AN ANALYTICAL HIERARCHY PROCESS APPROACH FOR A COVID-19 RISK ASSESSMENT STUDY AMID THE LATEST RE-OPEN AND UNLOCK PHASE IN INDIA

Arpan Garg Research scholar; Dept. of Mathematics & Scientific Computing National Institute of Technology Hamirpur, India arpan1996garg@gmail.com

Talari Ganesh Assistant Professor; Dept. of Mathematics & Scientific Computing National Institute of Technology Hamirpur, India <u>ganimsc2007@gmail.com</u>

ABSTRACT

The long duration of the COVID-19 pandemic has now compelled people to come out of their cells and begin engaging in various activities using different modes and in different places, which involves a high risk of being infected by COVID-19. This work aims to analyze the degree of the risk involved in such activities with the implementation of the latest re-open and unlock phase in India, the second most COVID-19 affected country. Seven important activities and the mode and place of conducting these activities are considered as the main criteria and sub-criteria of this study. The responses are formed with a pairwise comparison matrix, and an Analytical Hierarchy Process (AHP) approach is used to calculate the criteria/sub-criteria weights. An integrated AHP analysis output representation consisting of the degree of risk, grades, ranking, and major reasons of risk for each criterion and sub-criteria of this work is presented. This risk assessment study may help identify risky activities so that people can choose other available alternatives.

Keywords: COVID-19; AHP; risk assessment; MCDM; Decision-making

1. Introduction

The novel corona virus (COVID-19), or Syndrome Corona Virus-2 (SARS-CoV-2), originated in Wuhan City of Hubei province in China and has become a worldwide pandemic (Wang et al., 2020). The common symptoms of COVID-19 include dry cough, fever, malaise, and headache (Wang et al., 2020) which are normal symptoms of sickness as the seasons change which makes it tedious to verify unless a check-up for COVID-19 is done. The WHO has found that an infected person can transmit the virus to others who are within 6 feet. However, recent studies have found that possible virus transmission can occur over a distance of 2 meters (Setti et al., 2020). As of 10:10 GMT, October 10, 2020, Worldometer (2020) had reported over 37,155,642 confirmed cases including 1,073,338 deaths worldwide. According to the registered data, the United States of America, Brazil and India are most COVID-19 affected nations. To prevent a possibly

more critical situation, the government of India ordered a nationwide lockdown (2020) on March 24, 2020 which initially came into force for 21 days starting on March 25, 2020 (Lockdown implementation order, 2020). Due to the lockdown implementation, all important but non-essential activities such as traveling, gathering, use of delivery services, entertainment activities, and many other important activities from a financial point of view were stopped. In order to maintain social distancing, a series of unlock phases was soon started due to the financial and management requirements.

Phase 4 re-open and unlock was announced through the Ministry of Home Affairs website on August 29, 2020, which allows various activities to take place with some restrictions. The exponential increase in the number of cases and casualties has become a major concern for all the health bodies including the WHO and the Indian Council for Medical Research (ICMR) because for the last few days, India has continuously recorded more than 75,000 cases per day (Worldometer, 2020).

The easing of restrictions for conducting various essential activities that was issued in the latest phase of unlock guidelines are applicable to more than 1.38 billion citizens of India (Population of India, 2020) which potentially increases the COVID-19 risk. This situation has motivated the authors to conduct a risk assessment study for many important daily life activities. This study aims to calculate the risk involved in many activities that are likely to take place in this phase of unlock. In this work, the authors tried to list various activities, and the mode and place of conducting these activities with their relative risk of COVID-19 infection. The authors have applied the Analytical Hierarchy Process (AHP) with the row geometric mean method (Crawford and Williams, 1985) to calculate relative risk weights of the main criteria and sub-criteria. The activities and mode or place of conducting an activity are considered as criteria and sub-criteria, respectively in this study. The risk weight of the criteria/sub-criteria helps identify extremely risky activities.

2. Focus of the work

SARS-CoV-2 has become one of the worst healthcare emergencies that does not yet have a promising treatment or vaccination available, which makes a relative risk assessment of various activities and the places of conducting these activities very important to minimize the fatal growth rate of infections. This work highlights seven main activities that are necessary for normal living and likely to take place in response to the latest re-open and unlock phase. The seven activities include job, shopping, gathering, entertainment, traveling, residency, and utilizing delivery services and have been listed as our main criteria. The various modes and places of conducting these activities based on their expected strength and possibility of contact with different people are considered as the sub-criteria of this study. The main criteria and sub-criteria with their notations are listed in Table 1.

In this work, the standard layer hierarchy and the proper hierarchical structure representing all of the main criteria and sub-criteria of this study are respectively shown in Figures 1 and 2. The analyzed risk of conducting the main activities are listed in Table 2 and the cumulative risk weight, ranking, and description as well as the major factors and reasons are discussed in Table 3. This work helps people understand the risk involved in the mode of conducting an activity at some particular place so that available

alternatives can be considered or the activity can be avoided. It is important to remain safe and clear during this pandemic period.

Criteria	Sub-criteria
Job A_1	Hospital A_{11} , Government office A_{12} , Private office A_{13}
Shop A_2	Grocery store A_{21} , Vendor A_{22} , Shopping mall A_{23}
Gathering A_3	Marriage ceremony A_{31} , Cremation ceremony A_{32} , Conference
	and seminar A_{33} , Worship place A_{34}
Entertainment A_4	Stadium A_{41} , Movie hall A_{42} , Zoo and water park A_{43}
Traveling A_5	Personal vehicle A_{51} , Bus, Train and Taxi A_{52} ,
	Airline and ship A_{53}
Residency A_6	Joint family A_{61} , Nuclear family A_{62} , Hosteller A_{63}
Utilizing delivery Services A_7	Food delivery A_{71} , E-commerce A_{72}

Table 1 Main criteria and their sub-criteria

3. AHP solution

The Analytical Hierarchy Process (AHP), developed by Saaty (1977), is a highly practical procedure that helps solve complex multicriteria decision making (MCDM) problems. The AHP hierarchy structure is a three layer structure (Chaiyaphan and Ransikarbum, 2020) as shown in Figure 1, where the top, middle and final layer of the hierarchy structure are i) Goal or Target ii) Criteria, Sub-criteria (if any), and iii) Possible choice or solution to the problem, respectively.

Figure 1 Hierarchy structure of AHP

The AHP has widely been used in healthcare, risk assessment, construction, supply chain, automotive, and many other fields by researchers and statisticians. Simon et al. (2019) applied the AHP model for priority analysis of various strategies for malaria control. Improta et al. (2019) applied the AHP for health technology assessment (HTA) of optoelectronic biosensors for oncology. Rajak and Shaw (2019) performed an AHP analysis for evaluation and selection on mobile health (mHealth) applications. Also, the AHP has been an impressive support system for researchers in risk assessment studies. Lyu et al. (2020) used Fuzzy AHP in the risk assessment of mega city infrastructure, and Rivera et al. (2020) applied the AHP to study the risk factors for the spread of COVID-19 in Peru.

The application of the AHP requires the sequential fulfillment of several major steps (Rosenbloom, 1997) listed below:

- 1. Break down the problem into a hierarchy of a finite number of decision elements.
- 2. Compute the pairwise comparison values for all possible pairs of criteria at every level of the hierarchy structure and construct a pairwise comparison matrix with tolerable inconsistency. According to Saaty (1977), the degree of inconsistency can be measured using the expressions given below:

$$CI = \frac{\lambda_{\max} - n}{n - 1}$$
$$CR = \frac{CI}{RI}$$

where, *CI* is the consistency index; λ_{max} is the largest Eigen value; *n* is the number of criteria; *CR* is the consistency ratio, and a *RI* value 0.58, 0.9 and 1.32 for n = 3, 4 and 7 respectively, is the suggested random index value (Saaty, 1987). It is suggested that the *CR* value must be less than 0.1.

3. Compute the preference weight using the suitable AHP analysis. For a pairwise comparison matrix $A = [a_{ij}]$, i^{th} row geometric mean (Crawford and Williams, 1985) value is:

$$w_i = \left(\prod_{j=1}^n a_{ij}\right)^{1/n}$$

4. Rank the decision criteria after aggregating the relative weights.

Criteria	A_1	A_2	A_3	A_4	A_5	A_6	A_7	Criteria weights	Grades	Consistency check
Job A_1	1	3	1	2	2	6	5	0.2677	A	
Shopping A_2	0.33	1	0.5	1	0.33	3	3	0.1043	D	
Gathering A_3	1	2	1	4	2	5	4	0.2632	В	CI = 0.0327
Entertainment										
A_4	0.5	1	0.25	1	0.5	2	2	0.0947	E	CR = 0.0242
Travelling A_5	0.5	3	0.5	2	1	4	3	0.1745	С	<i>RI</i> =1.32
Residency A_6	0.1667	0.33	0.2	0.5	0.25	1	0.5	0.0408	G	
Utilizing delivery										
services A_7	0.2	0.33	0.25	0.5	0.33	2	1	0.0548	F	

Table 2Pairwise comparison of main criteria, normalized weight and grade

Figure 2 Hierarchy of activities and their respective places

4. Results and discussion

The authors have identified seven important activities as the main criteria of this risk assessment study. These activities were specifically chosen by considering the latest gathering restrictions in the Phase 4 re-open and unlock (2020) guidelines issued by the Ministry of Home Affairs. Also, the mode and place of conducting these selected activities have been identified as their sub-criteria and are shown in Table 1. Since the AHP is able to provide very reliable output for complex multicriteria decision making (MCDM) problems with little mathematical computation, the authors were able to perform all of the analysis manually using the row geometric mean method with precision (Crawford and Williams, 1985).

International	Journal	of	the	570	Vol. 12 Issue 3 2020
Analytic Hiera	rchy Prod	cess			ISSN 1936-6744
					https://doi.org/10.13033/ijahp.v12i3.814

The authors observed that the opinions of different health experts regarding how safe/unsafe a location is are subject to the presence or absence of some pre-determined factors. Generally, medical experts/doctors would be the most likely people to provide responses for a healthcare study such as this; however, since they are required to perform their duties to every possible extent during this pandemic the authors have identified some major factors that are favorable to COVID-19 virus transmission as follows: i) A high population density or a large number of people present/involved in an activity, ii) Maintaining less than 6 feet of social-distancing, and iii) Physically close and frequent contact among people. Next, the pairwise comparison matrix was shaped by an expert data analyst and statistician based on their experience and understanding of the correlation of identified factors with the criteria and sub-criteria of this study. A consistency analysis was used to ensure that the PCM was tolerably inconsistent. The degree of risk involved in a criterion was calculated as criteria weight by applying the row geometric mean method. All of the criteria were assigned a grade from A to G based on their high to low degree of risk; this is shown in Table 2. Moreover, the pairwise comparison matrices, consistency-checks, and relative weights for all of the sub-criteria within the same level of the hierarchy are shown in Table 4.

This AHP analysis for a COVID-19 risk assessment presents an integrated outcome representation in Table 3. This representation includes all criteria and sub-criteria with their degree of COVID-19 risk in the form of criteria and sub-criteria weight, the cumulative sub-criteria weight derived by multiplication of local sub-criteria weight with their respective main criteria weight which leads to form a global sub-criteria weight and ranking. The authors have also expressed various expected reasons of risk involvement in this representation.

Integrated outcome representation with expected major reasons of risk

S.NO	Criteria /Sub-criteria	Criteria weight	Sub- criteria weight	Cumulative normalized Sub- criteria weight	Grade and ranking	Expected major reasons of risk	
A_1	Job	0.267682			Α	Frequent contact with external objects makes it the most serious activity of the study	
A_{11}	Hospital		0.745006	0.199425	1	Being in direct contact with virus infected patients, health care workers like doctors, nurses and others are at extreme risk of COVID-19	
A_{12}	Government office		0.098552	0.026380	14	Need for continuous operational state for proper implementation of guidelines	
A_{13}	Private office		0.156441	0.041876	9	The limited space available and lack of sanitization facilities in many private offices	
A_2	Shopping	0.104275			D	The basic requirement of goods and other materials has resulted in shopping as a main criterion	
A_{21}	Grocery store		0.196246	0.020463	17	The reach to a limited number of customers from a specific territory makes shopping at grocery stores less risky than shopping at vendors or the mall	
A_{22}	Vendors		0.49223	0.051327	7	Covering a very large area of the city increases the risk of being in contact with the virus	
<i>A</i> ₂₃	Shopping mall		0.311522	0.032484	11	Finite, but sufficiently large customer capacity	
A_3	Gathering	0.263216			В	A gathering is the second most risky activity because meeting with a large group of people	
International Journal of the 571 Analytic Hierarchy Process					Vol. 12 Issue 3 2020 ISSN 1936-6744 https://doi.org/10.13033/iiahp.v12i3.814		

Table 3

IJAHP Article: Garg, Ganesh/An Analytical Hierarchy Process approach for a COVID-19 risk assessment study amid the latest re-open and unlock phase in India

						proportionally increases the probability of COVID-
	Marriage		0 222189	0.058483	4	19 injection Permission for 50 people gathering at a marriage
A_{31}	ceremony		0.22210)	0.020102	•	ceremony
A	Cremation		0.119379	0.031422	12	Permission for at most 20 people gathering at a
¹ ³²	ceremony					cremation ceremony
A_{33}	Conference		0.200771	0.052846	6	Large participation in a conference and seminar
	Worshin		0.457659	0 120463	2	High visiting frequency and the non registering
A_{34}	place		0.157055	0.120105	-	nature of a worship place
Δ	Entertainment	0.094716			F	Need for a healthy mood and good physical health
Λ_4					L	are very essential at this time which demands that
						entertainment be one of the main criterion of this
	Stadium		0 106076	0.018656	18	study The risk of coming in contact with sports equipment
A_{41}	Stauluin		0.190970	0.018050	10	that may carry the virus, yet stadiums have
						sufficient space for maintaining distance from others
A	Movie hall		0.311239	0.029479	13	The density of the audience in a movie hall is very
1 42						high and increases the risk
A_{43}	Zoo and		0.491783	0.046580	8	Possible infection through animals and
45	Travelling	0 174485			C	A list of requirements demands that one travel by
A_5	Havening	0.174405			C	various modes of transportation, which makes it an
						essential criterion of this study
<i>A</i>	Personal		0.122542	0.021381	16	Traveling by personal vehicle eliminates many
51	vehicle					possibilities of infection, yet their maintenance
	Bue Train		0 310130	0.0556835	5	requires visits to many public places
A_{52}	and Taxi		0.519150	0.0550855	5	capacity of commuters, categorizes use of a bus.
						train, and taxi as extremely risky
A	Airline and		0.558326	0.097419	3	Overseas origin of passengers from various
1 153	ship					countries and a very large capacity of these modes
						of transportations are the main reasons for the
	Residency	0.040795			C	The residency area of an individual with a number
A_6	residency	0.010795			G	of people is a major concern of this study; however,
						the AHP analysis finds that it has optimal risk
						involvement
A_{61}	Joint family		0.537895	0.021943	15	A large number of family members makes it slightly
	Nuclear		0 297788	0.012148	20	ISKY Small number of family members is the main reason
A_{62}	family		0.277700	0.012140	20	for a nuclear family to have the second to last
	2					position in most risky sub-criteria
Α.,	Hosteller		0.164315	0.006703	21	Being a hosteller is the last ranked sub-criteria with
- 63	TT. 11 1	0.054000				the minimum risk involved
A_7	Utilizing	0.054828			F	Utilization of various resources without going out is the main reason for inclusion of various delivery
	services					and online purchase facilities under the category of
	_0111000					'Utilizing delivery services' in this study
A	Food delivery		0.666666	0.036552	10	Involvement of many hands from cooking to
7 1 71	_					delivery
A_{72}	E-commerce		0.333334	0.018276	19	Careful and standard measures, but the product
12						visits many stations

572

IJAHP Article: Garg, Ganesh/An Analytical Hierarchy Process approach for a COVID-19 risk assessment study amid the latest re-open and unlock phase in India

Criteria	Sub-					Sub-	Consistency
	criteria					criteria weight	check
A_1		A_{11}	A_{12}	A_{13}			
1	A_{11}	1	6	6		0.745006	CI = 0.0268
	A_{12}	0.1667	1	0.5		0.098552	CR = 0.046
	A_{13}^{12}	0.1667	2	1		0.156441	
A_2	15	A_{21}	A_{22}	A_{23}			
-	A_{21}	1	0.5	0.5		0.196246	CI = 0.0269
	A_{22}^{21}	2	1	2		0.492230	CR = 0.0464
	A_{23}^{22}	2	0.5	1		0.311522	
A_3		A_{31}	A_{32}	A_{33}	A_{34}		
	A_{31}	1	2	1	0.5	0.222189	
	A_{32}	0.5	1	0.5	0.33	0.119379	CI = 0.0136
	A_{33}	1	2	1	0.33	0.200771	CR = 0.0151
	A_{34}	2	3	3	1	0.457659	
A_4		A_{41}	A_{42}	A_{43}			
·	A_{41}	1	0.5	0.5		0.196976	CI = 0.0268
	A_{42}	2	1	0.5		0.311239	CR = 0.0462
	A_{43}	2	2	1		0.491783	
A_5		A_{51}	A_{52}	A_{53}			
5	A_{51}	1	0.33	0.25		0.122542	CI = 0.0077
	A_{52}	3	1	0.5		0.319130	CR = 0.0133
	A_{53}	4	2	1		0.558326	
A_6	55	A_{61}	A_{62}	A_{63}			
-	A_{61}	1	2	3		0.537895	CI = 0.0027
	A_{62}	0.5	1	2		0.297788	CR = 0.0047
	A_{63}	0.33	0.5	1		0.164315	
٨		٨	Δ				
A_7	Δ	A ₇₁	A ₇₂			0 666666	CI = 0
	A ₇₁	0.5	2 1			0 333334	CI = 0
	A_{72}	0.5	T			0.5555554	

Table 4Pair wise comparison of sub-criteria with consistency check and weight

573

5. Conclusions

COVID-19 is spreading exponentially and for a developing country like India with a population of 1.38 billion (Population of India, 2020) it has become an extremely tedious health care management problem. The government of India has promptly responded to the pandemic and imposed a nationwide lockdown (2020). Many restrictions have been eased in a sequence of re-open and unlock phases. In the latest Phase 4 re-open and unlock (2020) guidelines, the authors have observed that large gatherings, interstate transportation, utilization of various delivery services and many other activities are no longer under strict control which might be responsible for a sudden increase in COVID-19 cases. To analyze the degree of COVID-19 risk involved in many important activities through different modes and at different places, the authors conducted a COVID-19 risk assessment using a very popular MCDM technique, the Analytic Hierarchy Process (AHP).

A simple and structured application of the AHP has derived very significant outcomes. The risk assessment reflects that doing a job has the highest risk of COVID-19 infection among all seven listed activities because it requires frequent contact with external objects that may carry COVID-19. Moreover, gathering is an occasional event, but has the potential possibility of COVID-19 transmission to a large number of people coming from different places which makes it the second most risky activity of the study, followed by traveling, shopping, entertainment, utilizing delivery services and residency. The authors found that cumulative sub-criteria weights and global sub-criteria ranking were very helpful in identifying the most risky places to conduct the corresponding activity. Based on the rankings, the hospital is the most risky work station and healthcare workers such as doctors, nurses and other medical staff are at extreme risk of COVID-19 infection because they are in direct contact with COVID-19 patients. The absence of proper identification and record placement policies and the frequency of visiting are the expected reasons for a place of worship to be the second most risky sub-criteria of this study. All of the other sub-criteria and their global rankings and major reasons for risk are explained in Table 3. The authors also conclude that being a hosteller and living in a nuclear family are two of the least risky sub-criteria when compared to others.

In this COVID-19 risk assessment, the authors tried to express the real time suitability of the AHP approach. The authors suggest that many other healthcare management problems can be analyzed with a large number of different activities in future. This study can potentially help select a suitable alternative activity or mode and place of conducting an activity to avoid various risk factors involved with the parent activity.

REFERENCES

Badillo- Rivera, E., Fow-Esteves, A., Alata-Lopez, F., Viru-Vasquez, P., &Acuña, M. (2020). Environmental and social analysis as risk factors for the spread of the novel coronavirus (SARS-CoV-2) using remote sensing, GIS and analytical hierarchy process (AHP): Case of Peru. medRxiv, preprint. Doi: https://doi.org/10.1101/2020.05.31.20118653

Chaiyaphan, C., &Ransikarbum, K. (2020). Criteria analysis of food safety using the Analytic Hierarchy Process (AHP)- a case study of Thailand's fresh markets. *E3S Web of Conferences*, *141*, 02001. Doi: https://doi.org/10.1051/e3sconf/202014102001

Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. *Journal of Mathematical Psychology*, 29(4), 387-405. Doi: https://doi.org/10.1016/0022-2496(85)90002-1

Lockdown implementationorder (2020). Available :https://www.mha.gov.in/sites/default/files/PR_NationalLockdown_26032020_0.pdf

Improta, G., Perrone, A., Russo, M. A., & Triassi, M. (2019). Health technology assessment (HTA) of optoelectronic biosensors for oncology by analytic hierarchy process (AHP) and Likert scale. *BMC Medical Research Methodology*, *19*(1), 140. Doi: https://doi.org/10.1186/s12874-019-0775-z

Lyu, H. M., Shen, S. L., Zhou, A., & Yang, J. (2020). Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. *Science of The Total Environment*, 717, 135310. Doi: https://doi.org/10.1016/j.scitotenv.2019.135310

Phase 4 re-open and unlock

(2020).Available<u>https://www.mha.gov.in/sites/default/files/MHAOrder_Unlock4_290820</u> 20.pdf

Population of India (2020). Available: <u>https://www.worldometers.info/worldpopulation/india-population/</u>.

Rajak, M., & Shaw, K. (2019).Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS. *Technology in Society*, *59*, 101186. Doi: https://doi.org/10.1016/j.techsoc.2019.101186

Rosenbloom, E. S. (1997). A probabilistic interpretation of the final rankings in AHP. *European Journal of Operational Research*, *96*(2), 371-378. Doi: https://doi.org/10.1016/s0377-2217(96)00049-5

Saaty, R. W. (1987). The analytic hierarchy process—what it is and how it is used. *Mathematical Modelling*, 9(3-5), 161-176. Doi: https://doi.org/10.1016/0270-0255(87)90473-8

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. *Journal of Mathematical Psychology*, *15*(3), 234-281. Doi: https://doi.org/10.1016/0022-2496(77)90033-5

Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. *European Journal of Operational Research*, 48(1), 9-26. Doi: https://doi.org/10.1016/0377-2217(90)90057-i

Setti, L., Passarini, F., De Gennaro, G., Barbieri, P., Perrone, M. G., Borelli, M., ...&Miani, A. (2020). Airborne transmission route of COVID-19: why 2 meters/6 feet of inter-personal distance could not be enough. *International Journal of Environmental Research and Public Health*.17(8): 2932. Doi: 10.3390/ijerph17082932

Simon, J., Adamu, A., Abdulkadir, A., & Henry, A. S. (2019). Analytical Hierarchy Process (AHP) model for prioritizing alternative strategies for malaria control. *Asian Journal of Probability and Statistics*, 1-8. Doi: https://doi.org/10.9734/ajpas/2019/v5i130124

Wang, C., Horby, P. W., Hayden, F. G., &Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. *The Lancet*, *395*(10223), 470-473. Doi: https://doi.org/10.1016/s0140-6736(20)30185-9

Worldometers.COVID-19 Coronavirus pandemic. Available: https://www.worldometers.info/coronavirus/country./India/.