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Abstract 

This paper discusses how to express a finite group as a graph, specifically 

about the identity graph of a cyclic group. The term chosen for the graph is 

an identity graph, because it is the identity element of the group that holds 

the key in forming the identity graph. Through the identity graph, it can be 

seen which elements are inverse of themselves and other properties of the 

group. We will look for the characteristics of identity graph of the finite 

cyclic group, for both cases of odd and even order. 
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1 Introduction 

Mathematics as a science has several branches including abstract algebra and graph 

theory [1-3]. The phrase of abstract algebra has been used since the early 20th century 

to distinguish them from what is now more commonly referred to as elementary algebra, 

which is the study of the rules of manipulation of algebraic formulas and expressions 

involving real or complex variables and numbers [4-6]. Abstract algebra is a field of 
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mathematics that studies algebraic structures, such as monoids, groups, rings, fields, 

modules, etc. [3, 4]. 

Students often find it difficult to learn abstract structure such as group. Therefore, 

some writers are looking for a way to represent a group with a diagram called a graph. 

Graph theory is a branch of mathematics that has been studied and developed by 

researchers. In its development, the application of graph theory is often found both in 

mathematics itself and in other fields such as computer science, biology, chemistry and 

in problems in human life such as transportation problems, installation of public 

facilities, and traffic light management. 

In this paper, graph theory will be applied in abstract algebra, especially to represent 

groups in the form of a graph so that it can be visualized diagrammatically and studied 

its properties through the graph of the group. The group discussed here is a finite group. 

There are several previous articles that examine graphs formed from groups including 

Cayley graphs, G-graphs, coprime graphs, and identity graphs of dihedral groups. 

  

2 Methodology: Notations and Definitions  

The method used is literature study with the initial step of forming an identity graph 

of several cyclic groups then looking for general patterns of their properties, making 

conjectures and proving them. Before going into those steps, in this section we will 

discuss some basic concepts and definitions in group theory and graph theory. 

 

Group Theory 

These are some definitions in group theory [4] which will be used in the next section: 

1. Group is a set with one binary operation on the set which fulfills associative 

properties, has an identity element, and each member of the group has an inverse. 

2. Order of a group is the number of its elements. A finite group is a group of finite 

order. Let 𝑒 is the identity element of a finite group 𝐺. Order of an element a in 𝐺 is 

defined as the smallest natural number 𝑛 such that 𝑎𝑛 = 𝑒. 

3. Let 𝐺 be a group. A non-empty subset 𝐻 ⊆ 𝐺 is called a subgroup of 𝐺 if and only 

if 𝐻 is also a group with the same operation defined in 𝐺 [4]. 
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4. If G is a group and 𝑎 ∈ 𝐺, then the set 〈𝑎〉 = {𝑎𝑛   ∶ 𝑛 ∈ 𝑍} is a subgroup of 𝐺, and 

〈𝑎〉 is called the cyclic subgroup generated by 𝑎. Group 𝐺 is called 𝑎 cyclic group if 

and only if 𝑎 ∈ 𝐺 exists, such that 𝐺 = 〈𝑎〉 [4]. 

Related to order of groups and order of elements, we have these two important theorems 

in group theory [4]: 

1. (Cauchy’s Theorem) Let 𝐺 be a finite group and p be a prime number. If 𝑝 divides 

the order of 𝐺, then 𝐺 has an element of order 𝑝. 

2. (Lagrange’s Theorem) If H is a subgroup of a finite group 𝐺, then order of 𝐻 

divides order of 𝐺. 

 

Graph Theory 

Graph 𝐺 is a pair of finite sets (𝑉, 𝐸), written with the notation 𝐺 (𝑉, 𝐸), in which 

case 𝑉 is a non-empty set of vertices and 𝐸 is a non-empty set of edges connecting a 

pair of vertices or connect a vertex with the vertex itself. 𝐴 graph 𝐺 can be represented 

by a diagram, each vertex of 𝐺 is represented by a dot or small circle while an edge 

connecting two vertices is represented by a curve connecting the corresponding vertices 

in the diagram. 

 

3 Results and Discussion 

      In this section, we write our research results in terms of theorems and their proofs. 

Some illustrations of graphs are also presented. First, we need to understand the concept 

of identity graph of a group. 

Definition [2] 

Let G be a group. The identity graph of group 𝐺 is a graph with the elements of group 𝐺 

as its vertices which satisfies these properties: 

a) Two elements 𝑥, 𝑦 in group 𝐺 are connected by an edge if 𝑥𝑦 = 𝑒, with 𝑒 is the 

identity element for group 𝐺. 

b) Each element of 𝐺 is connected by an edge with the identity element 𝑒. 

To develop the previous research, we shall examine the identity graph of finite cyclic 

groups. There are two possibilities for the order of a finite cyclic group: it is an odd 
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natural number, or it is an even natural number. The order may also be a prime number. 

We will examine the case of odd prime order first.  

Theorem 1 [2] 

If 𝐺 = 〈𝑔 |𝑔𝑝 = 1, 𝑝 ≠ 2〉 is a cyclic group of the 𝑝th order, where p is prime, then the 

identity graph formed by 𝐺 consists of (𝑝 − 1)/2  triangles. 

Proof: 

Let 𝐺 = 〈𝑔 | 𝑔^𝑝 = 1, 𝑝 ≠ 2〉 be a cyclic group of the 𝑝th order, where p is 

prime. Then 𝐺 does not have a proper subgroup, according to Lagrange theorem. 

Therefore, there is no element in 𝐺 having inverse which is itself; in other words, there 

is no 𝑔𝑖 ∈ 𝐺 such that (𝑔𝑖 )
2

= 1. Suppose there is 𝑔𝑖 in 𝐺 such that (𝑔𝑖 )^2 = 1. Then, 

𝐺 has a subgroup 𝐻 = {1, 𝑔𝑖 }. This contradicts with the fact that 𝐺 does not have a 

proper subgroup. As a result, 𝐺 does not have element of the 2nd order. Using Cauchy 

theorem with 𝑝 ≠ 2 then 𝐺 does not have element of the 2nd order. 

For every(𝑔𝑖)  in 𝐺 there is exactly one inverse of 𝑔𝑖  that is 𝑔𝑗 such that 𝑔𝑖 

𝑔𝑗 = 1 with 𝑖 and 𝑗 are positive integers and 𝑖 ≠ 𝑗. Because 𝑔𝑖 𝑔𝑗 = 1 then 𝑔𝑖 𝑔𝑗 =

𝑔𝑖+𝑗 = 1 = 𝑔𝑝 such that 𝑝 = 𝑖 + 𝑗 which is equivalent to 𝑗 = 𝑝 − 𝑖. Consequently, we 

can form the identity graph of 𝐺 as illustrated by Figure 1. 

 

 

Figure 1. Identity graph of 𝐺 = 〈𝑔 | 𝑔𝑝 = 1, 𝑝 ≠ 2〉 
 

𝑔
𝑝−1

2
+2 = 𝑔

𝑝+3

2  

𝑔
𝑝−3

2 = 𝑔
𝑝+1

2
−2

 

𝑔
𝑝+1

2  

𝑔
𝑝−1

2  

𝑔𝑝−1 

𝑔2 

𝑔𝑝−2 

𝑔 

1 

⋯ 



International Journal of Applied Sciences and Smart Technologies 

Volume 3, Issue 1, pages 101–110 

p-ISSN 2655-8564, e-ISSN 2685-9432  

  
105 

 
  

We have seen a unique pattern of the identity graph of a finite cyclic group with odd 

prime order. We skip the case of even prime order since the only even prime number is 

2, and the identity graph of group of order 2 looks too trivial and not so interesting. Now 

we look at more general case of finite cyclic groups of odd order. 

Theorem 2 [2] 

 If 𝐺 is a cyclic group with an odd order, then 𝐺 has the identity graph 𝐺𝑖 which can be 

formed by triangles without a unique edge. 

Proof: 

 Let 𝐺 = 〈𝑔 |𝑔𝑛 = 1〉 with n is an odd integer is a cyclic group with multiplication 

operation and is of the nth order. The elements of 𝐺 are {1, 𝑔, 𝑔2, 𝑔3, 𝑔4, ⋯ , 𝑔𝑛−1 }. We 

shall use the Cayley table given by Table 1 to show results of the operation for each 

element of 𝐺. 

Table 1. Cayley table for Theorem 2. 

 1 𝑔 𝑔2 𝑔3 ⋯ 𝑔𝑛−3 𝑔𝑛−2 𝑔𝑛−1 

1 1 𝑔 𝑔2 𝑔3 ⋯ 𝑔𝑛−3 𝑔𝑛−2 𝑔𝑛−1 

𝑔 𝑔 𝑔2 𝑔3 𝑔4 ⋯ 𝑔𝑛−2 𝑔𝑛−1 1 

𝑔2 𝑔2 𝑔3 𝑔4 𝑔5 ⋯ 𝑔𝑛−1 1 𝑔 

𝑔3 𝑔3 𝑔4 𝑔5 𝑔6 ⋯ 1 𝑔 𝑔2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

𝑔𝑛−3 𝑔𝑛−3 𝑔𝑛−2 𝑔𝑛−1 1 ⋯ 𝑔𝑛−6 𝑔𝑛−5 𝑔𝑛−4 

𝑔𝑛−2 𝑔𝑛−2 𝑔𝑛−1 1 𝑔 ⋯ 𝑔𝑛−5 𝑔𝑛−4 𝑔𝑛−3 

𝑔𝑛−1 𝑔𝑛−1 1 𝑔 𝑔2 ⋯ 𝑔𝑛−4 𝑔𝑛−3 𝑔𝑛−2 

 

From the Cayley table above (Table 1) we can see that 𝑔𝑔𝑛−1 = 1, 𝑔2 𝑔𝑛−2 =

1, … , 𝑔𝑛−1𝑔 = 1. Thus, for any non-identity element g, we have  𝑔𝑘 𝑔𝑛−𝑘 = 1, 𝑓𝑜𝑟 𝑘 ∈
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𝑍+ and 𝑘 < 𝑛. From the definition of identity graph part (𝑖𝑖𝑖), for any elements 𝑎, 𝑏 ∈

𝐺, 𝑎 ≠ 𝑏, 𝑎 ≠ 𝑒, 𝑏 ≠ 𝑒, there exists an edge which connects 𝑎 to 𝑏  if and only if 𝑎𝑏 =

𝑏𝑎 = 𝑒. Therefore, there exists an edge which connects 𝑔𝑘𝑡𝑜 𝑔𝑛−𝑘, and since for every 

𝑎 ∈ 𝐺, 𝑎 ≠ 𝑒 there exists an edge connecting 𝑎 to 𝑒, then from the definition of identity 

graph part (𝑖𝑖), there exists an edge from 𝑔𝑘 to 1. These will form a triangle connecting 

1, 𝑔𝑘 and 𝑔𝑛−𝑘. Moreover, since n is an odd number, then 𝑛 = 2𝑥 + 1 for any 𝑥 ∈

𝑍+, and the number of non-identity elements in 𝐺 is even. So, those non-identity 

elements can be partitioned into two sets with same cardinality, where the inverse of an 

element in one set is in the other set and vice versa. Therefore, there is no single edge in 

identity graph of 𝐺. 

Then the identity graph which corresponds with 𝐺 is shown in Figure 2. 

 

Figure 2. Identity graph of group 𝐺 = {𝑔 | 𝑔𝑛 = 1}, 𝑛 is an odd number. 
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This can be proved using Theorem 1 and Figure 1. Since the number of non-identity 

elements is even and those elements forms (n-1)/2 couples, where each couple is inverse 

to each other, then there will be (n-1)/2 triangles. 

Similar with the result in the odd order case, we can obtain a characterization of the 

identity graph of cyclic group of even order case in the following Theorem 4. The proof 

is also using similar principle with the odd order case. 

Theorem 4 [2] 

 If 𝐺 = 〈𝑔|𝑔𝑚 = 1〉 is a cyclic group of order m where m is an even number, then its 

identity graph 𝐺𝑖 has (𝑚 − 2)/2  triangle and a single edge. 

Proof: 

Table 2. Cayley table for Theorem 4. 

 1 𝑔 𝑔2 𝑔3 ⋯ 𝑔
𝑚

2  ⋯ 𝑔𝑚−3 𝑔𝑚−2 𝑔𝑚−1 

1 1 𝑔 𝑔2 𝑔3 ⋯ 𝑔
𝑚

2  ⋯ 𝑔𝑚−3 𝑔𝑚−2 𝑔𝑚−1 

𝑔 𝑔 𝑔2 𝑔3 𝑔4 ⋯ 𝑔
𝑚

2
+1

 ⋯ 𝑔𝑚−2 𝑔𝑚−1 1 

𝑔2 𝑔2 𝑔3 𝑔4 𝑔5 ⋯ 𝑔
𝑚

2
+2

 ⋯ 𝑔𝑚−1 1 𝑔 
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Let 𝐺 = 〈𝑔 |𝑔𝑚 = 1〉, m is an even number, be a cyclic multiplicative group and its 

order is m. Elements of 𝐺 are {1, 𝑔, 𝑔2, 𝑔3, 𝑔4, ⋯ , 𝑔𝑚−1 }. We will use the Cayley table 

given by Table 2 to show the operations between elements in 𝐺. 

From the Cayley table above (Table 2) we can see that 𝑔𝑔𝑚−1 = 1, 𝑔2 𝑔𝑚−2 =

1, … , 𝑔𝑚−1 𝑔 = 1. However, for 𝑔
𝑚

2  we have something different, that is  𝑔
𝑚

2  𝑔
𝑚

2 = 1. 

Thus, for any non-identity elements other than 𝑔
𝑚

2  we have 𝑔𝑘 𝑔𝑚−𝑘 = 1, for 𝑘 ∈

𝑍+ and 𝑘 < 𝑚. From the definition of identity graph part (iii), for any elements 𝑎, 𝑏 ∈

𝐺, 𝑎 ≠ 𝑏, 𝑎 ≠ 𝑒, 𝑏 ≠ 𝑒, vertices 𝑎 and 𝑏 are adjacent if and only if 𝑎𝑏 = 𝑏𝑎 = 𝑒. This 

means the vertex 𝑔^𝑘 is adjacent with vertex 𝑔𝑚−𝑘 and since for each 𝑎 ∈ 𝐺, 𝑎 ≠ 𝑒 

vertex 𝑎 is adjacent with 𝑒 based on definition of identity graph part (ii), then there exists 

an edge from 𝑔𝑘 to 1. These form a triangle connecting 1, 𝑔𝑘 dan 𝑔^(𝑚 − 𝑘). In other 

side, for 𝑔
𝑚

2  there will be only one edge connecting it, that is the edge which connects 

𝑔
𝑚

2  with 1. Moreover, since m is even, then 𝑚 = 2𝑥 for 𝑥 ∈ 𝑍+ and the number of 

elements which is not the identity and not  𝑔
𝑚

2  in 𝐺 is even. Therefore, there will be 

(𝑚 − 2)/2 triangles and a single edge. The identity graph 𝐺𝑖 which corresponds with 𝐺 

is given in Figure 3. 

 

Figure 3. Identity graph of group 𝐺 = 〈𝑔| 𝑔𝑚 = 1〉, 𝑛 is an even number. 
 

1 

𝑔 

𝑔2 

𝑔3 

𝑔𝑚−1 

𝑔𝑚−2 

𝑔𝑚−3 

𝑔𝑘 

𝑔𝑚−𝑘 

 

𝑔
𝑚

2  

⋯ 



International Journal of Applied Sciences and Smart Technologies 

Volume 3, Issue 1, pages 101–110 

p-ISSN 2655-8564, e-ISSN 2685-9432  

  
109 

 
  

We see that in the even order case, there exists exactly one single edge that does not form 

a triangle. This happens because in a finite cyclic group of even order, there exists 

exactly one element of order 2. 

4 Conclusion 

From what we have discussed, there are some conclusions about identity graph of 

finite cyclic groups as following: 

a. Identity graph of a group is a way to represent the relations between elements of a 

group in a graph. In identity graph of a group, the identity element of a group is 

connected with any other elements and each non-identity element is connected with 

its inverse. 

b. For cyclic group of odd order 𝑛, its identity graph consists of (𝑛 − 1)/2 triangles. 

There is no single edge in this case since in such group there is no element of 

order 2. 

c. For cyclic group of even order 𝑚, its identity graph consists of (𝑚 − 2)/2 triangles 

and a single edge. The single edge connects the identity element to the only element 

of such group that has order 2. 
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