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Abstract 

Inverse problems deal with recovering the causes for a desired or given 

effect. Their presence across sciences and their theoretical study can be 

traced to a classic example. Moreover, their ill-posedness motivates 

computational methods to solve them, and we give a very humble 

introduction to them. In relation we discuss their active research trends. 

Keywords: divergence measure, ill-posed equation, inverse problem, 

regularization, noisy data 

 

 

1 Introduction 

Inverse problems are everywhere. The simplest example out there would be human 

vision. From measurements of scattered light that reaches our retinas, our brain 

constructs a detailed 3-dimensional image of the world around us. But how is this 

possible with only a limited number of points in our surroundings? Our brain has a way 

to complete the image by interpolating and extrapolating the data acquired from the 

identified points. Constructing this image is actually an example of what is called an 

inverse problem.  
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There is no universal definition to inverse problems. One might say that inverse 

problems are concerned with determining causes for a desired effect [4]. The American 

mathematician J.B. Keller gave this well-cited definition [12]: 

“We call two problems inverses of one another if the formulation of each involves 

all or part of the solution of the other. Often, for historical reasons, one of the 

two problems has been studied extensively for some time, while the other is newer 

and not so well understood”. 

This implies that for an inverse problem to be defined, first there must be an 

underlying direct problem. We will consider some examples. 

 

2 An Important Example 

One of the most well-studied inverse problems is known as Calder ́n’s problem.  

Back in 1980 A. P. Calder ́n published a paper “On an inverse boundary value 

problem”. It aims to solve this problem: is it possible to determine the electrical 

conductivity of a medium by making voltage and current measurements at the boundary 

of the medium. This inverse method is also known as electrical impedance tomography 

(EIT). Interestingly, Calder ́n had been researching on this problem while working as a 

petroleum engineer for Argentina’s state oil company back in 1947. He stayed there for 

a few years before embarking a full-time career in mathematics. 

His paper became a ground-breaking one: it started a new era of mathematical 

research on inverse problem. Later on EIT would find itself applied in medical imaging. 

In fact, a prize for outstanding contribution in the field of inverse problems is named 

after him (check out Calderon Prize). You may check out Gunther Uhlmann’s paper 

[16] for a summary of progress in Calder ́n’s problem. 

Calder ́n’s problem is a good example on how real-world problems motivate 

mathematical research. In geophysics, one needs to explore the Earth’s subsurface using 

reflected seismic waves. In ecology, space monitoring is used to assess trends of 

biological diversity using reconstructed satellite images. In medical imaging, tumors in 

a part of human body must be accurately detected from the attenuation of x-rays. 

Mathematically, these inverse problems are described using operator equations whose 
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specific properties need to be studied with rigour. In fact, the progress in mathematical 

theory of inverse problems is independent of the growing applications, though the gap 

between them remains wide. This gap can be filled by showing more applications where 

the theoretical results hold, promoting a deeper appreciation of inverse problems. 

 

 

3 Regularization 

An inverse problem can be expressed as an operator equation in the form 

 ( )   , (1) 

for a specific exact data    ,       be a parameter-to-observation mapping 

between     (they can be Hilbert, Banach, or even a general topological spaces), for a 

given parameter variable  . Inverse problems have one common property that makes 

them really hard to solve: they are ill-posed. In mathematics, a problem is well-posed if 

the following three are satisfied: the problem has a solution, it has a unique solution, 

and the solution depends continuously on the data. If one of the three is violated, the 

problem becomes ill-posed. For instance, the mathematical problem of  EIT consists of 

a highly nonlinear partial differential equation, which is very ill-posed.  

To address instability, we can solve the original ill-posed problem by solving a 

sequence of approximating well-posed problems. This technique is called 

regularization. Applying some numerical scheme (e.g. the ones from optimisation) to an 

ill-posed problem may lead to different solutions. Regularisation ensures a specific 

solution with desirable properties is recovered. For instance, suppose we have a noisy 

data     . Instead of solving the ill-posed equation (1), we solve an equivalent 

minimisation problem. 

  ( ( )    
     ) (2) 

for a an admissible set     and           * + be the divergence measure 

between the reconstrution  ( ) and the noisy data   .  Since (1) is ill-posed, (2) is also 

ill-posed, but easier to handle. Now we describe a very common regularization method. 

In variational regularization, we solve a surrogate of (2), given by 
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  ( ( )   )    ( )   
    (3) 

where        * + is the penalty functional and     is a positive constant 

regularization parameter. Now, (3) is stable due to the promotion of the penalty term, 

and can be solved using optimisation algorithms. An example of (3) common in 

statistics and machine learning is Tikhonov regularization, or ridge regression, where 

normally the penalty term favors solutions with smaller norms, while the functional   is 

the least-squares functional. The parameter   serves as a trade-off between data fidelity 

and stability, and must be fine-tuned. If the regularization parameter   

   is chosen via a given parameter choice rule to solve (3), we can obtain the solution 

with this best possible trade-off. Moreover, finding an appropriate regularization 

parameter    to solve (3) is a very active of research in inverse problems, and usually 

done by  imposing assumptions on the ill-posed problem. 

Alternatively, iterative regularization can be used. To describe, let us assume   and   

to be Hilbert spaces with norm given by ‖ ‖. The simplest of this type is Landweber 

method, which is simply the gradient method applied to solving 

‖ ( )    ‖
   

   
 

Starting an initial guess     ,  the (nonlinear) Landweber iteration [5] is given by 

    
    

     
    (  

 )
 
 ( (  

 )    )             (4) 

where   
   is a relaxation constant chosen often between   and   (can be constant for all 

 ). Since the original problem (1) is ill-posed, (4) must be terminated after a finite 

number of iterations    to ensure the best reconstruction possible. In this case the 

iteration    acts as the regularization parameter. As in variational regularization, 

choosing an appropriate    using an appropriate parameter choice rule is also an active 

research area. 

In some problems, variational regularization in terms of (3) may lead to solving large 

and sparse systems of equations, which can be computationally expensive. In addition, 

for every value of   taken from an interval (e.g. exponential grid), a full numerical 

scheme must be implemented to solve to solve. In contrast, iterative regularization have 

lesser computational burden, but could take a large number of iterations. Due to this 
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observation, iterative methods are known to be slow but reliable, which makes them 

more preferred. 

However, variational regularization has one important advantage: it can be 

formulated for problems using generalized divergence/residual terms  ( ( )   ) 

where   in (3) does not have to be a norm in Banach spaces. Some instances are in EIT, 

where the measurement error of the data could depends on the location of the 

measurement (i.e. error is larger in areas closer to the ultrasound receiver). This is also 

the case when measuring probability measures. For a convenient overview of these 

methods, the reader may refer to [9,13]. 

Lately, in some publications theoretical results often in this research area go hand-in-

hand with numerical examples. Some numerical examples come from anywhere optimal 

control, plasma physics, economics, etc. Theoretical results usually involve 

convergence rates, in terms of the noise level     (    ), they allow comparisons 

between regularization methods. However this is not be doable in some settings, such as 

for iterative regularization methods in Banach spaces [8,11,14]. The more important 

type of theoretical result is the proof of regularization property: given a parameter 

choice rule, the approximate solution produced by the regularization method should 

converge to the (unknown) desired exact solution as the noise level decays. 

 

4 Current Trends 

Now i want to cite some important research trends in the field of regularization for 

inverse problems. One of the most well-studied types of parameter choice rules is the 

discrepancy principle, which states to pick the regularization parameter    or    once 

the residual becomes smaller than a multiple of the noise level. Mathematically, for 

iterative methods it means to pick    such that 

 ( (   

 )   )        ( (  
 )   )            

for a given    . For both variational and iterative regularization methods this has been 

well-studied [4,5,14]. However, notice that aside from the noisy data   , the 

discrepancy principle requires information of the noise level  . In some instances such 
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information may not available, and either overestimation or underestimation of the noise 

level may lead to an unsatisfactory solution of the inverse problem. Hence, for 

regularization methods, it is necessary to develop heuristic rules which do not need the 

noise level. Although Bakushinskii’s veto [1] states that heuristic rules cannot lead to 

convergence in the worst case scenario for any regularization method, it is still possible 

to prove some convergence results under such rules under specific assumptions on the 

noisy data. A well-studied heuristic rule was formulated by Hanke and Raus [6] and it 

has been developed since then, for instance in [7]. 

Another growing trend is studying regularization methods in Banach spaces. The 

standard reference book [4] compiles fundamental results under Hilbert spaces. The 

need for extending these results towards Banach spaces stems out naturally when the 

sought solution is non-smooth, e.g. when it is sparse or piecewise constant. Hilbert 

spaces are too smooth to cover such solutions. A strategy is to introduce a nonsmooth 

penalty term, which includes the   -norm and the total variation (TV), in iterative 

regularization [2,8]. For variational regularization, one way to obtain convergence 

results is to impose more general conditions on the sought solution [7]. Obtaining 

results under Banach spaces also allows to cover both linear and nonlinear problems, 

leading to more computationally challenging examples [15]. This is a great development 

since many inverse problems are expressed in terms of highly nonlinear partial 

differential equations, leading to nonlinear and often non-differentiable forward 

operators. In this area obtaining convergence results using more general assumptions 

and extending them towards general topological spaces [13] is still very active. 

Another important issue involves the forward operator. For instance, problem (4) is 

formulated assuming   is differentiable, in a more general sense. It is possible to obtain 

a modified Landweber method where instead of the derivative of  , an operator 

approximating the derivative can be used, leading to a derivative-free iterative method 

[10], Chapter [4]. So far only a few types of derivative-approximating operators have 

been known [3], and different types may lead to different convergence analyses. 

Exploring more problems with nonsmooth forward operators is always a welcome 

research area. In some problems where the direct problem involves not fully linear 
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PDEs, the corresponding forward operator may be too complicated to formulate, so 

solving inverse problems with it would be necessary. 

 

5 Conclusion 

Inverse problems are still starting to gain better understanding, dating back around 

thirty years. It’s an area that requires expertise in computational maths, such as in 

solving PDEs to optimisation. Obtaining theoretical result involves lots of estimation in 

various settings, from Banach spaces to Sobolev spaces! It’s a relatively new area that 

needs more people to move in! 
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