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ABSTRACT 

 

The Analytic Hierarchy Process (AHP) is the widely known method and methodology of 

multiple criteria decision making, which enriches many other areas of mathematical and 

statistical data analysis. This work considers an extension of AHP hierarchical structuring 

by incorporating it into another method of prioritization known in marketing research as 

Best-Worst scaling (BWS). BWS is used for finding choice probabilities among the 

compared items, but when there are a large number of items it is rather difficult to apply 

this approach directly to all the items. The AHP methodology of hierarchical structuring 

and estimation of local priorities that are then synthesized into global preferences permits 

one to build BWS nested models to facilitate choice evaluations. For instance, the 

compared items can be divided into several subsets by the criteria of brand, size, 

packaging, etc. The BWS balanced designs and data eliciting procedure can be applied to 

each of these groups separately, with additional comparisons among the criteria. 

Synthesizing local choice probabilities by the priorities of the criteria yields global 

probabilities for the items of choice. In this paper we also apply another simple approach, 

the so-called “secretary problem” from the operations research field, for comparison. 

Numerical results demonstrate that these techniques can be very useful for prioritization 

problems in marketing research where there are a large number of items. 
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1. Introduction 

The Analytic Hierarchy Process (AHP) is the widely known method for multiple criteria 

decision making introduced by Thomas Saaty (1980), which has been developed and 

applied in numerous works (Saaty 1994, 1996, 2000; Golden et al., 1989; Saaty and 

Peniwati, 2012; Lipovetsky, 1996, 2009, 2010, 2011, 2013). The relation of AHP to other 

methods of decision theory has been studied in various works. Comparing AHP with 

multi-attribute utility theory (MAUT) can be found in Saaty (1980), Belton (1986), 

Vargas (1987), Winkler (1990) and Gass (2005). Practical utility estimations are usually 

performed in discrete choice modeling (DCM) for finding utility parameters and choice 

probabilities via multinomial-logit (MNL) models (McFadden, 1973, 1981; McFadden 

and Richter, 1990; Train, 2003). The comparison between AHP and the DCM conjoint 

models used in marketing research have been carried out in various studies (Mulye, 1998; 
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Scholl et al., 2005; Meißner et al., 2008, 2010; Scholz et al., 2007, 2010; Kallas et al., 

2007, 2011; Ijzerman et al., 2012). The main conclusion of those works is that although 

the methods differ the resulting preference structures are pretty similar on the aggregate 

level, and on the individual level the AHP often demonstrates higher accuracy in choice 

prediction. 

 

The current work notes the possibility of extending the hierarchical structure used in 

AHP to another method for prioritizing items, namely, the Best-Worst Scaling (BWS), 

also known as the Maximum Difference (MaxDiff) approach. BWS is a contemporary 

technique widely used in marketing research for estimating choice probabilities for many 

items. It was proposed by Jordan Louviere (1991, 1993), and advanced in numerous 

works (for instance, Louviere et al., 2000; Marley and Louviere, 2005; Sawtooth 2007; 

Orme, 2010). In BWS, each respondent is presented with several subsets of a few items by 

way of a balanced design. A respondent answers which of the presented items is the best and 

which is the worst, and individual utilities are estimated in BWS using multinomial logit 

(MNL) modeling. Averaging the individual choice probabilities that were found yields 

the aggregated probabilities. The latter ones can be evaluated by the analytical formulae 

in the closed-form solution (Lipovetsky & Conklin, 2014a,b). 

 

Hierarchically structured BWS is similar to the nested logit of the generalized extreme 

value (GEV) models which have a rich elasticity structure in comparison with regular 

DCM (Ben-Akiva & Lerman, 1985; Wen & Koppelman, 2001; Hensher et al., 2005). The 

hierarchical approach to the choice based-conjoint (CBC) models widely used in 

marketing research corresponds to the adaptive choice based-conjoint (ACBC) models 

used for eliciting sequential data by comparing the best choices from the previous subsets 

of the items (Orme, 2006; Chrzan & Yardley, 2009; Netzer & Srinivasan, 2011; Wirth & 

Wolfrath, 2012; Sawtooth Software, 2014). In contrast to GEV and ACBC, the suggested 

approach using AHP requires neither a complicated actual nesting of MNL models, nor a 

complex scheme of data eliciting, so it is free of their computational burdens. 

 

 

2. AHP combined with BWS 

This work considers AHP combined with BWS, so let us call this technique AHP-BWS. 

The AHP is used not in its entire methodological approach but only in its hierarchical 

structuring of the items under comparison, composing the local preferences into the 

global ones by weighting them by the importance of the criteria. A hierarchical 

configuration can be outlined by scrutinizing the connections among the alternatives in order 

to combine them into groups of different criteria. Often the compared BWS items can be 

divided into several subsets, for instance, by the criteria of brand, size, packaging, etc. 

Then, the BWS balanced design plans and data eliciting procedure can be applied to each 

of those subsets separately, with an additional BWS comparison among the criteria 

themselves. Synthesizing the local subsets of priorities weighted by the criterion 

preferences yields the global choice probability for all the items. AHP-BWS structuring 

can be especially useful for data with many dozens of items, because dividing them into 

relatively small subgroups significantly facilitates the difficulties of balanced designs, 

data elicitation and estimation. Possible optimal parameters of the hierarchy can be 
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evaluated for assembling a structure with the minimum number of needed comparisons 

among the alternatives and criteria (Lipovetsky, 2006).  

There always could be research problems requiring BWS estimation for a very large 

number of items, say, a hundred items for prioritization evaluated by thousands of 

responses. For such situations another approach is useful – it is based on what is known 

in operations research as the “secretary problem”, also called the best choice problem, 

and related to the hiring and finite horizon algorithms (Chow et al., 1964; Presman & 

Sonin, 1972; Vanderbei, 1980; Rose, 1982; Freeman, 1983; Petruccelli, 1984; Samuels, 

1985; Ferguson, 1989; Stein et al., 2003; Bearden, 2006). In this paper we will show that 

results by different techniques are close to each other, and produce similar rankings 

among the choices. This means that the simple techniques can be successfully 

implemented on large data sets to serve various practical aims of managerial decisions in 

marketing research. 

 

For an explicit example, let us use data from a real marketing research project with 3,062 

respondents who evaluated seventeen products. Each respondent received ten tasks of a 

balanced design of four items shown together, of which they were to indicate which items 

are the best and the worst ones.  

Using responses only on the choice of the “Best” item, the data can be modeled in a 

DCM approach. As is well known in DCM applications, each task can be presented in 

several rows, by the number of the items shown in one task, and such an extended matrix 

of data is completed with the additional column of the binary outcome where the “best” 

of these items is indicated by the value 1, and other values equal zero (more detail in 

Lipovetsky and Conklin, 2014a,b). DCM corresponds to a choice among several 

outcomes and can be described by a multinomial-logit model with the probability of a 

choice presented as the following: 
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where xj are the variables of binary values indicating it was a j-th item shown to an i-th 

respondent in a given set or not. The parameters ak are the so-called utilities defining the 

probability of each k-th choice among all m of them, and the Pk are the binary outcome 

values of the “best” choice. When ak in Equation 1 are estimated, the probabilities of 

different choices are found by this MNL model.  

Repeating the DCM design for the “Worst” item chosen, we also obtain four rows for 

each task, and the outcomes indicated with a value that marks which item is the worst 

choice. DCM problem of the worst choice item uses the same approach as in Equation 1. 

For a simultaneous estimation of all the best and worst choices in one combined data set 

the following property is applied: if we change the signs of all predictors then the choice 

probability defines the absence of a binary event. It means that the design variables in the 

matrix of the “worst” choices can be taken with a negative sign, keeping the outcome the 

same as it already is. Then in BWS, the “best” and “worst” matrices, together with the 

corresponding outcome variable of the choices, can be stacked by rows into one 

combined dataset. With such a design, the positive and negative values of the binary 

predictors will push the outcomes with the values of 1 to the sides of the maximum and 
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minimum choice probability, respectively. Then the HB-MNL model produces individual 

parameters for each respondent. Averaging the individual choice probabilities yields the 

total choice preferences of the alternatives under consideration. Finding utilities and 

choice probabilities can be performed using specialized software, (for instance, Sawtooth 

Software, 2007). 

As it is shown in Lipovetsky and Conklin (2014a the estimation of the choice probability 

on the aggregate level is possible in the Closed-Form Analytical Solution (let us denote it 

as CFANS). With counts of the “best” and “worst” choices best

jN  and worst

jN , proportions 

of the best and worst choices in total 
jN  are 

j

worst

j

worst
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choice probability (Equation 1) for each item is given by the CFANS formula: 
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where in an i-th row the value is xij=1 if the j-th item is presented and xij=0 if it is absent. 

 

Consider this problem using the AHP-BWS approach. Suppose the products belong to 

three brands, so they can be put into three buckets. As shown in Table 1, in this example 

there are 6, 7, and 4 items in the 1
st
, 2

nd
, and 3

rd
 bucket, respectively. Instead of using 

BWS applied to all 17 items, we gather BWS data for each bucket separately, plus one 

additional set of comparisons among the buckets themselves.  

This significantly reduces the number of tasks, that is, the combinations of items, 

presented to each respondent. Indeed, there are 2,380 combinations from 17 by 4, so it is 

impossible to present all of them to each respondent, and only a small portion of those 

combinations would be found in an optimum design to be shown to respondents. On the 

other hand, to implement a hierarchical structure with the items considered within each 

category, in the first bucket there are 15 combinations from 6 by 4, so it is even possible 

to present them all, or at least most of them, to each respondent. Also, in the second 

bucket there are 35 combinations from 7 by 4, so it is possible to present at least half of 

them to each respondent. And in the third bucket there is only 1 combination from 4 by 4, 

so it can be presented to each respondent.  

For the higher level bucket of comparisons between the three categories, all three 

alternatives can be shown to each respondent in only one task. Thus, the total number of 

tasks can be small, but at the same time most of combinations for choices can be shown 

and checked with each respondent. It makes all the estimation of utilities and choice 

probabilities more reliable in comparison with a regular non-structured BWS approach.  
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Table 1 

Choice probability within and between buckets, in bucket order 

 

  

Frequency in buckets Bucket AHP-BWS 

Bucket Items 

Best 

item 

Worst 

item 

Hit  

Rate  

choice 

preference 

item choice 

probability 

1 1 0.224 0.173 0.525 0.255 0.043 

1 4 0.425 0.146 0.640 0.255 0.054 

1 10 0.257 0.097 0.580 0.255 0.048 

1 11 0.042 0.715 0.164 0.255 0.012 

1 12 0.365 0.098 0.633 0.255 0.054 

1 16 0.099 0.500 0.300 0.255 0.023 

2 2 0.050 0.220 0.415 0.411 0.058 

2 3 0.762 0.005 0.879 0.411 0.158 

2 5 0.316 0.165 0.576 0.411 0.087 

2 6 0.035 0.613 0.211 0.411 0.027 

2 7 0.281 0.151 0.565 0.411 0.085 

2 9 0.252 0.131 0.560 0.411 0.084 

2 14 0.052 0.585 0.234 0.411 0.030 

3 8 0.027 0.440 0.294 0.334 0.031 

3 13 0.807 0.029 0.889 0.334 0.118 

3 15 0.083 0.335 0.374 0.334 0.040 

3 17 0.082 0.196 0.443 0.334 0.049 

 

Table 1 shows the choice proportions of the best and worst items, and the hit rate 

(described with Equation 2), or the absolute choice probability of each of the items, 

separately defined within each bucket. The next column in Table 1 shows the preferences 

between different buckets, and their product with the hit rate normalized by one is 

presented in the last column of the synthesized AHP-BWS choice probabilities.  

 

Besides BWS, the following estimation for the “secretary problem” (SP), of operations 

research is possible. Briefly, SP can be described as the optimum strategy to maximize 

the probability of finding the best item when a subset of them is presented to the decision 

maker. As is known, the best choice in SP is given by the stopping rule of n/e subsamples 

(n is total number of items, and e is the base of natural logarithm), and picking the next 

outperforming item. It can also be seen in terms of the Gumbel 

distribution    uxaxxF n  expexp)( , where xn is the maximum x from a 

sample of size n, a is the scaling parameter reciprocal to the standard deviation, and u is 

the mode of this distribution, so x-u is the error term. Each unobserved component of 

utility in the discrete choice model in defined by the Gumbel distribution, and the 

difference between two extreme value variables is the logistic distribution (McFadden, 

1973; Train, 2003). The point of mode x = u Gumbel distribution yields 

   37.0/10expexp)(  euxF n . In practical terms, it means that for many 

items we need to consider only about n/e number of them. In the case of many items, we 

can present to each respondent only one subset of about 0.37*n items and ask which 
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items are the best and worst ones. Then, estimation for the utilities and choice 

probabilities can be performed using the BWS approach. 

 

For the example using the data described above, Table 2 presents the results of regular 

BWS in comparison with the new approaches. For all the items this table shows the 

analytical solution for choice probability, then the probability obtained by Sawtooth 

software and by its adjustment advised in BWS applications for smoothing (Sawtooth 

Software, 2007). In the final two columns, the results of the secretary problem and of 

AHP-BWS are shown. The results vary across the techniques but in general the order of 

prioritization remains almost the same, especially for the higher probabilities that are the 

most important items. Sawtooth results are skewed towards the best choices, but the 

adjustment makes them more evenly distributed, and the analytical estimations are 

between them. The results of the Secretary Problem (SP) and AHP-BWS are close to 

each other and to the Sawtooth Adjusted results. 

 

Table 2 gives the choice probability estimates. Table 3 presents the regular pair 

correlations between the vectors of priorities, that is, the columns of Table 2. For 

instance, the correlation between the Analytical and Sawthooth columns is 0.989, or the 

correlation between Secretary Problem and AHP-BWS equals 0.894. So we see that for 

the suggested techniques of analytical calculations, AHP-BWS, and SP produce very 

similar solutions, although they require much less effort to elicit data and estimate 

priorities than the regular BWS estimations using specialized software. 

 

Table 2  

Choice probability estimates 

 

item Analytical Sawtooth 

Sawtooth 

Adjusted 

Secretary 

Problem(SP) 

AHP-

BWS 

1 0.048 0.026 0.051 0.065 0.043 

2 0.031 0.013 0.031 0.034 0.058 

3 0.256 0.425 0.153 0.166 0.158 

4 0.069 0.052 0.108 0.091 0.054 

5 0.066 0.067 0.088 0.072 0.087 

6 0.016 0.006 0.021 0.019 0.027 

7 0.047 0.022 0.083 0.051 0.085 

8 0.026 0.002 0.014 0.026 0.031 

9 0.061 0.048 0.089 0.081 0.084 

10 0.041 0.016 0.047 0.055 0.048 

11 0.011 0.001 0.005 0.010 0.012 

12 0.068 0.056 0.077 0.085 0.054 

13 0.143 0.221 0.135 0.130 0.118 

14 0.024 0.013 0.021 0.031 0.030 

15 0.028 0.008 0.023 0.026 0.040 

16 0.029 0.016 0.022 0.032 0.023 

17 0.036 0.008 0.031 0.028 0.049 
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Table 3 

Correlations between the columns of choice probability estimates 

 

 

Analytical Sawtooth 

Sawtooth 

Adjusted 

Secretary 

Problem 

AHP-

BWS 

Analytical 1 0.989 0.860 0.934 0.907 

Sawtooth 

 

1 0.801 0.888 0.875 

Sawtooth Adjusted 

  

1 0.959 0.911 

Secretary Problem 

  

1 0.894 

AHP-BWS 

    

1 

 

      

3. Summary 

This paper considered an extension of the AHP methodology of hierarchical structuring 

into the area of the Best-Worst Scaling used in marketing research for choice probability 

estimation of multiple items. The compared items can be divided into several subsets by 

the criteria of brand, size, packaging, etc., then the BWS balanced design plans and data 

eliciting are applied to each of the subsets separately, and BWS comparison among the 

criteria themselves is added. Synthesizing the local subset priorities by the preferences 

among the criteria yields the global choice probabilities of the items. Another approach is 

based on the so-called secretary problem known in operations research. The results by the 

new approaches are close to the standard evaluations, but require much less effort to 

evaluate. AHP enriches the BWS technique, and the proposed methods are especially 

useful for working with a large number of items. This approach can be extended to other 

marketing research techniques. 
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