<br>01<br>03<br>01<br>02<br>02<br>03<br>00<br>07<br>07<br>07<br>07<br>07<br>07<br>07<br>07<br>07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.37<br>t (Laml<br>poportum<br>0<br>1.4<br>1.1<br>1.0<br>2.0<br>3.0<br>1.4<br>1.1<br>2.0<br>3.0<br>1.4<br>1.4<br>1.4<br>1.4<br>1.0<br>2.0<br>3.0<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4<br>1.4 | 0.5           oda ma           ities m           3           45           34           00           64           09           51           nbda m           ts matri <b>C4</b> 42           86           05                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 3 \\ x = 7.0 \\ a trix \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1$                                                                                                                                                                                                                            | 0.:<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert<br>9<br>0<br>8                     | 37<br>, RI=1.<br>perts<br>, RI=1.<br>, RI=1.<br>s<br>T6<br>0.54<br>1.10<br>1.34                                | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49<br>24, Cl | i8       i=0.00       i=0 | 1.00         3818)         06         0.96         0.89         0.66         1.75         2.05         1.00         102)         T8         0.83         1.68         2.05                                        | 0.013           Weigh           0.043           0.043           0.032           0.084           0.098           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048                                                                                                                 |
| 01<br>02<br>03<br>04<br>05<br>06<br>T1<br>T2<br>T3<br>T4             | CR:<br>CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0<br>CI<br>T1<br>1.00<br>2.03<br>2.48<br>2.36                  | $     \begin{array}{c}       1 \\       10 \\       23 \\       3 \\       4 \\       R = 0.0 \\       \hline       T \\       0.4 \\       1.0 \\       1.2 \\       1.1     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.74<br>)29 Cor<br>1.0<br>1.0<br>0.7<br>1.5<br>2.3<br>1.1<br>0008 Co<br>2<br>49<br>00<br>22<br>16                    | 00<br>asisten<br>01<br>2<br>08<br>00<br>75<br>07<br>31<br>12<br>0.31<br>12<br>0.40<br>0.82<br>1.00<br>0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.37<br>t (Laml<br>portun<br>0<br>1.4<br>1.1<br>1.1<br>2.0<br>3.0<br>1.1<br>1.1<br>Threat<br>0.0<br>0<br>0<br>1.4<br>1.1                                                                                               | 0.5           oda ma           iities m           3           45           34           00           54           09           51           nbda m           ts matrii           174           42           86           05           00                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 3 \\ x=7.0 \\ atrix \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1$                                                                                                                                                                                                                               | 0.:<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert<br>9<br>0<br>8<br>8                | 37<br>, RI=1.<br>berts<br>, RI=1.<br>s<br><b>T6</b><br>0.54<br>1.10<br>1.34<br>1.28                            | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49<br>24, Cl | i8       i=0.00       i=0 | 1.00<br>3818)<br>06<br>0.96<br>0.89<br>0.66<br>1.75<br>2.05<br>1.00<br>102)<br>T8<br>0.83<br>1.68<br>2.05<br>1.95                                                                                                 | 0.013           Weigh           0.046           0.043           0.032           0.084           0.098           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048                                                                                                 |
| 01<br>02<br>03<br>04<br>05<br>06<br>T1<br>T2<br>T3<br>T4<br>T5       | CR:<br>CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0<br>CI<br>T1<br>1.00<br>2.03<br>2.48<br>2.36<br>2.53          | $     \begin{array}{c}       1 \\       0 \\       3 \\       3 \\       3 \\       3 \\       4 \\       R = 0.0 \\       \hline       T \\       0.4 \\       1.0 \\       1.2 \\       1.1 \\       1.2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.74<br>)29 Cor<br>1.0<br>1.0<br>1.0<br>0.7<br>1.9<br>2.3<br>1.1<br>0008 Co<br>2<br>49<br>00<br>22<br>16<br>25       | 00<br>asisten<br>01<br>2<br>08<br>00<br>75<br>07<br>31<br>12<br>0.40<br>0.40<br>0.82<br>1.00<br>0.95<br>1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37<br>t (Laml<br>poportun<br>0<br>1.4<br>1.1<br>1.0<br>2.0<br>3.0<br>1.2<br>1.1<br>0.0<br>0.0<br>1.1<br>1.1<br>1.1                                                                                                   | 0.5           oda ma           iities m           3           45           34           00           54           09           51           mbda m           ts matri           142           86           05           00           07                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 3 \\ x=7.0 \\ atrix \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                | 0.:<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert<br>9<br>0<br>8<br>3<br>0           | 37<br>perts<br>perts<br>, RI=1.<br>s<br><b>T6</b><br>0.54<br>1.10<br>1.34<br>1.28<br>1.37                      | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49<br>24, Cl | <b>T7</b><br>0.81<br>1.65<br>2.01<br>1.92<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00         3818)         O6         0.96         0.89         0.66         1.75         2.05         1.00         102)         T8         0.83         1.68         2.05         1.95         2.10              | 0.013           Weigh           0.046           0.043           0.032           0.084           0.098           0.048           0.098           0.048           0.098           0.048           0.098           0.048           0.048           0.048           0.048           0.01           0.03           0.04           0.04           0.04                                      |
| 01<br>02<br>03<br>04<br>05<br>06<br>T1<br>T2<br>T3<br>T4<br>T5<br>T6 | CR:<br>CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.00<br>CH<br>T1<br>1.00<br>2.03<br>2.48<br>2.36<br>2.53<br>1.84 | $     \begin{array}{r}       1 \\       10 \\       13 \\       19 \\       12 \\       3 \\       14 \\       R = 0.0 \\       \hline       T \\       0.4 \\       1.0 \\       1.2 \\       1.1 \\       1.2 \\       0.9 \\       0.9 \\       1.1 \\       1.2 \\       0.9 \\       1.2 \\       1.1 \\       1.2 \\       0.9 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.1 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\       1.2 \\      $     | 0.74<br>)29 Cor<br>1.0<br>1.0<br>1.0<br>0.7<br>1.5<br>2.3<br>1.1<br>0008 Co<br>2<br>49<br>00<br>22<br>16<br>25<br>01 | 000<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>0100<br>01000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>000 | 0.37<br>t (Laml<br>portun<br>0<br>1.4<br>1.1<br>1.0<br>2.0<br>3.0<br>1.1<br>3.0<br>1.1<br>0.0<br>0.0<br>1.1<br>0.0<br>1.1<br>0.0                                                                                       | 0.5           oda ma           iities m           3           45           34           00           64           09           51           nbda m           ts matri           64           09           51           00           01           64           02           86           05           00           07           78 | 3       x=7.0       atrix of       0       0       0       0       0       1       0       1       0       1       0       1       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0.3'       0.8'       0.9'       0.9'       0.9'       0.0' | 0.:<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert<br>9<br>0<br>8<br>3<br>0<br>3      | 37<br>perts<br>perts<br>, RI=1.<br>perts<br>, RI=1.<br>s<br>T6<br>0.54<br>1.10<br>1.34<br>1.28<br>1.37<br>1.00 | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49<br>24, Cl | <b>T7</b><br>0.81<br>1.65<br>2.01<br>1.92<br>2.06<br>1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.00         3818)         06         0.96         0.89         0.66         1.75         2.05         1.00         102)         T8         0.83         1.68         2.05         1.95         2.10         1.52 | 0.013           Weigh           0.043           0.043           0.032           0.084           0.098           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.048           0.041           0.042           0.043           0.044           0.044 |
| 01<br>02<br>03<br>04<br>05<br>06<br>T1<br>T2<br>T3<br>T4<br>T5       | CR:<br>CR:<br>01<br>1.0<br>0.9<br>0.6<br>1.8<br>2.1<br>1.0<br>CI<br>T1<br>1.00<br>2.03<br>2.48<br>2.36<br>2.53          | $     \begin{array}{c}       1 \\       0 \\       3 \\       3 \\       3 \\       3 \\       4 \\       R = 0.0 \\       \hline       T \\       0.4 \\       1.0 \\       1.2 \\       1.1 \\       1.2     \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.74<br>)29 Cor<br>1.0<br>1.0<br>0.7<br>1.5<br>2.3<br>1.1<br>0008 Co<br>2<br>49<br>00<br>22<br>16<br>25<br>91<br>51  | 00<br>asisten<br>01<br>2<br>08<br>00<br>75<br>07<br>31<br>12<br>0.40<br>0.40<br>0.82<br>1.00<br>0.95<br>1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37<br>t (Laml<br>poortum<br>0<br>1.4<br>1.1<br>1.0<br>2.6<br>3.0<br>1.4<br>1.4<br>1.4<br>0.0<br>0.0<br>1.4<br>1.4<br>0.0<br>0.0<br>1.4<br>0.0<br>0.0                                                                 | 0.5           oda ma           iities m           3           45           34           00           54           09           51           mbda m           ts matri           142           86           05           00           07                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 3 \\ x=7.0 \\ atrix \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $                                                                                                                                                                                                                                | 0.:<br>2291,<br>of exp<br>04<br>.55<br>.51<br>.38<br>.00<br>.17<br>.57<br>0051,<br>expert<br>9<br>0<br>8<br>3<br>0<br>3<br>9 | 37<br>perts<br>perts<br>, RI=1.<br>s<br><b>T6</b><br>0.54<br>1.10<br>1.34<br>1.28<br>1.37                      | 0.5<br>32, Cl<br>0.47<br>0.43<br>0.32<br>0.85<br>1.00<br>0.49<br>24, Cl | <b>T7</b><br>0.81<br>1.65<br>2.01<br>1.92<br>2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.00         3818)         O6         0.96         0.89         0.66         1.75         2.05         1.00         102)         T8         0.83         1.68         2.05         1.95         2.10              | 0.013           Weigh           0.046           0.043           0.032           0.084           0.098           0.048           0.098           0.048           0.098           0.048           0.098           0.048           0.048           0.048           0.048           0.01           0.03           0.04           0.04           0.04                                      |

## APPENDIX–D: AHP matrices of experts

| SWOT Factors | [ALT 1] | [ALT 2] | [ALT 3] | [ALT 4] | [ALT 5] | [ALT 6] | <b>SWOT Factors</b> | [ALT 1] | [ALT 2] | [ALT 3] | [ALT 4] | [ALT 5] | [ALT 6] |
|--------------|---------|---------|---------|---------|---------|---------|---------------------|---------|---------|---------|---------|---------|---------|
| S1           | 4.86    | 5.82    | 4.67    | 3.32    | 3.45    | 3.00    | S1                  | 0.004   | 0.005   | 0.004   | 0.003   | 0.003   | 0.003   |
| S2           | 5.00    | 4.00    | 4.90    | 5.41    | 5.14    | 5.41    | S2                  | 0.007   | 0.006   | 0.007   | 0.008   | 0.007   | 0.008   |
| <b>S</b> 3   | 5.45    | 6.73    | 5.71    | 4.73    | 5.73    | 5.14    | <b>S</b> 3          | 0.005   | 0.006   | 0.005   | 0.004   | 0.005   | 0.005   |
| S4           | 6.59    | 5.00    | 5.57    | 4.55    | 4.36    | 5.91    | <b>S4</b>           | 0.010   | 0.008   | 0.009   | 0.007   | 0.007   | 0.009   |
| S5           | 3.41    | 6.59    | 5.86    | 4.36    | 4.36    | 4.36    | S5                  | 0.003   | 0.005   | 0.004   | 0.003   | 0.003   | 0.003   |
| <b>S6</b>    | 4.48    | 6.64    | 5.76    | 4.05    | 4.73    | 5.50    | <b>S6</b>           | 0.006   | 0.009   | 0.008   | 0.006   | 0.007   | 0.008   |
| W1           | 5.00    | 2.77    | 6.00    | 4.90    | 4.50    | 6.45    | W1                  | 0.002   | 0.001   | 0.003   | 0.002   | 0.002   | 0.003   |
| W2           | 4.14    | 5.86    | 6.09    | 3.59    | 3.77    | 4.50    | W2                  | 0.003   | 0.004   | 0.004   | 0.002   | 0.002   | 0.003   |
| W3           | 5.05    | 5.36    | 6.18    | 5.45    | 6.18    | 5.18    | W3                  | 0.005   | 0.005   | 0.006   | 0.006   | 0.006   | 0.005   |
| W4           | 5.29    | 4.59    | 4.86    | 3.27    | 3.27    | 4.00    | W4                  | 0.005   | 0.004   | 0.005   | 0.003   | 0.003   | 0.004   |
| W5           | 3.77    | 3.67    | 5.91    | 3.36    | 3.45    | 4.73    | W5                  | 0.005   | 0.005   | 0.008   | 0.005   | 0.005   | 0.007   |
| W6           | 4.09    | 5.36    | 5.45    | 4.68    | 5.05    | 5.36    | W6                  | 0.003   | 0.004   | 0.004   | 0.003   | 0.004   | 0.004   |
| W7           | 2.82    | 5.64    | 4.45    | 4.41    | 3.45    | 3.59    | W7                  | 0.001   | 0.003   | 0.002   | 0.002   | 0.002   | 0.002   |
| 01           | 4.62    | 6.09    | 4.95    | 3.09    | 3.64    | 4.05    | 01                  | 0.008   | 0.011   | 0.009   | 0.005   | 0.006   | 0.007   |
| 02           | 4.76    | 5.86    | 5.14    | 2.50    | 3.50    | 3.36    | 02                  | 0.008   | 0.010   | 0.009   | 0.004   | 0.006   | 0.006   |
| 03           | 5.52    | 4.18    | 5.18    | 4.76    | 4.82    | 5.55    | 03                  | 0.006   | 0.004   | 0.005   | 0.005   | 0.005   | 0.006   |
| 04           | 4.71    | 7.09    | 5.59    | 3.91    | 5.91    | 5.00    | 04                  | 0.012   | 0.018   | 0.015   | 0.010   | 0.015   | 0.013   |
| 05           | 5.05    | 5.45    | 5.82    | 5.23    | 5.64    | 5.59    | 05                  | 0.015   | 0.016   | 0.017   | 0.016   | 0.017   | 0.017   |
| O6           | 5.14    | 5.24    | 4.82    | 4.36    | 4.77    | 5.00    | <b>O6</b>           | 0.008   | 0.009   | 0.008   | 0.007   | 0.008   | 0.008   |
| T1           | 4.81    | 4.77    | 4.00    | 2.77    | 3.09    | 4.18    | T1                  | 0.004   | 0.004   | 0.003   | 0.002   | 0.003   | 0.003   |
| T2           | 2.62    | 2.27    | 2.68    | 2.95    | 2.77    | 3.00    | T2                  | 0.006   | 0.005   | 0.006   | 0.007   | 0.007   | 0.007   |
| T3           | 6.05    | 4.36    | 5.50    | 5.82    | 5.00    | 6.45    | Т3                  | 0.009   | 0.006   | 0.008   | 0.008   | 0.007   | 0.009   |
| T4           | 4.76    | 4.77    | 5.59    | 5.23    | 6.45    | 5.82    | T4                  | 0.007   | 0.007   | 0.008   | 0.007   | 0.009   | 0.008   |
| T5           | 4.14    | 4.55    | 5.05    | 3.55    | 3.45    | 4.64    | T5                  | 0.008   | 0.009   | 0.010   | 0.007   | 0.007   | 0.009   |
| T6           | 4.10    | 4.64    | 5.14    | 5.55    | 5.00    | 5.82    | T6                  | 0.005   | 0.005   | 0.006   | 0.007   | 0.006   | 0.007   |
| T7           | 2.10    | 2.43    | 2.77    | 2.55    | 1.59    | 2.14    | T7                  | 0.004   | 0.004   | 0.005   | 0.004   | 0.003   | 0.004   |
| T8           | 6.00    | 5.40    | 5.36    | 5.50    | 4.64    | 4.90    | T8                  | 0.004   | 0.004   | 0.004   | 0.004   | 0.003   | 0.004   |
|              |         |         |         |         |         |         | Total Weight        | 0.1640  | 0.1784  | 0.1817  | 0.1487  | 0.1576  | 0.1697  |
|              |         |         |         |         |         |         | Ranking             | 4       | 2       | 1       | 6       | 5       | 3       |

Performances of the strategy alternatives on SWOT factors from the view point of experts

Strategy evaluation matrix of local experts

Vol. 6 Issue 1 2014 http://dx.doi.org/10.13033/ijahp.v6i1.194

|            |                      | Local p              | riorities |              | Global priorities    |                      |         |              |  |  |
|------------|----------------------|----------------------|-----------|--------------|----------------------|----------------------|---------|--------------|--|--|
|            | Local<br>communities | Local<br>authorities | Experts   | CWM strategy | Local<br>communities | Local<br>authorities | Experts | CWM strategy |  |  |
| <b>S1</b>  | 0.006                | 0.010                | 0.022     | 0.011        | 0.001                | 0.001                | 0.005   | 0.002        |  |  |
| <b>S2</b>  | 0.022                | 0.020                | 0.042     | 0.026        | 0.002                | 0.002                | 0.009   | 0.003        |  |  |
| <b>S</b> 3 | 0.020                | 0.033                | 0.030     | 0.027        | 0.002                | 0.004                | 0.006   | 0.004        |  |  |
| <b>S4</b>  | 0.026                | 0.027                | 0.049     | 0.033        | 0.003                | 0.003                | 0.010   | 0.004        |  |  |
| <b>S</b> 5 | 0.012                | 0.009                | 0.022     | 0.013        | 0.001                | 0.001                | 0.005   | 0.002        |  |  |
| <b>S6</b>  | 0.017                | 0.018                | 0.043     | 0.024        | 0.002                | 0.002                | 0.009   | 0.003        |  |  |
| W1         | 0.015                | 0.015                | 0.013     | 0.014        | 0.004                | 0.003                | 0.002   | 0.003        |  |  |
| W2         | 0.033                | 0.018                | 0.017     | 0.022        | 0.009                | 0.004                | 0.003   | 0.005        |  |  |
| W3         | 0.048                | 0.025                | 0.034     | 0.034        | 0.013                | 0.006                | 0.005   | 0.007        |  |  |
| W4         | 0.050                | 0.030                | 0.024     | 0.033        | 0.014                | 0.007                | 0.004   | 0.007        |  |  |
| W5         | 0.046                | 0.053                | 0.035     | 0.044        | 0.013                | 0.012                | 0.005   | 0.009        |  |  |
| W6         | 0.048                | 0.044                | 0.022     | 0.036        | 0.014                | 0.010                | 0.003   | 0.007        |  |  |
| W7         | 0.041                | 0.036                | 0.013     | 0.027        | 0.011                | 0.008                | 0.002   | 0.006        |  |  |
| 01         | 0.010                | 0.013                | 0.046     | 0.018        | 0.002                | 0.003                | 0.016   | 0.005        |  |  |
| 02         | 0.040                | 0.030                | 0.043     | 0.037        | 0.009                | 0.006                | 0.015   | 0.009        |  |  |
| 03         | 0.052                | 0.046                | 0.032     | 0.042        | 0.011                | 0.009                | 0.011   | 0.010        |  |  |
| 04         | 0.040                | 0.031                | 0.084     | 0.047        | 0.009                | 0.006                | 0.029   | 0.012        |  |  |
| 05         | 0.040                | 0.051                | 0.098     | 0.058        | 0.009                | 0.010                | 0.034   | 0.015        |  |  |
| 06         | 0.033                | 0.032                | 0.048     | 0.037        | 0.007                | 0.006                | 0.017   | 0.009        |  |  |
| <b>T1</b>  | 0.014                | 0.021                | 0.019     | 0.018        | 0.006                | 0.010                | 0.006   | 0.007        |  |  |
| T2         | 0.057                | 0.040                | 0.039     | 0.045        | 0.023                | 0.018                | 0.011   | 0.017        |  |  |
| <b>T3</b>  | 0.067                | 0.087                | 0.048     | 0.065        | 0.027                | 0.040                | 0.014   | 0.025        |  |  |
| T4         | 0.067                | 0.109                | 0.046     | 0.070        | 0.027                | 0.050                | 0.013   | 0.026        |  |  |
| T5         | 0.045                | 0.039                | 0.049     | 0.044        | 0.018                | 0.018                | 0.014   | 0.017        |  |  |
| <b>T6</b>  | 0.063                | 0.097                | 0.036     | 0.060        | 0.025                | 0.045                | 0.010   | 0.022        |  |  |
| <b>T7</b>  | 0.029                | 0.012                | 0.024     | 0.020        | 0.012                | 0.005                | 0.007   | 0.007        |  |  |
| <b>T8</b>  | 0.058                | 0.054                | 0.023     | 0.042        | 0.023                | 0.025                | 0.007   | 0.016        |  |  |

## **APPENDIX–E:** SWOT priorities with respect to different stakeholder groups and CWM strategy

\* The SWOT priorities for the 'CWM strategy' are derived from the geometric means of three stakeholder group priorities.

| SWOT                          | Weight  | SWOT Factors |      | Local<br>Weight | Global<br>Weight | Strategy Alternatives |         |         |         |         |         |  |
|-------------------------------|---------|--------------|------|-----------------|------------------|-----------------------|---------|---------|---------|---------|---------|--|
|                               |         |              |      |                 |                  | SO                    |         | VO      | ST      | WT      |         |  |
|                               |         |              |      |                 |                  | [ALT 1]               | [ALT 2] | [ALT 3] | [ALT 4] | [ALT 5] | [ALT 6] |  |
| Strengths                     | 0,136   | <b>S1</b>    | 6    | 0,011           | 0,002            | 0                     | •       | •       | •       | •       | 0       |  |
|                               |         | S2           | 3    | 0,026           | 0,003            | 0                     | 0       | •       | •       | •       | •       |  |
|                               |         | <b>S</b> 3   | 2    | 0,027           | 0,004            | 0                     | ٢       | •       | •       | •       | 0       |  |
|                               |         | <b>S4</b>    | 1    | 0,033           | 0,004            | ۲                     | 0       | •       | •       | •       | 0       |  |
|                               |         | <b>S</b> 5   | 5    | 0,013           | 0,002            | •                     | •       | •       | •       | •       | •       |  |
|                               |         | <b>S</b> 6   | 4    | 0,024           | 0,003            | 0                     | 0       | •       | •       | •       | •       |  |
| Weaknesses                    | 0,214   | W1           | 7    | 0,014           | 0,003            | 0                     | 0       | •       | •       | •       | 0       |  |
|                               |         | W2           | 6    | 0,022           | 0,005            | 0                     | 0       | •       | •       | •       | 0       |  |
|                               |         | W3           | 3    | 0,034           | 0,007            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         | W4           | 4    | 0,033           | 0,007            | 0                     | 0       | •       | •       | •       | •       |  |
|                               |         | W5           | 1    | 0,044           | 0,009            | 0                     | 0       | •       | •       | •       | 0       |  |
|                               |         | W6           | 2    | 0,036           | 0,007            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         | W7           | 5    | 0,027           | 0,006            | 0                     | •       | •       | •       | •       | •       |  |
| Opportunities                 | 0,248   | 01           | 6    | 0,018           | 0,005            | 0                     | 0       | •       | •       | •       | 0       |  |
|                               |         | 02           | 4    | 0,037           | 0,009            | 0                     | 0       | •       | •       | •       | 0       |  |
|                               |         | 03           | 3    | 0,042           | 0,010            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         | 04           | 2    | 0,047           | 0,012            | 0                     | ۲       | •       | •       | •       | •       |  |
|                               |         | 05           | 1    | 0,058           | 0,015            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         | 06           | 5    | 0,037           | 0,009            | 0                     | •       | •       | •       | •       | •       |  |
| Threats                       | 0,374   | T1           | 8    | 0,018           | 0,007            | •                     | •       | •       | •       | •       | •       |  |
|                               |         | T2           | 4    | 0,045           | 0,017            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         | T3           | 2    | 0,065           | 0,025            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         | T4           | 1    | 0,070           | 0,026            | 0                     | •       | •       | •       | •       | 0       |  |
|                               |         | T5           | 5    | 0,044           | 0,017            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         | T6           | 3    | 0,060           | 0,022            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         | <b>T7</b>    | 7    | 0,020           | 0,007            | •                     | •       | •       | •       | ٠       | •       |  |
|                               |         | T8           | 6    | 0,042           | 0,016            | 0                     | •       | •       | •       | •       | •       |  |
|                               |         |              |      | Total           | Weight:          | 0,165                 | 0,169   | 0,174   | 0,161   | 0,164   | 0,168   |  |
|                               | Importa | n c e (%):   | 16,5 | 16,9            | 17,4             | 16,1                  | 16,4    | 16,8    |         |         |         |  |
|                               |         |              |      | R               | anking:          | 4                     | 2       | 1       | 6       | 5       | 3       |  |
| Degree of Relationship Graphi |         |              |      | Graphic Sy      | ymbol Number     |                       |         |         |         |         |         |  |
| No                            |         |              |      | · ·             |                  |                       |         | 0       |         |         |         |  |
| Very Weak                     |         |              |      | 0               |                  |                       |         | 1       |         |         |         |  |
| Weak                          |         |              |      | O               |                  |                       |         | 3       |         |         |         |  |
| Medium                        |         |              |      | 0               |                  |                       |         | 5       |         |         |         |  |
| Strong                        |         |              |      | •               |                  |                       |         | 7       |         |         |         |  |

APPENDIX-F: Strategy evaluation matrix for CWM strategy

Very Strong

9

| SWOT factors | [ALT 1] | [ALT 2] | [ALT 3] | [ALT 4] | [ALT 5] | [ALT 6] |
|--------------|---------|---------|---------|---------|---------|---------|
| S1           | 0.002   | 0.003   | 0.002   | 0.002   | 0.002   | 0.002   |
| S2           | 0.005   | 0.004   | 0.005   | 0.005   | 0.005   | 0.005   |
| <b>S</b> 3   | 0.004   | 0.005   | 0.005   | 0.004   | 0.005   | 0.004   |
| <b>S4</b>    | 0.006   | 0.005   | 0.006   | 0.005   | 0.005   | 0.006   |
| <b>S</b> 5   | 0.002   | 0.003   | 0.003   | 0.002   | 0.002   | 0.002   |
| <b>S6</b>    | 0.004   | 0.005   | 0.005   | 0.004   | 0.004   | 0.004   |
| W1           | 0.002   | 0.002   | 0.003   | 0.002   | 0.002   | 0.003   |
| W2           | 0.004   | 0.004   | 0.004   | 0.004   | 0.004   | 0.004   |
| W3           | 0.006   | 0.006   | 0.006   | 0.006   | 0.006   | 0.006   |
| W4           | 0.006   | 0.006   | 0.006   | 0.006   | 0.005   | 0.006   |
| W5           | 0.007   | 0.007   | 0.008   | 0.007   | 0.007   | 0.008   |
| W6           | 0.006   | 0.006   | 0.007   | 0.006   | 0.006   | 0.007   |
| W7           | 0.004   | 0.005   | 0.005   | 0.005   | 0.005   | 0.005   |
| 01           | 0.004   | 0.005   | 0.004   | 0.003   | 0.003   | 0.004   |
| 02           | 0.007   | 0.007   | 0.007   | 0.005   | 0.006   | 0.006   |
| 03           | 0.007   | 0.007   | 0.007   | 0.007   | 0.007   | 0.007   |
| 04           | 0.008   | 0.010   | 0.009   | 0.007   | 0.009   | 0.008   |
| 05           | 0.010   | 0.011   | 0.011   | 0.010   | 0.011   | 0.011   |
| O6           | 0.007   | 0.006   | 0.006   | 0.006   | 0.006   | 0.006   |
| T1           | 0.003   | 0.003   | 0.003   | 0.003   | 0.003   | 0.003   |
| T2           | 0.007   | 0.007   | 0.008   | 0.008   | 0.008   | 0.008   |
| Т3           | 0.011   | 0.010   | 0.011   | 0.012   | 0.011   | 0.012   |
| T4           | 0.012   | 0.012   | 0.013   | 0.012   | 0.013   | 0.012   |
| Т5           | 0.007   | 0.008   | 0.008   | 0.007   | 0.007   | 0.008   |
| T6           | 0.011   | 0.011   | 0.011   | 0.011   | 0.011   | 0.011   |
| T7           | 0.003   | 0.004   | 0.004   | 0.004   | 0.003   | 0.004   |
| T8           | 0.008   | 0.008   | 0.008   | 0.008   | 0.007   | 0.008   |
| Total Weight | 0.1645  | 0.1693  | 0.1739  | 0.1608  | 0.1635  | 0.1676  |
| Ranking      | 4       | 2       | 1       | 6       | 5       | 3       |

APPENDIX–G: Global weights for CWM strategy

#### REFERENCES

Arslan. E.T. (2010). Analitik hiyerarşi süreci yöntemiyle strateji seçimi: Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesinde bir uygulama. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 15(2), 455-477.

Babaoğlu. M. (2007). Beyşehir Gölü'nün sorunları ve alınması gereken önlemler [online]. <u>http://www.mehmetbabaoglu.gen.tr/beygolresim/beysehirraporu.pdf</u>. Accessed: 01.12.2009.

Beierle. T.C. (2002). The quality of stakeholder-based decisions. *Risk Analysis*, 22(4), 739–749.

Bonnell. J., & Baird. A. (2010). Community-based watershed management [online]. *http://ohioline.osu.edu/ws-fact/0001.html*. Accessed: 11.05.2010.

Çelik. N.. & Murat. G. (2008). Sayısallaştırılmış SWOT analizi ile Bartın İl'inin ekonomik yapısını değerlendirme [online]. 2. Ulusal İktisat Kongresi. (20-22 Subat 2008). Dokuz Eylül Üniversitesi İİBF İktisat Bölümü. İzmir. http://www.deu.edu.tr/userweb/iibf\_kongre/dosyalar/celik.pdf. Accessed: 25.02.2011.

DeSteiguer. J.E.. Duberstein. J.. & Lopes. V. (2003). The analytic hierarchy process as a means for integrated watershed management [online]. In: Renard. K.G.. McElroy. S.A.. Gburek. W.J.. Canfield. H.E. and Scott. R.L. (Eds). Proceedings of First Interagency Conference on Research in Watersheds. pp.737-740. US Department of Agriculture. Agricultural Research Service. http://www.tucson.ars.ag.gov/icrw/proceedings/steiguer.pdf.

Dwivedi. P. & Alavalapati. J.R.R. (2009). Stakeholders' perceptions on forest biomassbased bioenergy development in the Southern US. *Energy Policy*, *37*, 1999–2007.

Gürbüz. F. (2010). A'WOT analizi-Erciyes Üniversitesi Endüstri Mühendisliği Bölümü uygulaması [Online]. *Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi*. 26(4), 369-378.

Hacımenni. E. (1998). *Analitik hiyerarşi süreci ve bilişim teknolojisi kararlarında uygulanması*. İzmir. Dokuz Eylül Üniversitesi. Sosyal Bilimler Enstitüsü Doktora Tezi.

Kajanus. M. Kangas. J. & Kurttila. M. (2004). The use of value focused thinking and the A'WOT hybrid method in tourism management. *Tourism Management*, 25 (4), 499-506.

Kandakoğlu. A. I. Akgün. & Topçu. Y. I. (2007). Strategy development and evaluation in the Battlefield using quantified SWOT analytical method [online]. *9th International Symposium on the Analytic Hierarchy Process* (August 2-6 2007. Viña del Mar. Chile) Online Proceedings. http://chile2007.isahp.org/. Access: 01.01.2010.

Kangas. J. Kurttila. M. Kajanus. M. & Kangas. A. (2003). Evaluating the management strategies of a forestland estate - the S–O–S approach. *Journal of Environmental Management*, 69, 349-358.

Kangas. J., Pesonen. M., Kurttila. M., & Kajanus. M. (2001). A'WOT: Integrating the AHP with SWOT analysis [Online]. *Sixth International Symposium on the Analytic Hierarchy Process- ISAHP 2001* (August 2-4. 2001. Bern. Switzerland). 189-198. http://www.isahp.org/2001Proceedings/Papers/037-P.pdf. Access: 20.01.2011.

Kurttila. M. Pesonen. M. Kangas J. & Kajanus. M. (2000). Utilizing the analytic hierarchy process (AHP) in SWOT analysis - a hybrid method and its application to a forest-certification case. *Forest Policy and Economics*, *1*(*1*), 41-52.

Leskinen. L.A. Leskinen. P. Kurttila. M. Kangas. J. & Kajanus. M. (2006). Adapting modern strategic decision support tools in the participatory strategy process—a case study of a forest research station. *Forest Policy and Economics* 8(3), 267-278.

Margerum. R.D. (1999). Integrated environmental management: the foundations for successful practice. *Environmental Management*, 24(2), 151–166.

Masozera. M.K. Alavalapati. J.R.R. Jacobson. S.K. & Shrestha. R.K. (2006). Assessing the suitability of community-based management for the Nyungwe Forest Reserve. Rwanda. *Forest Policy and Economics*, 8(2), 206-216.

Mikhailov. L. (2000). A fuzzy programming method for deriving priorities in the analytic hierarchy process. *Operational Research Society*, *51*(*3*), 341-349.

Mirchi. A. Watkins. D. Jr. & Madani. K. (2010). Modeling for watershed planning. management. and decision making. In: *Watersheds: management. restoration and environmental impact.* Jeremy C. Vaughn (Ed). Environmental Science. Engineering and Technology Series. e-book. ISBN: 978-1-61209-295-9. http://www.kysq.org/docs/Mirchi\_Watershed.pdf.

Osuna. E.E. & Aranda. A. (2007). Combining SWOT and AHP techniques for strategic planning [Online]. 9th International Symposium on the Analytic Hierarchy Process (August 2- 6 2007. Viña del Mar. Chile) Online Proceedings. 1-8. http://chile2007.isahp.org/. Accessed: 01.01.2010.

Pesonen. M., Kurttila. M., Kangas. J., Kajanus. M., & Heinonen. P. (2001). Assessing the priorities using A'WOT among resource management strategies at the Finnish Forest and Park Service. *Forest Science*. 47 (4). 534-541.

Qianxiang. L. Igbokwe. K.N. & Jiayong. L. (2005). Community-based integrated watershed management [online]. *www.paper.edu.cn/index.php/.../journal-1004-2857(2005)01-0060-05*. Accessed: 03.04.2010.

Saaty. T.L. (2001). Fundamentals of the analytic hierarchy process. In *The analytic hierarchy process in natural resource and environmental decision making*. Schmoldt. D.L., Kangas, J. Mendoza, G.A. & Pesonen, M. (Eds). Netherlands: Kluwer Academic Publishers.

Saaty. T.L. (2003). Decision Aiding Decision-making with the AHP: Why is the principal eigenvector necessary. *European Journal of Operational Research*, *145*, 85–91.

Saaty. T.L. (2008). Decision making with the analytic hierarchy process. *International Journal of Services Sciences*, 1(1), 83-98.

Saaty. T.L.. & Vargas. L.G. (2001). *Models. methods. concepts and applications of the analytical hierarchy process.* Dordrecht. Netherlands: Kluwer Academic Publisher.

Sharma. B.R.. Samra. J.S.. Scott. C.A.. & Wani. S.P. (Eds.) (2005). *Watershed Management Challenges: Improving Productivity. Resources and Livelihoods*. Colombo. Sri Lanka: International Water Management Institute, 336.

Shinno. H. Yoshioka. H. Marpaung. S. & Hachiga. S. (2006). Quantitative SWOT analysis on global competitiveness of machine tool industry. *Journal of Engineering Design*, 17(3), 251-258.

Shrestha. R.K. Alavalapati. J.R.R. & Kalmbacher. R.S. (2004). Exploring the potential for silvopasture adoption in south-central Florida: An application of SWOT-AHP method. *Agricultural Systems*, *81*, 185-199.

Srdjevic Z. Bajcetic. R. & Srdjevic B. (2012). Identifying the criteria set for multicriteria decision making based on SWOT/PESTLE analysis: a case study of reconstructing a water intake structure. *Water Resources Management*, *26*(*12*), 3379-3393.

Srdjevic. B. (2005). Combining different prioritization methods in the analytic hierarchy process synthesis. *Computers & Operations Research, 32*, 1897-1919.

Stewart. A.R. Mohamed. S. & Daet. R. (2002). Strategic implementation of IT/IS projects in construction: A case study. *Automation in Construction*, *11*, 681-694.

Taşkın. A. & Güneri. A.F. (2005). Strateji geliştirmede A'WOT hibrit metodu kullanımı ve Türk kimya sektöründe bir uygulama çalışması [Online]. V. Ulusal Üretim Araştırmaları Sempozyumu. (İstanbul Ticaret Üniversitesi. 25-27 Kasım 2005). 503-507. http://www.iticu.edu.tr/kutuphane/pdf/uas/M01071.pdf. Accessed: 06.04.2011.

Teknomo. K. (2006). Analytic hierarchy process (AHP) Tutorial, <u>http://people.revoledu.com/kardi/tutorial/AHP/Consistency.htm</u>. Accessed: 11.01.2010.

Weihrich. H. (1982). The TOWS matrix-a tool for situational analysis. Long Range Planning, 15(2), 54-66.

Wickramasinghe. V. (2008). Analytical tourism disaster management framework for sustainable tourism following a sudden calamity [Online]. PhD dissertation. Division of Engineering and Policy for Cold Regional Environment. Hokkaido University. Japan. *http://133.87.123.206/e3/alumni/abstract/Vasantha.pdf*. Accessed: 11.01.2010.

Wickramassinghe. V. & Takano. S. (2009). Application of combined SWOT and Analytic Hierarchy Process (AHP) for tourism revival strategic marketing planning: a case of Sri Lanka Tourism. *Journal of the Eastern Asia Society for Transportation Studies*, *8*, 954-969.

Yılmaz. E. (2007). A'WOT tekniği kullanarak katılımcı yaklaşımla proje değerlendirmesi [online]. *Doa Dergisi (Journal of Doa). 13.* 1-16. Doğu Akdeniz Ormancılık Araştırma Müdürlüğü. Mersin. www.doa.gov.tr/doadergisi/doa13/AWOT%20.pdf. Accessed: 25.02.2011.