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Abstract 

Differential privacy is a privacy scheme in which a database is modified 

such that each user’s personal data are protected without affecting 

significantly the characteristics of the whole data. Example of such 

mechanism is Randomized Aggregatable Privacy-Preserving Ordinal 

Response (RAPPOR). Later it is found that the interpretations of privacy, 

accuracy and utility parameters in differential privacy are not totally clear. 

Therefore in this article an alternative definition of privacy aspect are 

proposed, where they are measured in term of Shannon entropy. Here 

Shannon entropy can be interpreted as number of binary questions an 

aggregator needs to ask in order to learn information from a modified 

database. Then privacy leakage of a differentially private mechanism is 

defined as mutual information between original distribution of an attribute 

in a database and its modified version. Furthermore, some simulations using 

the MATLAB software for special cases in RAPPOR are also presented to 

show that this alternative definition does make sense. 
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1 Introduction 

In digitalized era when many things can be done online, privacy becomes a more 

serious issue, especially if our personal data have to be submitted online for some 

reasons. Even with their published privacy policies (something that most users never 

read it properly), there are some room for privacy violations. Here we will not talk 

about the hackers or any outsiders, because the ones who violate privacy might come 

from the authorized parties. 

The most annoying case is when some parties use their authorities to leak someone’s 

private data but there is no laws or rules which can conclude it as a privacy violation 

and therefore they cannot be punished. For example, our medical record data which are 

recorded in a hospital’s database. Our data, together with other persons’ data, might be 

used by other parties who want to learn something from the database, let us say a 

medicine company or a medical research center. We never know if they really just 

access the database for gaining only the necessary information, or they may search for 

our personal data. 

A basic and simplest way to prevent this is by hiding the names of data owners, i.e. 

making the data to be anonymous. Unfortunately, this may be not enough to protect our 

private data. They can still access any other data, such as height, weight, age, gender, 

etc. Consider some persons with a very rare attribute, for examples : too tall, too short, 

too fat, too thin, and many more. By looking at one specific attribute or two, they can 

uniquely determine them and as consequence, can leak their private information. They, 

of course, violate those persons’ privacy but we cannot say that they break any laws or 

rules in the privacy policies. Suppose that someone is famous as the tallest guy in 

his/her city. Roughly saying, as long as they do not ask the hospital who the tallest guy 

in this database is, and the hospital do not inform it either, no laws or rules are broken. 

Based on this kind of issues, many data security researchers try to create a new 

privacy protocol to protect any private information. One of them is called as differential 

privacy. The idea is to modify the original database such that each user’s personal data 
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are protected but characteristics of the whole database do not change significantly. 

Therefore other parties are still able to learn any information about the whole database 

but they are unable to learn any personal information. 

As a very simple example, there are five persons : A, B, C, D and E. The fact is A 

and B are smokers, while the others not. After modification, the smokers become C and 

E. Here the fact that A and B are smokers is hidden, but it preserves the fact that two of 

those five persons are smokers. Note that other parties know that the database has been 

modified, so they cannot judge C and E as smokers. Therefore if they just want to know 

the proportion of smokers in the database, they will not get it wrong but they will not 

know who the real smokers are. 

In practical case, of course, we will work on much larger database with various 

attributes. We do not have to preserve the exact proportion of any attributes, but we 

need to keep it with a small margin of errors. The concept of differential privacy will be 

discussed in the next section, together with some specific mechanisms which can be 

used. 

 

2 Differential Privacy and RAPPOR 

The idea of differential privacy came first in Dwork et.al. [1] in 2006. In their work, 

an idea to protect privacy by adding noise to the data is introduced. At that time, it had 

not been named as differential privacy, the name came later after some subsequent 

research. After few years working thoroughly on this area, a more comprehensive 

concept of differential privacy are later published in Dwork and Roth [2]. Concepts and 

definitions in this section are based on [1] and [2]. 

 

2.1  Differential Privacy 

Now we go to the definition of differential privacy. Let a database is represented in a 

table in which the rows represent the users and the columns represent the attributes. 

Sometimes the parties who have authorized access to the database only need to take 

some samples of users and not all of them. We do not always know what they want to 

look for, but we can assume that they have full authorities to do so. 
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We say that two sub-databases are neighboring to each other if one is obtained by 

adding or deleting one row from the other. If the database is not modified, it is possible 

to learn about one specific user by learning two databases : one database that containing 

him/her and the database that is obtained by eliminating him/her from the previous one. 

Therefore, in order to protect that user’s privacy the modification mechanism needs to 

eliminate this possibility. This leads to a definition of differentially private mechanism. 

 

Definition 2.1. Let A be a mechanism to modify a database D with    as output. The 

mechanism A is said to be (   )-differentially private, where both ε and δ are non-

negative numbers, if for any neighboring sub-databases 1x  and 2x  of  , and for any 

subset   of   , it satisfies : 

   1 2Pr PrA x S e A x S             (1) 

Equation (1) can be interpreted as the outputs from two neighboring databases has 

only very small and insignificant difference such that (almost) nothing can be learned 

about the user who differs them. If the numbers ε dan δ be smaller, then the differences 

become more insignificant and the privacy becomes stronger. In some specific cases, 

the parameter δ in (1) is set to be 0 and then the mechanism is said to be ε- differentially 

private. 

Now we talk about the accuracy of a differential privacy mechanism. In this context 

we are concerned about information from a database which can be used to answer 

predicate counting queries. The class of those queries is called as concept class, usually 

denoted by  . Set of any possible values of a database is called as data universe, usually 

denoted by  . Output of a predicate counting query   on a database  , denoted by  ( )  

is the proportion of elements in   which satisfy that predicate. For example, proportion 

of smokers or proportion of patients with heart problem in a medical record database. 

Then we have this definition of accuracy. 

 

Definition 2.2. For any c C , a mechanism A on database x is said to be α-accurate 

for c if     c x c A x   . Moreover, A is said to be (α,γ)-accurate for a concept 

class C if A is α-accurate for (1-γ) fractions of queries in C. 
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Above definition can be interpreted as even though each personal data has been 

modified, but the proportion of users who satisfy a predicate does not change 

significantly. We need α to be smaller for a better accuracy. Considering that it is very 

difficult to create a mechanism that can be accurate for all queries in a concept class, 

then parameter γ is introduced. If γ is smaller, then more queries can be answered 

accurately. Furthermore, an utility parameter of a mechanism can also be defined based 

on its accuracy parameter. 

 

Definition 2.3. Let C be a concept class and X is a data universe. A modification 

mechanism A is said to have (α,β,γ)-utility with respect to C and X if for a database x it 

holds that  Pr is -accurateA       . 

 

There are several kind of mechanisms which can be used to modify database which 

satisfy differential privacy principles. In this section we will introduce the Randomized 

Aggregatable Privacy-Preserving Ordinal Response (RAPPOR) mechanism. The next 

sub-section will discuss more about RAPPOR. 

 

2.2  Randomized Aggregatable Privacy-Preserving Ordinal Response (RAPPOR) 

Let a database consists of several attributes which each of them can be divided into 

several categories. For example, we can categorize people according to their genders 

(male/female), age range (                   ) and many more. Then for 

each attribute, each user is represented as the category he/she belongs to. To represent in 

which category a user belongs to, we can also use as a binary vector with exactly one 1 

and 0 otherwise, where position of the 1 denotes the category he/she belongs to. 

These binary vector representations will then be modified randomly based on a 

probability distribution and sent to other parties. Thus they will receive an already 

modified database. To learn about distribution of categories for each attribute, they have 

to take the aggregate values of each category. Because of this, later we will call them as 

data aggregator. The data aggregator does not know the actual distribution of categories, 

but he/she may know the probability distribution that is used to modify the database. 
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However, this knowledge should not be enough to leak actual information of the entire 

database. 

There are several kind of RAPPOR mechanisms, as presented in Wang et.al. [3]. In 

this article we will discuss two kind of RAPPOR mechanisms, which are  

1. RAPPOR with direct representation 

This kind of data aggregation mechanism works as follows  Let there are m 

categories in an attribute and a user   belongs to category    . After modification, 

user i belongs to category    . Probability that user i still in his/her actual category 

(   =    ) is γ and for each category j where          probability of user i belongs 

to category j after modification is   (   ). 

2. RAPPOR with unary representation. 

In this mechanism, category of a user i is represented as a binary vector 

 1 2, , ,i i i imX X X X  where       if user i belongs to category j and otherwise 

     . Then this binary vector will be modified by adding noise independently 

on each bit. Here a bit 0 can be flipped to 1 or vice versa. For each bit, probability 

of binary flip from 0 to 1 is    and probability of binary flip from 1 to 0 is   . If 

     , then it is called as symmetric scheme. The modified vector is then 

denoted as    and this will be sent to the aggregator. Note that after modification, 

it is possible to have more than one 1s or no 1s at all. 

In next sections, we will not discuss the privacy and accuracy aspects using Definition 

2.1. and Definition 2.2., but we will use a different approach instead, that is, by using 

concepts from information theory and we will see how it could work. 

 

3 Re-defining Privacy Leakage in Term of Shannon   

Entropy 

There are some open problems from the concepts of differential privacy explained in 

the previous section. For example, in a differentially private scheme, we want to 

determine the values of ε and δ such that its privacy can be considered as good enough 

and the values of α, β and γ such that it has good accuracy and/or utility. We are also 
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interested in the practical interpretation of those parameters in a specific mechanism and 

how changes of one or two parameters affect the others. 

It is difficult to answer those questions since we do not have a well-defined 

measurements of some parameters in differential privacy. Thus we might need another 

way of measuring the strength of privacy and accuracy. In Wang et.al. [4], an idea that 

linked differential privacy and mutual-information privacy was introduced. Therefore it 

should be possible to learn differential privacy using information theoretic approach. In 

this section we will use similar idea to re-define some aspects of differential privacy in 

the language of information theory. 

 

3.1  Shannon Entropy and Mutual Information 

Intuitively, stronger privacy will imply worse accuracy and vice versa. As a 

consequence, we cannot have both aspects at each highest level and we should try to 

find a solution for “optimizing” both privacy and accuracy. Therefore their 

measurements have to be “sensibly comparable”. In this section an alternative definition 

for privacy aspect in differential privacy based on information theory point of view will 

be introduced. Some basic definitions in information theory, based on Cover and 

Thomas [5], will be revisited first. 

 

Definition 3.1. Let X be a random variable with probability distribution P and 

probability mass function  Prxp X x  . Shannon entropy of X, denoted by H(X), is 

defined as : 

   
1

log logx x

x X x

H X E p p
p

 
       

 
 . (2) 

Binary entropy function h of an event with probability p is defined as : 

   
1 1

log 1 log
1

h p p p
p p

   
       

   
. (3) 

In some books, Shannon entropy is often called just by the word “entropy”. There are 

many interpretations of Shannon entropy. One of them is the number of binary (yes/no) 

questions which need to be asked in order to learn an output if the probability 
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distribution is known. This interpretation might be not totally accurate, but it is sensible 

enough to define privacy aspect. If the aggregator needs to ask too many questions in 

order to learn about an individual data, then we can say that the privacy is strong 

enough. 

After being modified, a database might still give some partial information about its 

actual data. By learning an already modified database, an aggregator might be able to 

leak some actual information without knowing the original one. This “leakage” can be 

represented as mutual information between an original database and its modified 

version. The following is the definition of mutual information. 

 

Definition 3.2. Let X and Y be two random probability distributions. Mutual 

information between X and Y, denoted by I(X;Y), can be computed using these 

equivalent formulas: 

         

           

;I X Y H X H X Y H Y H Y X

H X H Y H XY H XY H X Y H Y X

   

     
 (4) 

Moreover, if X and Y have joint probability distribution pxy and their respective 

marginal probability mass functions are 
x xyy

p p  and y xyx
p p , then : 

 
,

; log
xy

xy

x y x y

p
I X Y p

p p

 
     
  (5) 

Based on Shannon entropy and mutual information as in Definition 3.1. and 3.2., we 

can create new definitions of privacy aspect of differential privacy. These will be 

discussed in next sub-section. 

 

3.2  Alternative Definitions of Privacy Leakage 

If we go to our implementation, then we can directly get an idea to define a privacy 

leakage. Suppose that C is the actual distribution of an attribute in a database and after 

modification the distribution becomes     The privacy leakage can be defined as mutual 

information between   and   , i.e.  (    )  which can be interpreted as the number of 

binary questions asked by an aggregator to learn information about actual distribution C 

that can be answered by his/her knowledge on modified distribution   . By this 
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interpretation, a stronger privacy scheme should have smaller value of mutual 

information between actual distribution and modified distribution. 

Meanwhile, defining accuracy and utility are trickier. If we want to make everything 

well-defined, then we need a sensible interpretation about utility in term of the number 

of binary questions. This is for making a comparable measure between privacy and 

accuracy-utility. If one entropy in privacy has different interpretation with one entropy 

in accuracy/utility, then these measures are incomparable and we will not get what we 

expect in the beginning. This can be an open problem for any possible further research. 

In next section we are going to do some simulations using the MATLAB software to 

justify whether our definitions of privacy leakage and utility really make sense or not. 

 

4  Simulation using the MATLAB Software 

Alternative definition of privacy leakage introduced in previous section look make 

sense, but sometimes we need to justify them using some simulations in real and 

practical cases. Here we do simulations on privacy leakage first. Since computation of a 

big enough database would take long enough time to compute, we start with some 

special cases in small database which their computations do not take much time to 

complete. 

 

4.1  Case I : RAPPOR with direct representation 

Recall the mechanism of RAPPOR with direct representation introduced in Section 

2. In this mechanism, a user which belongs to a category will have probability     to 

stay in his/her actual category and probability   (   ) to move into each of other 

categories, where m denotes the number of categories. Therefore if we know the actual 

distribution C, we can compute the entropy of conditional probability distribution      

as below  

     
1 1

' 1 , , , 1 log 1 log
1 1 1 1

m
H C C H m

m m m

  
 

 

     
             

        
 

 

       
1 1 1 1

1 log log 1 log 1 log log log 1
1 1

m m    
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   log 1h m      (6) 

Now we want to compute entropy of modified distribution   . Let the actual 

distribution be  1 2, , , mp p p . We will determine the probability that a user would end 

up in category j, no matter what his/her actual category is. Let denote that probability as 

    If a user is originally in category j (with probability   ), then his/her probability to 

stay in category j is (   )     If he/she is originally in another category i (with 

probability         ), then his/her probability to move to category j is (    ) (   )  

Taking sum of these disjoint cases, we get a formula of     that is  

 

     
1

1 1 1 1
1 1 1 1

m

j j i j j j

i
i j

m
r p p p p p

m m m m

   
 




     
                   

        
  (7) 

Thus distribution of C’ is  1 2, , , mr r r , and mutual information between C and C’ is  

         
1

1
'; ' ' log log 1

m

j

i j

I C C H C H C C r h m
r

 


         (8) 

where rj is as defined in (7). This is the measurement of privacy leakage in this 

mechanism with probability parameter γ. 

After obtaining formula (8), we can try to do a computation of it. To simplify the 

computation, we try on a special case where the actual distribution is uniform, i.e. the 

users are distributed uniformly into m categories with probability 1/m each. In this case 

we will have : 

1 1 1
1 1

1 1 1 1 1 1
j j

m m
r p

m m m m m m m m m

        
              

        
 

 

     

       

1

1

1
'; log log 1

1
log log 1 log log 1

m

j

i j

m

i

I C C r h m
r

m h m m h m
m

 

   





     

          





 

 

 

(9) 

Now we compute formula (9) of variable γ. We consider several cases with different 

number of categories  2, 3, 4 and 5 categories. Results of these computations are shown 

in Figure 1. 
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Figure 1. Privacy leakage of RAPPOR with direct representation. Graphs of mutual information 

 (    )as a function of the noise parameter γ are plotted for m = 2, 3, 4 and 5, where the actual 

distribution C is uniform. 

 

We can see the behavior of those graph. When γ is closer to 0.5, the mutual 

information is closer to 0 and therefore get stronger privacy. We also see that if there 

are more categories, the value of mutual information is also bigger. However, we have 

not been able to compare multiple cases with different number of categories. Look at 

the fact that formula (9) depends on the value of m and if m is bigger, then  (    ) shall 

be bigger too. This leads to a possible kind of “normalization”, which makes the value 

of mutual information fall in interval        If      , the “normalized” mutual 

information should be equal to 1, which means that the aggregator is fully able to learn 

any information in the database since he/she receives the original one. Unfortunately we 

are yet to find a formulation about the normalization factor. 

 

4.2  Case II : RAPPOR with unary representation 

Now we move on to another case of RAPPOR with unary representation. To simplify 

the case, we will consider the symmetric case when        (to avoid many subscripts, 

later they are both written as  ). Each user can only belong to one category and 
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therefore his/her binary vector representation C contains exactly one 1 in his/her 

category’s position and 0 otherwise. Given an arbitrary binary m-vector z, we will 

compute the probability that the binary vector representation will be modified into z. 

This shall depend on how many 1s are contained in z, i.e. the Hamming weight of z, 

usually denoted by  ( )  

If the 1 in original vector C is not flipped to 0, then from     0s in C, there are 

 ( )    of them which are flipped into 1 and the other m-w(z) 0s are not flipped. Its 

probability will be    
  11

1
m w zw z

 
 

 . In other side, if the 1 in C is flipped to 0, then 

from m-1 0s in C, there are w(z) of them which are flipped into 1 and the other   

 ( )    0s are not flipped. Its probability will be    
  11

1
m w zw z

 
 

 . As a result, the 

probability distribution Z of a modified database, knowing that a user belongs to 

category    can be written as : 

   
 

2

111
Pr 1

jz

m w zw z
Z z C j


 



  
       

 
 (10) 

It looks like a tricky task to compute the entropy H(Z|C) since we have to take sum 

from any possible binary vectors z with various Hamming weights and positions of their 

1s. However, by using some binomial properties in Rosen [6], we can obtain a pretty 

simple result below : 

     
1 1

log 1 log
1

H Z C m h m  
 

 
     

 
 (11) 

Defining            for any m-binary vector, is a lot more difficult. We have to 

consider any possible original position of the single 1, multiply it by its actual 

probability and take sum of them. Based on (10) we can compute that probability mass 

function, denoted by  ( )  as : 

   

   
 

1

2

11

1

Pr Pr

1
1

j

m

j

j

z
m

m w zw z

j

j

Q z Z z p Z z C j

p
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2

1

1

1
1

1

jw z z
m

m

j

j

p
 

 
 





   
    

   
  (12) 

Note that values of    are either 0 or 1, so we can divide the last sigma form in (12) into 

two cases when       and when       . If we define   j jj
p z p z  , then (12) 

can be simplified into  

 
 

 

 

     

2 0

1

1 1
1 0

2

1

1 1
1

1

1
1 1

1

j j

w z
m m

m

j j

j j
z z

w z

m

Q z p p

p z p z

  
 

  

 
 

 



 
 



 
       

             
  

    
       

     

 
 

 

      

 

   
1

2

1 2
1 1

1

w z

m
p z

 
 

 

   
     

   
 (13) 

Since entropy calculation involves logarithm and nothing can be simplified from 

logarithm of a sum, it will be difficult to simplify the  ( ) term in this case.  

Therefore we try to do a “brute force” for calculating mutual information  (   )   

  ( ) –   (   ) by directly using the last row of (13) in calculating  ( ) term. Again 

we set the actual distribution of categories to be uniform and we compute multiple cases 

of different number of categories : 2, 3, 4 and 5 categories. Results of these 

computations are shown in Figure 2. 
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Figure 2. Privacy leakage of  RAPPOR with unary representation. Graphs of mutual 

information  (    )as a function of the noise parameter β are plotted for           and  , 

where the actual distribution C is uniform. 

 

We see similar behavior with previous case. For any number of categories, their 

graphs are monotonically decreasing on interval          The difference is that all 

graphs tend to 0 when      . We can interpret this as the aggregator is unable to learn 

anything when       , i.e. the binary flip is totally random. More categories also 

imply bigger value of mutual information, but they are also yet to be normalized. Also 

note that if the range of β is extended to        then those graph will be monotonically 

increasing. Let us imagine if    , then all binary vectors will be completely flipped (0 

to 1 or vice versa) and the aggregator can easily determine the original ones. We can 

also intuitively conclude that cases when      and      –    are practically similar. 

Apart from those two presented cases, we have tried to do computation for other 

mechanisms, but some of them have very complicated formula and be very difficult to 

compute. Some computations even need several days to be completed. Computation for 

a big enough number of categories is also yet to be done. There are two possible 
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solutions  simplifying the computation, or determining upper/lower bound of the 

privacy leakage which is easier to compute. 

 

5   Conclusions 

From what are discussed in this article, we have several points of conclusions and 

feedbacks for any possible further research, which are : 

1. By interpreting entropies as number of binary questions which are need to asked 

for learning information on a database, it is possible to re-define privacy and 

accuracy-utility aspects of a differential privacy scheme in term of entropies. In 

this article the former has been done. 

2. Privacy leakage of a differentially private mechanism can be defined as the 

mutual information between actual distribution of categories of an attribute in a 

database and its modified version. This definition does make sense and some 

simulations with MATLAB have been done to justify it. 

3. Defining accuracy and utility of a differentially private mechanism in term of 

entropies is a trickier task to do. One entropy in the definition of utility should 

have similar and comparable interpretation with one entropy in privacy leakage. 

This may still be very open problem. 

4. Definitions of privacy leakage here is still lack of “normalization”. To make it 

totally comparable between any attributes with various number of categories, we 

might need to normalize them into a specific range (possibly      ) and their 

normalization factors are yet to be determined. These could be some open 

problems to solve in further research. 
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