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1. Introduction 

Cyber insurance is a risk management tool to transfer financial losses due to communication and 
information technology operations [1]–[3]. Economic damage caused by cyberattacks shows an 
increasing trend in the range of 1.1% to more than 30% of the global gross domestic product [4]. The 
annual cost of cybercrime is estimated to reach USD 6 trillion by 2021, which is more than twice that 
of 2015 [5]. This condition can improve cyber insurance sales and the market in the coming years. Cyber 
insurance still has some technical challenges [6]. One of the main issues associated with cyber insurance 
is how to estimate premiums or rates [7], [8]. Today, there is no established pricing method for cyber 
insurance products. Some of the available products are offered at high prices because of the long and 
complicated identification and selection of risks (underwriting) [9]. Several existing risk models consider 
the demand and supply of the product. Other factors to consider are assumptions regarding network 
structure, computer information, and attack’s timing. Information and communication technology 
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 This study compares cyber insurance premiums with and without a 
communication network effect frequency. As a cybersecurity factor, the 
frequency in a communication network influences the speed of cyberattack 
transmission. It means that a network or a high activity node is more 
vulnerable than a network with low activity. Traditionally, cyber insurance 
pricing considers historical data to set premiums or rates. Conversely, the 
network security level can evaluate using the Monte Carlo simulation based 
on the epidemic model. This simulation requires spreading parameters, 
such as infection rate, recovery rate, and self-infection rate. Our idea is to 
modify the infection rate as a function of the frequency in a communication 
network. The node-based model uses probability distributions for the 
communication mechanism to generate the data. It adopts the co-purchase 
network formation in market basket analysis for building weighted edges 
and nodes. Simulations are used to compare the initial and modified 
infection rates. This paper considered prism and Petersen graph topology 
as case studies. The relative difference is a metric to compare the 
significance of premium adjustment. The results show that the premium 
for a node with a low level in a communication network can reach 28.28% 
lower than the initial premium. The premium can reach 20.99% lower than 
the initial network premium for a network. Based on these results, 
insurance companies can adjust cyber insurance premiums based on 
computer usage to offer a more appropriate price.  
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(ICT) sources are connected to a network. This condition necessitates an analysis of cyber risk and 
potential losses that include the structure of the system. 

References [10] and [11] are two studies involving network structure in premiums calculation in the 
last 2 years. The authors used a susceptible–infectious–susceptible (SIS) epidemic model with a different 
approach. The simulation of the SIS compartment model to predict cyber risk with the Gillespie 
Algorithm has been carried out for several finite networks [12]. In reference [10], the authors used the 
SIS model without the possibility of self-infection to capture cyber infection. The claims process was 
modeled by a marked point process, which was a collective risk model. These claims depend on the 
spread of cyber threats modeled by SIS. Xu and Hua [10] used the more general SIS model, the ϵ-SIS 
model, which allowed the self-infection process. The dynamics of virus spread were captured using the 
Monte Carlo simulation. The loss for each node is calculated using the loss function. Therefore, this 
model is an individual risk model approach. References [10] and [11] can better understand network 
structure dependence on cyber insurance pricing. However, both still assumed that each computer (or 
node) is identical. We have demonstrated similar outcomes on regular networks [13]. Under the same 
parameter settings, each node with the same degree provided equal premiums. In fact, every computer 
has different activities. Different levels of activity make the infection rate of each node not homogeneous. 
Computers with high activity can infect other computers faster than computers with low activity. Thus, 
the premium can be adjusted according to the activity using in-homogeneous SIS. We have also modified 
the Markov-based model with local clustering coefficients to generate different rates according to the 
epidemic inhibition function [14]. 

This study develops the model to accommodate the frequency in a communication network (the 
number of connections) as a network security factor [15]. Assume that an attack on ICT sources occurs 
at an initial infection rate. The infection rate depends on the frequency in a communication network. 
Transmissibility increases when the frequency is high and decreases when the frequency is low. Thus, 
the infection rates are a function of the number of connections. Our contributions can be seen in two 
ways: (1) the robustness of the network structure for cyberattacks and (2) the suitability of insurance 
premiums. In the process of designing a computer network, network security factors are rarely discussed. 
Usually, network structure design decisions are based on two main factors: the number of connections 
and communication routes [16]. We try to add the network security factor in designing the network to 
choose a more robust structure. It is part of the cyber insurance pricing process when evaluating the 
network security level.  

The premium calculation considers the initial and modified infection rates for comparisons. It aims 
to adjust the premium using the frequency in a communication network as a cyber risk factor. In other 
words, the infection rate of a node is a function of its communication intensity. Communication data 
are generated using a node-based model. This model uses the co-purchase product network formation 
analogy in market basket analysis [17] and probability distribution. We change the transaction to 
communication and product to computer/server in the network. This method can adjust cyber insurance 
premiums based on the frequency in a communication network. Prism and Petersen graph topology 
were considered as case studies. Both topologies have three degrees in each node, short diameter, stable 
data distribution process, and easy to manage failure. The main objective of this paper is to provide more 
appropriate premiums with modified infection rates.  This paper is organized as follows: Section 1 
provides the study's background, objectives, and contributions. Section 2 summarizes previous studies 
related to the model, topology, and premium results. Section 3 details the methodology in this study. 
Section 4 presents the simulation results and discussion. Finally, Section 5 is the conclusion. 

2. Method 

Cyber insurance pricing in this study involves three aspects: first, the topology type used for pricing; 
second, a model to describe the communication mechanism on the network; and third, the epidemic 
model and its characteristics. Methods related to these topics are presented in this section. 
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2.1. Network Topology 

A network topology is the arrangement of computer systems or ICT resources to communicate [18]. 
There are eight basic topologies in studying networks: point to point, mesh, ring, star, bus, tree, hybrid, 
or daisy chain. These topologies have advantages and disadvantages that are often discussed. The factors 
for evaluating the network topology are flexibility, speed, installation, troubleshooting, data 
transmission, performance, usability, and cost [19], [20]. Generally, network optimization aims to reduce 
costs and gain efficiency, robustness, and uniform distribution of traffic [21]. Discussions of network 
topology resilience against cyberattacks [22] in topology design and evaluation are still rare. 

As shown in Fig. 1, prism and Petersen graphs can be used in the new topological design process. 
The prism and Petersen graphs have 10 nodes, 15 edges, and three degrees. The degree is the number 
of edges on a node. The difference is only in the maximum distance between two nodes or the diameter 
[23]. The prism diameter is three, whereas the Petersen diameter is two. The previous comparison study 
shows that the Petersen graph is more reliable and more efficient in sending packet data requests and 
successful packet data requests than the prism graph [23]. Apparently, this is because Petersen has a 
shorter diameter than the prism. We choose these two topologies for other comparison objectives. We 
add two objectives to analyze and compare these networks from a different side: (1) simulating virus 
transmission to see the robustness of the topology against virus attacks and (2) adjusting insurance prices 
in both topologies using the number of communications in a network.  

 

Fig. 1.  (a) Prism Graph; (b) Petersen Graph. 

2.2. Communication Model 

One of the network security options depends on the frequency in a communication network, how 
strong each communication signal is, and how many channels are used for transmission [24]. We use a 
node-based model approach to determine the number of communications in a network. This model 
adopts the process of building a co-purchase product network in market basket analysis [17], [25]. The 
result of this model is a network with weighted edges. To obtain the communication weight of vertex 
(or node) i , we used the vertex weight approach in graph theory. The weight of vertex (or node) i  is 
the sum of all edge weights incident to node i . Fig. 2 shows the process of forming a weighted network 

using a node-based model. For example, there are three communications in a day. These 

communications are 1C , 2C , and 3C . Each communication involves several nodes that send or receive 

data. The node-based approach involves two random variables: the number of communications in a 
network and the number of nodes in each communication. To build a network with weighted edges, 
the data are generated through the distribution of both random variables. This edge weight is used to 
calculate the weight of each node. 

2.3. Epidemic Model 

The study of epidemics and their modeling has been widely used to understand the cyber risk process 
and how computer viruses spread [26], [27]. Xu and Hua [28] have successfully introduced the modeling 
and pricing of cybersecurity insurance with a network structure approach. They combined the graph 
theory and the epidemic model to evaluate the network security level using the generalized susceptible-
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infection-susceptible (ϵ-SIS) model [29]. This model has three parameters. These are the infection rate 
β, the recovery rate δ, and the self-infection rate ϵ. We adopt this model to an in-homogeneous infection 
rate [30], where an infected node attacks a secure (but vulnerable) node at different rates. Let an 
undirected graph ( , )G V E=  be an abstraction of the network topology, where V  is a set of vertices 

and E  is a set of edges [31]. In this case, the vertices (or nodes) represent computers or other ICT 
sources, such as servers, routers, switches, and hubs. Edges (or links) are communication channels that 
transmit data over connections between two or more nodes. Undirected graph ( , )G V E=  has 

representation in matrix form, that is, the adjacency matrix ( )ijA a= , where 1ija =  if ( , )i j E , and 

0, otherwise. 

 

Fig. 2.  Communication mechanism in a node-based model using the analogy of building a co-purchase network 

of products. 

Consider ( )iX t  as the state of node i  at time t  where ( ) 1iX t =  if node i  is infected at time t  

and ( ) 0iX t =  if node i  is secure (but vulnerable) at time t . Vector ( ) ( ) ( )( )1 , ,  Nt X t X t=
•

X  

is the vector of the network status at time t  for V N= . The vector of the infection probability can be 

written as ( ) ( ) ( )( )1 , , Nt p t p t=
•

p , where ( ) ( )( )1i ip t P X t= =  for 1, ,i N= . The 

transition probability for node i  is given by ( ) ( ) ( )( ),  | .i yz i ip h P X t h z X t y= + = =  

Suppose an infected node i  attacks secure (but vulnerable) neighbors at varying rates i . This model 

refers to the in-homogeneous SIS model [19]. We relax the model using the same recovery rate i =

. However, this case still considers infection from outside the network with the same self-infection rate 
ò  for every node. Thus, the transition probability from node i  can be written as  
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= . The infection rate j  depends on the 

frequency in a communication network. Let   be the initial infection rate at which an attack can cause 

infection. The attack ability can be reduced when communication is low. Conversely, a complete attack 
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can occur when communication is high enough. Thus, the initial infection rate 0  becomes the upper 

bound of the infection rate for all nodes i . 

2.4. Simulation 

2.4.1. Communication Frequency 

Communication weights are generated by the node-based model. Let C  be the random variable that 

represents the number of communications in a day and D  be the random variable for the number of 
active nodes for every communication. The active nodes are randomly chosen with different probability 
of activation (or sampling probability) 𝑠𝑝, where (0,1)sp U  uniformly distributed. The steps for 

building a node-based model are as follows: 

Step 1. Specify V  and E  based on ( , )G V E . 

Step 2. Generate sp  from (0,1)U . 

Step 3. For discrete time {1, }T , generate C  from ( )CF c . 

Step 4. For every C , generate D  from ( )DF d . Randomly select d  nodes in V  using sp  and                 

combine every two-couple node as an active link. 

Step 5. Accumulate every active link up to time T . 

Step 6. Set total active link as the weight of edges ijw  for ( , )i j E . 

Step 7. Calculate the weight of node 
j ij

i

w w=  . 

After obtaining the communication weight for each node, then this weight is used to influence the 
infection rate. This communication frequency is a necessary condition for calculating the premium with 
additional factors. 

2.4.2. Security Evaluation and Premium Setting 

The premium calculation uses Xu and Hua's network security level evaluation approach [28] using 
the epidemic model. They showed that the dynamic change of node status for the ò -SIS model can be 
generated through time to infection due to infected neighbor attacks, time to infection due to attacks 

from outside the network, and time to recovery. These times depend on 0 ,  , and ò . Let 0  be 

called the initial infection rate, which is the strength or speed of the attack. We initiate that this infection 
rate can be different according to the communication characteristics of each node j , that is 

0

1 j
j w

e




−
=

+
             () 

This function shows the relationship between the infection rate of node i  and its weight, which acts 

as a rate adjustment function of node i . For initial 0 , the simulation uses the algorithm and two types 

of losses provided by Xu and Hua [28]. These results are compared with different   for each node ( j

) using the function in equation (3). Let 
1 2
, , ,

Di
j j jY Y Y  be the random variables of time to infection 

due to attacks from neighbors of node i  where 1 2, , ,
iDj j j  are the neighbors of node i  and iD  is 

the number of infected neighbors of node i . Every infected neighbor of node i  has its infection rate 

j  and 
1

( )j jY F y . Let iZ  be the random variable of time to infection of node i  due to attack from 

outside the network where ( )iZ G y . Furthermore, let iR  be the random variable of time to recovery 
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of node i  where ( )iR H y . Total loss of node i  during the contract period (0, ]t  can be written as 

follows: 

( )

( ) ( )
1

( ) ,
i

k k

i i i i i

k

S t L R
=

 = +
 

M t

γ                             () 

where ( )iM t  is the number of infections faced by node i  up to time t , (.)i  is the cost function 

corresponding to the loss due to infection, and (.)i  is the cost function corresponding to the loss due 

to recovery time. Random variables iL  and iR  represent the random losses caused by infection and 

recovery time. 

In this study, in-homogeneous SIS is the Markov model, and then 
1

( ) j y
jjY F y e

−
= , 

( ) y

iZ G y e−= ò , ( ) y

iR H y e −= . All of them are exponentially distributed. This can be proven 

by the basic theorem of the alternating renewal process (see reference [28]). The simulations are 
conducted using the following steps: 

Step 1. Define the adjacency matrix A , the initial network status, the number of simulations sn , 

and the contract period T . 

Step 2. Calculate the number of infected nodes M  at time t  and generate 1 2, , ,
M

r r r  from 

exp( ) . 

Step 3. For every node i , find the infected neighbors 1 2, , ,
iDj j j  and then generate 

1 2
, , ,

Di
j j jY Y Y from exp( )j  and iZ  from ( )exp ò . 

Step 4. Define the time of the first event 
1 21 1 2min{ , , , , , , , , }

Di
j j j iM

t r r r Y Y Y Z= . 

Step 5. If infection occurs, change the node status from 0 to 1 and calculate the loss. If repair occurs, 
change the node status from 1 to 0 and calculate the loss. 

Step 6. Given that 1t t T+  , do steps 2 to 5 and determine 1t t t= + . Otherwise, the process            

stops. 

Step 7. Repeat steps 2 to 6 until the number of simulations sn  is fulfilled. 

This process is used to determine topological robustness and premium comparisons. 

2.5 Difference Metric 

This analysis requires a metric to measure how much the adjusted premiums and initial premiums 
change. One of the measures for comparison is the relative difference [32]. Let P  be the initial premium 
and PA  be the adjusted premium. The percentage of the premium adjustment can be measured by the 

percentage of relative differences ( r ) as follows: 

100%r

PA P

P

−
 =  .                 (4) 

This metric can indicate how big the adjustment of rates if we include the frequency in a 
communication network for pricing. 

3. Results and Discussion 

In this section, we show the simulation results that have been conducted on the two topologies in 
Fig. 1. These simulations use an observation period of T  = 365. The selected input parameters are 
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  = 0.2,   = 1, and ò  = 0.05. The process of generating communication weights assumes 

( )cC Poisson   and ( )dD Poisson  . Several pairs of parameters are considered to see the effect 

of communication on the premium calculation results. We considered four pairs of parameters 
( , ) {(10,2), (20,4), (30,6), (40,8)}c d  = . For the loss function, suppose iL  follows a beta 

distribution with parameters 3, 8,a b= =  and 1500iw = , where the probability density function is 

given by 

( )
( )

1

| , , 1 ,0
,

1
i i

i i

f a b w w
B wb wa

 
 



−

    
= −       

    
i

ba

L
  .             (5) 

The parameter iw  denotes the initial wealth of the computer/ICT source i . The simulations use 

the following loss functions: (1) ( )i iL  = =  and (2) 1 2( )i i i i iR r w r  = = + , where 

1 2( , , )    are equal to 
3 6 5(1 10 ,5 10 ,2 10 )− − −   . This simulation compares the infection rate   

with j  given by equation (3). Finally, the premium calculation for node i  using the following standard 

deviation principles [33] 

( ) ( )( ),  i i iP SE t Va tSr= +                    (6) 

and for a network is given by 

  ( )( ) ( )P E S t Var S t= +
  () 

where   is the loading factor and 
1

( ) ( )
N

i

i

S t S t
=

=  . In this case, we choose   = 0.1. 

3.1 Topological Robustness 

To analyze topological resistance, Table 1 provides the descriptive statistics of the number of 
infections for each node in each topology. Regardless of the communication effect, the mean, standard 
deviation, and minimum and maximum infection of each topology have almost the same values. This is 
because the two topologies have almost the same characteristics. The only difference is the diameter. 
The transmission model depends on the degree. Conversely, communication effectiveness depends on 
the diameter. However, if the simulation shows that the Petersen topology is more effective in 
communication, then this topology is more vulnerable to cyberattacks. Thus, the optimal topology 
design considers not only the route and communication effectiveness but also the vulnerability of the 
topology. 

Table 1.  Descriptive statistics of the number of infections during a period for prism and Petersen topology. 

Node Prism topology  Petersen topology  

Mean SD Min. Max. Mean SD Min. Max. 

1 31.333 5.642 14 51 30.983 5.412 15 52 

2 31.440 5.534 15 55 31.410 5.533 17 51 
3 31.242 5.449 14 48 31.022 5.776 16 49 

4 31.359 5.723 14 51 31.401 5.495 16 48 

5 30.990 5.484 17 49 31.494 5.578 17 53 
6 31.050 5.516 16 52 31.250 5.379 15 49 

7 31.181 5.569 11 54 30.921 5.340 15 48 

8 31.143 5.756 15 51 31.255 5.539 11 49 
9 30.890 5.413 14 48 31.309 5.513 15 49 

10 31.106 5.584 14 50 31.599 5.587 18 53 
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3.2 Premium Adjustment 

This section discusses the effect of communication on the premium calculation results. This study 
also considers the size of the premium adjustment for certain communication characteristics. The four 
selected communication parameters indicate four types of communications, namely, low, medium, high, 
and very high. The results for adjusting premiums based on the number of communications are 
compared with the simulation results without including these effects. Fig. 3 shows the premium of each 
node in the prism and Petersen topology (Fig. 1) that changes with the changes in communication 

parameters. Node labels are node 1 for 1v , node 2 for 2v , and so on until node 10 for 10v . 

 

Fig. 3.  Cyber insurance premium of every node using different communication average for (a) prism topology 

and (b) Petersen topology with ( ) ( )C cF c Poisson   and ( ) ( )D dF d Poisson  . 

For C  = 10 and d  = 2, every node in prism and Petersen topology has varying premiums. Premium 

ranges from 10 to 13.5 in unit price. Higher communication results in higher premiums and closer to a 

value. Although not consistently increasing, the decrease in premium prices for c  = 30 and d  = 6 

(high communication) in the prism topology is an effect of the random behavior of node weights. Node 

3, for example, is close to the premium for c  = 10 and d  = 2 (low communication) after increasing 

at c  = 20 and d  = 4 (medium communication). Similarly at node 6 in the Petersen topology, after 

rising, the premium decreases for c  = 40 and d  = 8 (very high communication). This pattern only 

occurs on a few nodes. Most of the premiums increase when the communication frequency increases. 
The upward trend is confirmed by the premium for all nodes (network) given in Fig. 4. Both premiums 
have different fluctuations. Prism topology (blue line) has decreased for medium communication, and 
Petersen topology (red line) has decreased for very high communication. As discussed earlier, this is 
because random communication has many realizations. In this case, one of the different means of 
communication is considered. It does not lose the generality of this result. Although fluctuating, Fig. 4 
shows an increasing trend for higher communication frequencies. 

 

Fig. 4.  Cyber insurance premiums of the network using different communication average for prism and 

Petersen topology with ( ) ( )C cF c Poisson   and ( ) ( )D dF d Poisson  . 

(a) (b) 
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Low communication premiums are always below the premium for medium, high, and very high 
communications. These results indicate that cyber insurance premiums can be adjusted according to the 
level of computer activity. A network with a lower level of communication provides a lower premium. 
These results can also address the issue of cyber insurance premiums that are usually offered at high 
prices. The level of communication can influence the risk of cyberattacks spreading and lead to a more 

rational premium. The amount of premium adjustment is measured by the relative percentage r  in 

equation (2). 

Table 2.  Adjustment percentage r  value for prism topology and Petersen topology. 

Node 

( , )c d   
r  (%) of Prism topology  r  (%) of Petersen topology  

(10,2) (20,4) (30,6) (40,8) (10,2) (20,4) (30,6) (40,8) 
𝑣1 9.06 0.45 −0.10 −0.49 13.47 −0.64 −0.78 −1.04 
𝑣2 5.31 1.03 4.03 0.23 22.13 0.39 1.05 0.05 

𝑣3 10.26 −0.04 17.82 −0.89 12.05 −0.76 −1.82 0.02 

𝑣4 20.88 0.32 2.44 −0.43 28.28 −0.17 0.15 −0.60 

𝑣5 21.32 −0.92 0.08 −1.66 17.08 1.50 −0.17 1.67 

𝑣6 4.05 −0.44 −0.87 −0.43 3.57 0.42 −0.04 4.50 

𝑣7 4.25 −0.47 0.64 −0.64 3.10 −1.34 −1.68 −0.23 

𝑣8 7.45 1.96 1.83 0.19 2.64 −0.64 −1.11 0.40 

𝑣9 18.10 0.42 −0.05 −0.52 4.59 −1.25 −0.76 0.19 

𝑣10 9.90 −0.28 −0.14 −0.55 5.29 0.77 0.87 1.27 

Network 20.99 5.87 8.40 4.11 15.78 12.96 7.32 8.31 

 

Fig. 5 shows the change from the value of d for each communication level for each node and network 
(bold blue line). In contrast to the premium, the relative percentage gets closer to 0 as the 
communication level network increases. The pattern is opposite to the premium in Fig. 3 and Fig. 4. 
Table 2 shows the percentage relative of adjustment price for the prism and Petersen topology.  

 

Fig. 5.  Adjustment percentage r  relative between initial premium and adjustment premium of every node 

and network for (a) prism topology and (b) Petersen topology. 

A positive value shows that the initial premium is higher than the premium based on communication 
level. Conversely, a negative value indicates that the initial premium is lower than the premium based 
on communication level. The negative values ranged from 0.04% to 1.66%. This means that although 
some premium adjustments using communication level are higher than the initial premium, the value 
is not too different (it can still be considered equal). A positive value represents an interesting result. 

The initial premium of node 5 using the infection rate 0  is 21.32% higher than the premium with 

low communication ( c  = 10, d  = 2) in prism topology. The initial premium of node 4 is 28.28% 

higher than the premium with low communication ( c  = 10, d  = 2). The relative percentage is close 

(a) (b) 
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to 0 for increasing communication. For one network, the initial premium for prism topology is 20.99% 
higher than the premium for low communication, 5.87% for medium communication, 8.40% for high 
communication, and 4.11% for very high communication. In the Petersen topology, the initial premium 
is 15.78% higher than the premium for low communication, 12.96% for medium communication, 
7.32% for high communication, and 8.31% for very high communication. Thus, the premium can be 
adjusted according to the active level of the computer/server. 

4. Conclusion 

Cyberattacks have been a growing concern of researchers in recent years. From the design and 
topology evaluation side, it is necessary to consider the network security factor and topology robustness. 
We use two types of topologies offered by the graph theory approach: prism topology and Petersen 
topology. Because of the same characteristics, the vulnerability of the two networks is equal if all 
computers/servers and their contact types are set similarly. The simulation results with different 
communication levels show that a higher communication level network is more vulnerable. Thus, route 
optimization and network effectiveness need to consider the high risk of transmission. We have 
successfully introduced a method for adjusting the premium based on communication level. This is based 
on cybersecurity factors where high communication causes a high risk of transmission. For comparison 

purposes, the simulation considers four communication levels: low ( c  = 10, d  = 2), medium ( c  = 20 

d  = 4), high ( c  = 30, d  = 6), and very high ( c  = 40, d  = 8). The simulation results show that 

the premium price can be adjusted based on frequency in a communication network. To measure the 
amount of adjustment, we use the relative percentages metric. At a low level, the premium price from a 
node can reach 28.28% lower than the initial premium, and the network premium is 20.99% lower than 
the initial network premium. These results can answer the challenge of high cyber insurance prices by 
adjusting premiums. From a practical perspective, this method can apply using network traffic or 
network flow data. 
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