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Abstract 

Studies of frequency distributions of natural language elements have 

identified some distributions that offer a good fit. Using electronic 

documents, we show that some of these distributions cannot be used to 

model the frequency of bytes in electronic documents even if these 

documents represent natural language documents. 

Keywords: Frequency fitting, quantitative linguistics, phase change 

memories 

 

1 Introduction 

Mathematical linguistics has studied the frequency of phonemes, words, and 

graphemes in natural languages. At its best, this work is used to obtain linguistical 

insights or even applications. For example, the Flesch Reading Ease Index [1] uses a 

combination of average word length and average sentence length. Best [2] still upholds 

its usefulness but notices that word length and sentence length are only indirectly 

related to readability. Our own motivation does not stem from linguistics but from the 

study of new non-volatile memory devices and their integration into future systems. We 
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are interested in researching how to minimize bitflips in Phase Change Memories 

(PCM) [3]. PCM are a new non-volatile memory technology that offer bye-

addressability, very high density, non-volatility, high retention, and high capacity. 

Unfortunately, PCM exhibit limited endurance. They use energy only while reading and 

writing, and usually writing consumes most of the energy. The number of bitflips 

caused by overwriting electronic documents of one kind by documents of the same kind 

depends on the encoding. For example, the web-browser cache contains HTML 

documents which could be placed in the same area of a PCM. To find good encodings, 

we want to model the frequency of graphemes in these documents [3]. The most 

frequent encoding for internet documents is UTF-8 so that our graphemes are bytes.  

Here, we apply the methods of mathematical linguistics to modelling the frequency 

of bytes. Linguists are interested in language and graphemes are important as carriers of 

information on phonems. Unlike linguistics, we are interested in the effects of storing 

graphemes instead of using them. This makes for important differences. For instance, a 

linguist is not likely to make a distinction between capital letters and non-capital letters. 

Similarly, a linguist might conflate equivalent spellings, for example, the English and 

the US English versions of “tre” and “ter”, the recent abolition of the German letter “ß” 

in favor of “ss”, or even remove accents in Spanish.  

Linguistics has shown that the frequency distribution of graphemes can be modelled 

by one or two parameter distributions successfully. Our results show that distribution 

fitting is less successful for bytes than for letters and phonems. Our research has 

convinced us that modelling a broad category such as text documents using distributions 

and parameters fitted to one corpus does not translate to another corpus. Evaluation of 

byte overwrites using these models are dangerous. Fortunately, we did find an encoding 

strategy that leads to energy savings for a broad class of electronic documents [3]. 

  

2 Research Methodology 

We observed that encoding, e.g. utf-8, utf-16, ASCII, has a strong impact on the 

number of bits over-written when string text based electronic documents. This translates 

immediately into energy savings because each bit over-write costs energy. Also, each 
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bit-write is potentially destructive of the cell. We, therefore concentrated on HTML files 

stored, for example, in a browser’s cache and to a lesser extent on text files. For 

comparison, with results in linguistics [1], [4], [5], [6] we also extracted pure text 

content from HTML files by gathering long text between the paragraph meta tag if the 

text was at least 50 bytes long. This excludes instances where the webpage used a 

paragraph meta tag only as a structural element. We also only processed letters and did 

not include punctuations or space. We collected corpora from Internet newspaper 

articles, Wikipedia, and the Project Gutenberg library of books in four European 

languages namely, English, German, Spanish and French. Each corpus contained at 

least 10 MB of raw data. We gathered ten corpora for English and five each for the 

other languages. For each corpus, we then calculated the frequency of each letter in the 

language or the frequency of each possible byte. We then fitted various distributions 

proposed in the linguistics literature to the frequency tables we obtained. For fitting we 

used Python’s SciPy module. We minimized the relative sum of squared differences 

between the ordered relative frequency of the letters or bytes and the prediction by the 

distribution. Since the distribution has one, two, or three parameters, this means 

minimizing a function of one, two, or three variables. For each distribution, and for each 

of the 25 corpora, we tabulated the best fitting parameters and the goodness of fit for 

bytes. 

 

3 Distributions 

Zipf is an ancestor of modern quantitative linguistics, but the distribution named after 

him is also used almost as a default when modelling uneven usage of resources or 

uneven sizes in Computer Science. He ranked words in descending order of frequency 

of occurrence and observed that the frequency of the 𝑖𝑡ℎ word is proportional to 1
𝑖⁄ . 

Thus, we fit an ordered array of 𝑛 descending frequencies with an array: 

[𝛼
1⁄ , 𝛼

2⁄ , 𝛼
3⁄ , … , 𝛼

𝑛⁄ ] 

where 𝛼 is chosen so that the array sums up to one, which means that 𝛼 is the inverse of 

the 𝑛𝑡ℎ harmonic number. Over time, many other distributions have been proposed to 
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model frequency of elements in natural languages. In his later works, Zipf generalized 

his distribution, matching the ordered array of 𝑛 descending frequencies with 

[𝛼
1𝛽⁄ , 𝛼

2𝛽⁄ , 𝛼
3𝛽⁄ , … , 𝛼

𝑛𝛽⁄ ], 

where 𝛽 is a parameter of the text and 𝛼 is calculated from 𝛽 and the length 𝑛 of the 

frequency array because the Probability Density Function (PDF) needs to sum up to 1. 

With other words, the frequency of the 𝑖𝑡ℎ most frequent item, denoted by 𝑓𝑖, is 

𝑓𝑖 ∼ 1
𝑖𝛽⁄ ,  

where ~ denotes proportionality. This distribution is also known as the Power Law 

distribution. Mandelbrot generalized the Zipf distribution by adding a second 

independent parameter 𝛾 so that   

𝑓𝑖 ∼ 1
(𝑖 + 𝛾)𝛽⁄ . 

The Good distribution [7] is a parameter-less distribution where  

𝑓𝑖 ∼ ∑
1

𝑗
.

𝑛

𝑗=𝑖

 

We parameterize the Good distribution by setting   

𝑓𝑖 ∼ ∑
1

𝑗𝛼
.

𝑛

𝑗=𝑖

 

In addition, we went through a list of distributions given by Li and Miramontes [5].  

Exponential:    𝑓𝑖~exp (−𝛼𝑖) 

Logarithmic:   𝑓𝑖~1 − α log (𝑖) 

Quadratic Logarithmic:  𝑓𝑖~1 − α log(𝑖) − 𝛽 (log(𝑖))2 

Weibull:    𝑓𝑖~ log ((𝑛 + 1) /𝑖)𝛼 

Cocho – Beta:   𝑓𝑖~(𝑛 + 1 − 𝑖)𝛽/𝑖𝛼 

Frappat:    𝑓𝑖~𝛽𝑖 + exp(−𝛼𝑖) 

Yule:    𝑓𝑖~𝛽𝑖/𝑖𝛼 

Menzerath-Altmann:  𝑓𝑖~ exp (−
𝛽

𝑖
) /𝑖𝛼 

The actual value of the PDF of a distribution with 𝑓𝑖~𝜓(𝑖, 𝛼, 𝛽) is 𝑐(𝜓(𝑖, 𝛼, 𝛽)), where 

1/𝑐 is equal to ∑ 𝜓(𝑖, 𝛼, 𝛽)𝑛
𝑖=1 . The purpose of 𝑐 is to ensure that the PDF sums up to 1. 
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𝑛 is the number of symbols obtained, namely, 𝑛 =  256 for bytes and 𝑛 = the number 

of symbols in a language. We are following the notation of Li and Miramontes [5], 

which has idiosyncrasies. For some values of 𝛽, Yule and Menzerath-Altmann are 

virtually indistinguishable. What Li and Miramontes call the Yule distribution is in fact 

not the well-known Yule-Simon distribution. The Yule-Simon distribution would have 

𝑓𝑖~𝛼𝐵(𝑖, 𝛼 + 1), where 𝐵 is the beta function, but is not suited for frequency matching. 

 

4 Results 

There are two criteria for a distribution fit for modelling. Most importantly, the 

distribution should predict the frequency well. We measure this by calculating the sum 

of the differences squared and dividing it by the number of symbols. The number of 

symbols 𝑛 is equal to 256 when we process raw documents, consisting of bytes. For 

text, it is just the total number of letters that can appear. To allow comparisons between 

text and raw data, we divide by 𝑛.  

 

Figure 1. Distribution of the parameter for fitted one parameter distributions. 

 

The second criterion is good clustering of the parameters. If two different corpora can 

be fitted well to the same distribution but with widely different parameters, then either 

we have too many parameters or the parameters are specific to one corpus. In the first 

case, we are better off with a distribution with less parameters and in the second case 



International Journal of Applied Sciences and Smart Technologies 

Volume 3, Issue 1, pages 1–10 

p-ISSN 2655-8564, e-ISSN 2685-9432 

  
6 

 
  

the distribution with these parameters does not generalize and is not suitable for 

modelling. 

For one parameter distributions, the fitted parameters lie close together and often in 

bands determined by the language, Figure 1. Only the parameters for German raw 

documents are more spread out in the case of the Weibull distribution and the 

Exponential distribution. In Figure 1, we plotted the sole parameter along the 𝑥-axis 

multiplying the parameter for the Logarithmic distribution by 10 and the parameter for 

the Exponential distribution by 20. Because the best fitting parameters in general appear 

in small ranges with sometimes differences between the languages, we conclude that 

modeling byte distribution with a single parameter will apply across a broad spectrum 

of corpora as long as they are in the same language.  

 

Figure 2. Parameters for Zipf Mandelbrot for text (left) and raw HTML (right) corpora. 

 

Figure 3. Parameters for Yule for text (left) and raw HTML (right) corpora. 
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Figure 4. Parameters for Cocho-Beta for text (left) and raw HTML (right) corpora. 

 

Figure 5. Parameters for Menzerath-Altmann for text (left) and raw HTML (right) corpora. 

 

 

 

Figure 6. Parameters for Quadratic logarithmic for text (left) and raw HTML (right) corpora. 
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Table 1. Range and average of goodness of fits for distributions and language corpora. 

E
n
g
li

sh
 

Method Range of Fits (Text) Text Avg Range of fits (Raw) Raw Avg 

Zipf 0.008573 - 0.009917 0.009379 0.005736 - 0.008065 0.006442 

Good 0.004025 - 0.004987  0.004601 0.003446 - 0.005398 0.004305 

Logarithmic 0.002510 - 0.002940 0.002745 0.002630 - 0.005295 0.004440 

Weibull  0.002129 - 0.002758 0.002481 0.001313 - 0.002383 0.001534 

Exponential  0.000649 - 0.000908 0.000795 0.000109 - 0.000258 0.000208 

Zipf-Mandelbrot 0.000664 - 0.000901 0.000801 0.000115 - 0.000175 0.000143 

Yule 0.000649 - 0.000908 0.000795 0.000109 - 0.000167 0.000134 

Cocho-Beta 0.000507 - 0.000620 0.000568 0.000109 - 0.000173 0.000146 

Quadratic log 0.060180 - 0.064961 0.062800 0.015871 - 0.023709 0.019974 

Menzerath-Altmann 0.000627 - 0.000838 0.009440 0.000102 - 0.000160 0.000132 

Frappat 0.000651 - 0.000814 0.009440 0.000109 - 0.016701 0.004980 

      

G
er

m
an

 

Method Range of Fits (Text) Text Avg Range of fits (Raw) Raw Avg 

Zipf 0.003868 - 0.004299 0.004149 0.001605 - 0.002684 0.002095 

Good 0.001315 - 0.001661 0.001509 0.000785 - 0.001904 0.001209 

Logarithmic 0.004030 - 0.004748 0.004310 0.005799 - 0.021800 0.013460 

Weibull  0.000444 - 0.000653 0.000521 0.000511 - 0.006085 0.003124 

Exponential  0.001871 - 0.002235 0.002009 0.003151 - 0.016770 0.009970 

Zipf-Mandelbrot 0.001061 - 0.001414 0.001194 0.001236 - 0.002684 0.001882 

Yule 0.000431 - 0.000649 0.000515 0.000401 - 0.002671 0.001493 

Cocho-Beta 0.000323 - 0.000500 0.000392 0.000344 - 0.002625 0.001416 

Quadratic log 0.067545 - 0.071953 0.069897 0.028288 - 0.059766 0.044443 

Menzerath-Altmann 0.000431 - 0.000649 0.009389 0.000401 - 0.002671 0.001493 

Frappat 0.001353 - 0.001763 0.009389 0.002006 - 0.004427 0.003596 

      

 Method Range of Fits (Text) Text Avg Range of fits (Raw) Raw Avg 

S
p
an

is
h

 

Zipf 0.011111 - 0.011337 0.011283 0.006152 - 0.006370 0.006254 

Good 0.006357 - 0.006546 0.006494 0.00422 - 0.004456 0.004333 

Logarithmic 0.004410 - 0.004520 0.004474 0.004648 - 0.005131 0.004877 

Weibull  0.003246 - 0.003374  0.003314 0.001400- 0.001472 0.001435 

Exponential  0.001116 - 0.001281 0.001193 0.000163 - 0.000208 0.000184 

Zipf-Mandelbrot 0.001123 - 0.001297 0.001195 0.000063 - 0.000114 0.000085 

Yule 0.001116 - 0.001281 0.001193 0.000095 - 0.000126 0.000111 

Cocho-Beta 0.000817 - 0.000972 0.000891 0.000135 - 0.000159 0.000147 

Quadratic log 0.074113 - 0.074588 0.074396 0.018778 - 0.020212 0.019447 

Menzerath-Altmann 0.001068 - 0.001248 0.011604 0.000095 - 0.000126 0.000110 

Frappat 0.001021 - 0.001183 0.011604 0.000094 - 0.000149 0.000117 

      

 Method Range of Fits (Text) Text Avg Range of fits (Raw) Raw Avg 

F
re

n
ch

 

Zipf 0.010303 - 0.010482 0.010381 0.006304 - 0.006504 0.006358 

Good 0.006042 - 0.006157 0.006093 0.004383 - 0.004586 0.004442 

Logarithmic 0.005219 - 0.005289 0.005244 0.005038 - 0.005300 0.005148 

Weibull  0.003713 - 0.003848 0.003778 0.001451 - 0.001534 0.001473 

Exponential  0.002739 - 0.002869 0.002795 0.000165 - 0.000203 0.000181 

Zipf-Mandelbrot 0.002720 - 0.002860 0.002776 0.000104 - 0.000128 0.000113 

Yule 0.002677 - 0.002797  0.002736 0.000093 - 0.000120 0.000102 

Cocho-Beta 0.002216 - 0.002328 0.002270 0.000109 - 0.000141 0.000120 

Quadratic log 0.074867 - 0.075727 0.075307 0.020078 - 0.020616 0.020275 

Menzerath-Altmann 0.002677 - 0.002797 0.012376 0.000093 - 0.000120 0.000102 

Frappat 0.002656 - 0.002783 0.012376 0.000129 - 0.016198 0.003352 
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For two parameter distributions, the situation is more difficult. In some cases, such as 

the Zipf-Mandelbrot distribution, Figure 2, language specific parameters are nicely 

clustered by language if we only look at text. If, however, we look at raw text, then the 

English cluster dissolves. For the five German corpora, the parameters are too widely 

distributed for text and raw files. We attribute this to over-fitting, a phenomenon well 

known from machine learning. Fitting Zipf-Mandelbrot “learns” the corpus but not the 

general category. In addition, we observe that the parameters for raw HTML lie along a 

line, indicating a linear relationship between the two parameters. This indicates that the 

distribution should be made into a one-parameter distribution. In fact, as can be seen 

from Table 1, the goodness of fits for Zipf-Mandelbrot is better than for the Zipf 

distribution but still at the worst range of two parameter distributions. Similarly, the 

parameters for Menzerath-Altmann are nicely clustered for text but lie on a one-

dimensional curve for the raw corpus. For the Quadratic logarithmic distribution, again 

the results differ between text and raw corpora. For this reason alone, a number of 

distributions suitable in linguistics are not suitable to model byte frequencies. We refer 

readers to see Figures 2-6 for the details of our illustration results. 

5 Discussion  

Our interest is not in linguistics but modelling the overwriting of non-volatile 

memory. Therefore, our frequency tables make a distinction between capital and non-

capital letters. For a linguist, this distinction is probably artificial. Also, unlike for 

example, Li and Miramontes [5], we do not conflate the letters that differ only in an 

accent or umlaut because they are encoded differently even though they can be 

considered the same letter. We gave results for texts as a comparison point for raw data. 

For example, we learned that some distributions such as Zipf-Mandelbrot overfit for 

raw data and are therefore probably useless for analytics while this does not happen for 

text. Overall, just as in the work of Li and Miramontes, the Cocho-Beta distribution and 

the Yule distribution allow best fits without the overfitting phenomenon. Among single 

parameter distributions the Zipf or Power Law distribution does not fare so well as it is 

outperformed by the Exponential distribution and by the parametrized Good 

distribution. 
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6 Conclusion 

Frequency modelling of bytes in electronic documents can be done with the 

Exponential distribution. While a better fit can be achieved with the Menzerath Altmann 

distribution or the Cocho-Beta distribution, their parameter range is not only language 

but also corpus specific. It is hard to see how scientific conclusions can be obtained with 

such variety. When restricted to text, our observation is not valid. 
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