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Abstract 

Let   be a finite group with the set of subgroups of   denoted by     , then 

the subgroup graphs of   denoted by      is a graph which set of vertices is 

     such that two vertices  ,                   are adjacent if either 

  is a subgroup of    or    is a subgroup of  .  In this paper, we introduce 

the Subgroup graphs   associated with  .  We investigate some algebraic 

properties and combinatorial structures of Subgroup graph      and obtain 

that the subgroup graph      of   is never bipartite. Further, we show 

isomorphism and homomorphism of the Subgroup graphs of finite groups. 

Keywords: subgroup, graph, finite group 

 

1 Introduction 

One of the mathematical tools for studying symmetries of object is group theory, 

hence, several structures in the field of algebra are depicted through groups. This 

mathematical concept has evolved rapidly since it discovery in the sixteenth century. 

According to [1], the rebirth of the axiomatic method and the view of mathematics as a 

human activity in the nineteenth century forms the major development that change the 

bearing on the evolution of group theory as a mathematical concept. [1], further noted 

that the evolution had caused the previous classical algebra polynomial equations 
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transited to the modern algebra of axiomatic systems of the nineteenth century. 

Meanwhile, this concept has been applied in the field of physics, chemistry and biology, 

(see [2], [3], [4], [5]) for details. 

In the same vein, in the last two decades, many studies have related graphs to group 

theory, providing a more easier way to visualize the concept of group; this relation 

brings together two important branches of mathematics, and has opened up a new wave 

of research with a better understanding of the fields. Many years after Euler’s research  

work on the bridges  of Konigsberg city,  Cayley [6]  used  the  generators of a finite 

group   to  define a graphical structure called the Cayley graph of finite group  , he 

further showed that every group of order   can be represented by a strongly connected 

diagraph of n vertices [7]. Afterwards, in the last few decades, his view of diagraph has 

since been extended to different and modified graph of algebraic structures. Hence, 

more algebraic studies through the properties of these modified graphs have become 

topics of interest to many around the globe (See [8], [9], [10], [11], [12], [13], [14], 

[15]). 

This study, the subgroup graph of finite groups      like [8], [9], [10], [11], [12], 

[13], [14], [15], will focus on finite groups  , however, the choice of it vertex set 

         is the subgroups      of  . In the literature, vertex set of graphs of finite 

groups are always the elements n G, a deviation from this norm is the motivation for 

this study. 

 

1.1. Preliminaries. We state some known and useful results which will be needed in 

the proof of our main results and understanding of this paper. For the definitions of the 

basic terms and results given in this section ([16], [17], [18], [19], [20], [21], [22], [23]). 

A graph   is a combinatorial structure formed by finite non-empty set        where   

is the set of vertices viewed as points and   is the set of edges viewed as line joining the 

points. The cardinality of      is called the order of   while the cardinality of      is 

called the size of  . The degree of a vertex   in a graph   denoted by      is the 

number of edges incident to it, that is the number of edges connecting  . A graph is said 

to have parallel edges if there are more than one edges which join the same pair of 
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distinct vertices. A loop on the other hand is an edge that joins a vertex to itself while a 

walk of length     in a graph   with vertex set       consist of an alternating 

sequence of vertices and edges consecutive elements of which are incident, that begins 

and ends with a vertex. 

Definition 1.1. [20] A complete graph is a simple undirected graph in which has at least 

one vertex and every arbitrary pair of distinct vertices is joint by a unique edge. while a 

connected graph on the other hand is a graph where there is an edge between every pair 

of vertices. 

Remark 1.2. Note that every complete graph is necessary connected but connected 

graphs are not necessary complete. 

Definition 1.3. [20] A walk in a connected graph that visits every vertex of the graph 

exactly once without repeating the edges is called Hamiltonian path. If this walk starts 

and ends at the same vertex, the walk is called a Hamiltonian circuit or cycle. 

Remark 1.4. A graph that contains a Hamiltonian cycle is said to be Hamiltonian. 

Theorem 1.5. (Sylow’s First Theorem) [21] Let   be a finite group of order    , where 

  is a prime,   and   are positive integers and            . Then   has a subgroup 

of order    for all   satisfying          . 

Definition 1.6. [20] In graph theory, a regular graph is a graph where each vertex has 

the same number of neighbors, i.e. every vertex has the same degree or valency; a 

regular graph can be an x-regular graph where every vertex of the graph have the same 

degree  . 

Definition 1.7. [20] The distance between two vertices              is the length of 

the shortest path between   and   and it’s denoted by         Eccentricity      of a 

vertex   in a graph is define as            {                  }. The minimum and 

maximum eccentricity in a graph are called radius, rad    and diameter, diam( ) of the 

graph respectively. 

Lemma  1.8.  [20] Let G and G′ be any two finite groups.  If         then 

                and               But the converse is not true. 

Definition 1.9. [21] A group consists of a set   with a binary operation * on   

satisfying the following four conditions: 
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1. Closure:         , we have          . 

2. Associativity:           , we have                    . 

3. Identity: There is an element     satisfying           for all    . 

4. Inverse: For all    , there is an element       satisfying               . 

(where   is as in the Identity Law) 

Definition 1.10. [20] A finite group is a group containing finite number of elements. 

The order of a finite group   is the number of elements in  . 

Definition 1.11. [21] A subset   of a group   is called a subgroup if it forms a group in 

its own right with respect to the same operation on  . 

Definition 1.12. [21] Let    and    be groups. A homomorphism from    to    is a 

map   which preserves the group operation. 

Definition 1.13. [21] A subgroup   of   is said to be a normal subgroup if it is the 

kernel of a homomorphism. Equivalently,   is a normal subgroup if its left and right 

cosets coincide:         for all    . We write ”  is a normal subgroup of  ” as 

              , we write    . If   is a normal subgroup of  , we denote the set 

of (left or right) cosets by    . We define an operation on     by the rule 

               for all          

Definition 1.14. [24] Let   and   be elements of a group   such that       yields an 

element of   and is defined by                    , the collections of arbitrary       

in   forms the commutator subgroup of  . 

Lemma 1.15. [16] Suppose           and e is   positive integer. Then 

1.                . 

2.                     . 

3.                    . 

4.               
          

 
 . 

Lemma 1.16. [25] Let   be a group with        subgroup of   and         subgroup 

of         Set             and the following holds 

1.        , and if   is abelian, then              

2. If   is abelian, then the minimal number of elements needed to generate 

           and               , then          . 
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3. If   is abelian and the minimal number of elements needed to generate 

          , there exists     such that          . 

4. If   is cyclic, then           is cyclic 

 

Lemma 1.17. [25] Suppose    〈      〉 is a finite group with      ′ abelian and 

          of order  . If   is the commutator subgroup of  , then {         

                }       

Theorem 1.18. [25] Let   be     group with    abelian and 

                                

1. There exists       with             In particular, if      , then   can be taken 

to be any element of      . 

2. Let           .  If either                               then             

3.    is equal to the commutator subgroup of  . 

Lemma 1.19. [25] Let   be a   subgroup of  ,        element of         and    . 

If        is abelian, then                      . 

Theorem 1.20. [26] Let   be a group and let     be two subgroups of   and define 

              , then 

1. If both   and   are normal in  , then       is also a normal subgroup of  . 

2. If   alone is normal in  , then       is a normal subgroup of  . 

3. If   is normal in    then         and    is a normal subgroup of  . 

4. If both   and   are normal in  , then    is a normal subgroup of  . 

Theorem 1.21. (Sylow’s theorems) Let   be a group of order    , where   is a prime, 

   , and   does not divide  . Then: 

1.           that is         subgroups exist. 

2. All         subgroups are conjugate in  . 

3. Any   subgroup of   is contained in a         subgroup. 

4.                . 

Lemma 1.22. (Lagrange’s theorem) [22] Let   be a subgroup of a finite group  . Then 

the order of   divides the order of  . 
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2 Research Methodology 

This article is not a variable base research, however, well known algebraic definitions 

and results were used to investigate the algebraic and combinatorial properties of the 

subgroup graph of finite groups. 

 

3 Results and Discussion 

The Subgroup graphs of finite groups is introduce in this section. We begin with the 

definition and notion of the Subgroups graph of a finite group. 

Definition 3.1. Let   be a finite group and      be the set of subgroups of  . Then the 

Subgroup graph of   is the graph      with vertex set             and the edge set 

          {{   }                       }  

Remark 3.2. Let   be a finite group of order  , some clear consequences of the 

definition of subgroup graphs of finite groups      are 

1. The subgroup graph      is a simple graphs, thus, there are no loops nor multiple 

edges. 

2. The trivial subgroups of   are adjacent to every other vertices on       

3. Since the trivial subgroups of   are adjacent to every other vertices on       then 

the graph is connected. 

4. The      has a diameter and radius of   if         . 

Below, we give an example of Subgroups graph. 

Example 3.3. Let     the group of integer modulo 6 under addition         then the 

following is the undirected Subgroups graph of       See Figure 1. 

 

Figure 1. Subgroups graph of   . 
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Theorem 3.4.  [20] A simple graph is bipartite if and only if it does not have any odd 

cycle. 

Remark 3.5. Let   be a finite group, the subgroup graph      of   is never bipartite. 

Theorem 3.6. Let   be a finite group of prime order and let      be the set of 

subgroups of  , then the subgroups graph of   is a straight line with only two vertices. 

Proof: Let   be a finite group of prime order and let      be the set of subgroups of  , 

then by Lemma 1.22, the order of every          divides the order of   but the order 

of   is a prime which can only be divided by itself of 1. Thus the only subgroups of this 

group   are   {{ }             }; and they are adjacent. 

Remark 3.7. Let   be a finite group and let      be the subgroups graph of  . Then the 

vertex set              and edge set            therefore, the subgroups graph of 

a finite group   can never be empty. 

Theorem 3.8. Let   be a group and let  ,   be two subgroups of   and let      be the 

subgroup graph of  . Define      {           }, then 

1. If both   and   are normal in  , then     is also a vertex on     . 

2. If   alone is normal in  , then     is a adjacent to vertex   on     . 

3. If   is normal in  , then       and    is also a vertex on     . 

4. If both   and   are normal in  , then    is also a vetex on     . 

Proof: From Theorem 1.20, the results follows. 

 

Theorem 3.9. Let   be a finite group of non prime order    , then the subgroup 

graph of          is never a star graph. 

Proof: Suppose on the contrary, let the subgroup graph of a finite group of non prime 

order     be a star graph; then it implies that all other        are subgroup to only 

an arbitrary subgroup    , but by Remark 3.2(2), every group has two trivial 

subgroups which are adjacent to all other       . So, the graph can not be a star 

graph, since, there is more than one vertex that is adjacent to all the vertices of     . 
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Theorem 3.10. Let   and    be two isomorphic finite groups. Then the subgroup graph 

of   is isomorphic to subgroup graph of                .                                                                            

Proof:  Suppose    and    are two isomorphic finite groups, then from Lemma 1.8,   

          .  Thus,             . 

 

Theorem 3.11. Let   be a group of order     , where   is a prime,     and   does 

not divide  . Suppose      is the subgroup graph of  ,          and         are the 

vertex and edge sets of      respectively. Then: 

1. There must exist Sylow  -subgroups of               which are conjugate in 

  and are adjacent to each other on the subgroup graph of  . 

2. There is a vertex   on the subgroup graph of   that is adjacent to a vertex   that is 

a Sylow  -subgroup of  . 

Proof: 

1. To show that there must exist Sylow  -subgroups of                which are 

conjugate in   and are adjacent to each other on the subgroup graph of  , then it 

suffices if we can show              to be conjugate and subsequently 

establish an edge between   and  . From Theorem 1.21, it is established that the 

group   has some Sylow  -subgroups. So, let   be a Sylow  -subgroup of  , and 

let   be the set of all distinct conjugates of  . Suppose   is the order  , we need to 

establish that   cannot divide      . Since each of the      is a conjugate to  , 

it implies every element of   is in the orbit  of  . So using the formula for orbit size 

                            (where         is the normalizer of  ). 

However, Lagrange’s theorem established that                 and clearly,   

is a subgroup of       and it contains    as a factor and a maximum power   can 

assume. Thus,                       and     contains no factor of   and so   does 

not divide    . 

2. Suppose   is any  -subgroup of  , it will suffice if we can show          

        . Let   act on     {       }, by conjugation. Clearly, the the orbits of 

this action will partition  . Suppose the distinct orbits are the orbits of {         } 

then the orbit of                                . To compute the orbit for 
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any      ,                           , since          is the stabilizer 

of    under the action of  . Then the size of each orbit has to divide    , which is a 

power of  . Though   doesn’t divide     so there is no   dividing all the terms 

                                     and else   would divide their sum and also  . 

Assume                                 which means             

and since   is a  −subgroup                . This implies         so 

every element of   is also in    then    , therefore, the  −subgroup   is a 

subgroup of the arbitrary Sylow  −subgroup of  . So,   and   are adjacent of the 

subgroup graph      of  . 

 

Theorem 3.12. Let    and    be two finite groups and        be a group 

homomorphism. Suppose there is an  , a normal subgroup of   and an   , a normal 

subgroup of    such that   is adjacent to   on      the subgroup graph of   and    is 

adjacent to    on       the subgroup graph of   . Then 

1.      is adjacent to      on         the subgroup graph of     . 

2.        is adjacent to   on      the subgroup graph of  . 

Proof: Suppose    and    are two finite groups and        is a group 

homomorphism, if there is an   , a normal subgroup of   and an   , a normal subgroup 

of    such that    is adjacent to   on      and    is adjacent to    on       then to 

show that      is also adjacent to      on         and        is adjacent to   on 

    ; it will suffice if we can show      to be a normal subgroup of      and 

       to be a normal subgroup of   respectively. 

1. Let          , since   is a group homomorphism and   is normal in  . 

                                 Thus,      is normal in       

2. Let a be an arbitrary element of  , then the set             satisfies that 

                                                   since     is  

normal  in    .   Thus,                   for every      . This shows that 

        is a normal subgroup of  . 
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Corollary 3.13. [27],[28] The alternating group    is a subgroup of the symmetric 

group   . 

Theorem 3.14. Let      ,       and       be the subgroups graphs of symmetric 

groups,   , dihedral groups    and the alternating groups   ,    . Suppose   and   

are vertices on       and       respectively, then both   and   are also vertices on 

      and are adjacent to    if and only if   is adjacent to    on       and   is 

adjacent to    on        

 

Proof: Let      ,       and       be the subgroups graphs of symmetric groups,   , 

dihedral groups    and the alternating groups   ,    . To show that   and   which 

are vertices on       and       respectively are also vertices on       and are 

adjacent to    if and only if   is adjacent to    on       and   is adjacent to    on 

     , then it suffices, if we can show both   and   to be subgroups of   . 

Assume that   is a subgroup of    and   is a subgroup of   . Then observe the 

structure of the group of symmetries of a regular  −gon in a plane (dihedral group 

(  )), it is isomorphic to a subgroup of    then it is a proper subgroup of   . Also, by 

Corollary 3.13,    is a subgroup of   . Moreover, since       and       by 

implication, they are also subgroups of    and hence are vertices on        

Conversely, assume that   is adjacent to    on       and   is adjacent to    on 

     , then by Definition 3.1,      and     . But both    and    are subgroups 

of   , also, by implication, they are adjacent to   . 

 

Theorem 3.15. [29] If    , then the number of subgroups of the dihederal group    

is           . Where       is the number of divisors of   and      is the sum of 

divisors of  . 

Remark 3.16. Let    be a dihedral group of order    , then the number of vertices on 

the subgroups graphs       of the dihederal group    is           , where      is 

the number of divisors of   and      is the sum of divisors of  . 
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Theorem 3.17. Let   be a commutator subgroup of a finite group   of order  , suppose 

there exist a normal subgroup   of   such that     is Abelian, then   and   are 

adjacent on the subgroup graphs of  . 

 

Proof: Let   be a finite group of order   and   the commutator subgroup of  . If there 

exist a normal subgroup   of   such that     is Abelian, then to show that   and   are 

adjacent on      (the subgroup graph of  ), we must show that either     or    . 

Note that   is normal in   and     is Abelian, then for      , we have          

         and using the definition of Coset multiplication          . Which 

implies           , where                   . Similarly,            and 

since   and   are arbitrary then any commutator in   is an element of   and since   is 

a subgroup of   then any finite product of commutators in   is an element of   and 

thus    . 

 

Theorem 3.18. Let   be a commutator subgroup of a finite group   of order   and let   

be a subgroup of  . If there exist an     such that            , then       and   

are adjacent on the subgroup graphs of  .  

 

Proof: By Lemma 1.15(2) and using the method of [25], the map sending      to 

        is a homomorphism. Thus, the image map of   is the subgroup        

 

Theorem 3.19. (Schur Zassenhaus) [16] Let   be a finite group and write          

where        . If   has a normal subgroup of order   then it has a subgroup of order 

 . 

Remark 3.20. Let   be a finite group and write        where        . Then the 

vertex set          of the subgroup graph of   contains at least two vertices       

which orders are a and b respectively. 
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Theorem 3.21. Let   be a finite nilpotent group, such that    is an abelian p-group with 

the minimal number of elements needed to generate            , then    is a vertex 

on the subgroup graph      and it is adjacent to  .  

 

Proof: Suppose   is a finite nilpotent group, such that    is an abelian p-group with 

       , then to show that    is a vertex adjacent to   on the subgroup graph      of 

 , it will suffice if we can show    to be equal to  , the commutator subgroup of  .  

Now, since    is finite, we assume an arbitrary            such that      and 

obviously,    is normal in   and by Theorem 3.19 (Schur Zassenhaus theorem) and the 

methods in [25],       where      { }. Also, by Lemma 1.16(3), and Lemma 

1.17, we set         and if       there exist            such that   

              and    {                    }   .  Thus, we can assume        , 

and they also exists       with            Since     is nilpotent, by Theorem 1.18 

and Lemma 1.19,  

           (⋃     

   

)  ⋃      

   

     

  

Lemma 3.22. Let   and   be two non nilpotent finite groups, such that there is an 

isomorphism   of    and   , if the commutator subgroup   of   is adjacent to   on the 

subgroups graph      of  , then the commutator subgroup   of    is also adjacent to    

on the subgroups graph      of  . 

 

Proof: Suppose   and   are non nilpotent finite groups such that there is an isomorphic 

map between    and   , then we can safely say there is also isomorphic map between 

the commutator subgroups of    and   , which shows the isomorphic relationship 

between   and  . Also, since the commutator subgroup of   is adjacent to   on      

then the commutator subgroup of    is also adjacent to    on     . 

Example 3.23. Let    be a quaternion group generated by the following matrices 

  (
  
  

)    (
  
   

)    (
  

   
)    (

  
  

) 
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[30], using the matrix multiplication obtained    {           }, observe that the 

subgroups of    consists of    itself and of the cyclic subgroups 〈 〉  { } 〈  〉  

{    } 〈 〉  {         } 〈 〉  {         } 〈 〉  {         } and the following 

is the subgroups graph of   . See Figure 2. 

 

Figure 2. Subgroups graph of Q8. 

4 Conclusion 

This study has highlighted some algebraic properties and combinatorial structures of 

Subgroups graph      of finite groups. The connections between the Subgroups graphs 

of finite groups upto homomorphism and isomorphism were also studied and further 

looked at the relationships between the subgroups graphs of symmetric groups,   , 

dihedral groups    and the alternating groups An, when      . 
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