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Abstract

Occupation times of a stochastic process models the amount of time the pro-

cess spends inside a spatial interval during a certain finite time horizon. It

appears in the fiber lay-down process in nonwoven production industry. The

occupation time can be interpreted as the mass of fiber material deposited in-

side some region. From application point of view, it is important to know the

average mass per unit area of the final fleece. In this paper we use white noise

theory to prove the existence of the occupation times of one-dimensional

Brownian motion and provide an expression for the expected value of the

occupation times.
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1 Introduction

Technical textiles have attracted great attention to diverse branches of industry over the

last decades due to their comparatively cheap manufacturing. By overlapping thousands

of individual slender fibers, random fiber webs emerge yielding nonwoven materials that

find applications e.g. in textile, building and hygiene industry as integral components of

baby diapers, closing textiles, filters and medical devices, to name but a few. They are
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produced in melt-spinning operations: hundreds of individual endless fibers are obtained

by the continuous extrusion of a molten polymer through narrow nozzles that are densely

and equidistantly placed in a row at a spinning beam. The viscous or viscoelastic fibers

are streched and spun until they solidify due to cooling air streams. Before the elastic

fibers lay down on a moving conveyor belt to form a web, they become entangled and

form loops due to the highly turbulent air flows. The homogeneity and load capacity of

the fiber web are the most important textile properties for quality assesment of industrial

nonwoven fabrics. The optimization and control of the fleece quality require modeling

and simulation of fiber dynamics and lay-down. Available data to judge the quality, at

least on the industrial scale, are usually the mass per unit area of the fleece.

Since the mathematical treatment of the whole process at a stroke is not possible

due to its complexity, a hierarchy of models that adequately describe partial aspects of

the process chain has been developed in research during the last years. A stochastic

model for the fiber deposition in the nonwoven production was proposed and analyzed

in [4, 5, 7, 10]. The model is based on stochastic differential equations describing the

resulting position of the fiber on the belt under the influence of turbulent air flows. In

[1] parameter estimation of the Ornstein-Uhlenbeck process from available mass per unit

area data, the occupation time in mathematical terms, was done.

Definition 1.1. Let X = (Xt)t∈[0,T ], T > 0, be a stochastic process and consider an

interval [a, b] ⊂ R. The occupation time MT,[a,b](X) is defined as

MT,[a,b](X) :=

∫ T

0

1[a,b](Xt) dt =

∫ T

0

∫ b

a

δ0 (Xt − x) dx dt.

Here, 1[a,b] denoted the indicator function of the interval [a, b] and δ0 is the Dirac-delta

distribution.

Formally, occupation times models the time the stochastic process spends inside the

spatial interval [a, b] during the time interval [0, T ]. In terms of our physical model for the

nonwoven production, the occupation time can be interpreted as the mass of fiber material

deposited inside the interval [a, b], i.e. the mass per unit area of the final fleece.

Motivated by the above mentioned problem, in this paper we study the occupation

time of one-dimensional Brownian motion. In particular, we show that occupation times

of one-dimensional Brownian motion is a white noise distribution in the sense of Hida.



Although it is possible to study the problem by classical probabilistic method, we use a

white noise approach to generalize the concept also to higher dimensions in later research.

Moreover, in future work an extension to more general process (e.g. with fractional Gaus-

sian noise) is planed. In the next section we provide neccesary background on the white

noise theory. The main result together with its proof are given afterward.

2 White Noise Analysis

In this section we give background on the white noise theory used throughout this

paper. For a more comprehensive discussions including various applications of white

noise theory we refer to [8, 9, 12, 13] and references therein. We start with the Gelfand

triple

S(R) ↪→ L2(R) ↪→ S ′(R),

where S(R) is the space of real-valued Schwartz test function, S ′(R) is the space of

real-valued tempered distributions, and L2(R) is the real Hilbert space of all real-valued

Lebesgue square-integrable functions. Next, we construct a probability space (S ′(R), C, µ)
where C is the Borel σ-algebra generated by cylinder sets on S ′(R) and the unique prob-

ability measure µ is established through the Bochner-Minlos theorem by fixing the char-

acteristic function

C(f) :=

∫
S′(R)

exp (i⟨ω, f⟩) dµ(ω) = exp

(
−1

2
|f |20
)

for all f ∈ S(R). Here |·|0 denotes the usual norm in the L2(R), and ⟨·, ·⟩ denotes the dual

pairing between S ′(R) and S(R). The dual pairing is considered as the bilinear extension

of the inner product on L2(R), i.e.

⟨g, f⟩ =
∫
R
g(x)f(x) dx,

for all g ∈ L2(R) and f ∈ S(R). This probability space is known as the real-valued

white noise space since it contains the sample paths of the one-dimensional Gaussian

white noise. In this setting a one-dimensional Brownian motion can be represented by a

continuous modification of the stochastic process B = (Bt)t≥0 with

B(t) :=
〈
·,1[0,t]

〉
,



where 1A denotes the indicator function of a set A ⊂ R.

In the sequel we will use the Gel’fand triple

(S) ↪→ L2(µ) := L2 (S ′(R), C, µ) ↪→ (S)∗

where (S) is the space of white noise test functions obtained by taking the intersection

of a family of Hilbert subspaces of L2(µ). The space of white noise distributions (S)∗

is defined as the topological dual space of (S). Elements of (S) and (S)∗ are known

as Hida test functions and Hida distributions, respectively. Within this framework white

noise can be considered as the time derivative of Brownian motion with respect to the

topology of (S)∗. An important tool in white noise analysis is the S-transform which can

be considered as the Laplace transform with respect to the infinite dimensional Gaussian

measure. The S-transform of Φ ∈ (S)∗ is defined as

(SΦ) (φ) := ⟨⟨Φ, : exp (⟨·, φ⟩) :⟩⟩ , φ ∈ S(R),

where

: exp (⟨·, φ⟩) ::= C(φ) exp (⟨·, φ⟩) ,

is the so-called Wick exponential and ⟨⟨·, ·⟩⟩ denotes the dual pairing between (S)∗ and

(S). We define this dual pairing as the bilinear extension of the sesquilinear inner product

on L2(µ). The S-transform provides a convenient way to identify a Hida distribution

Φ ∈ (S)∗, in particular, when it is hard to find the explicit form for the Wiener-Itô chaos

decomposition of Φ.

Theorem 2.1. [12]

1. The S-transform is injective, i.e. if SΦ(φ) = SΨ(φ) for all φ ∈ S(R), then Φ = Ψ.

2. If a stochastic distribution process X : I → (S)∗ is differentiable, then S d
dt
X(t)(φ) =

d
dt
SX(t)(φ) for all φ ∈ S(R).

In the following we state a sufficient condition on the Bochner integrability of a family

of Hida distributions which depend on an additional parameter.

Theorem 2.2. [11] Let (Ω,A, ν) be a measure space and λ 7→ Φλ be a mapping from Ω

to (S)∗. If



(1) the mapping λ 7→ S(Φλ)(φ) is measurable for all φ ∈ S(R), and

(2) there exist C1(λ) ∈ L1 (Ω,A, ν), C2(λ) ∈ L∞ (Ω,A, ν) and a continuous semi-

norm ∥·∥ on S(R) such that for all z ∈ C, φ ∈ S(R)

|S(Φλ)(zφ)| ≤ C1(λ) exp
(
C2(λ)|z|2 ∥φ∥2

)
,

then Φλ is Bochner integrable with respect to some Hilbertian norm which topologizing

(S)∗. Hence
∫
Ω
Φλ dν(λ) ∈ (S)∗, and furthermore

S

(∫
Ω

Φλ dν(λ)

)
=

∫
Ω

S(Φλ) dν(λ).

Let 0 < T < ∞ and B = (Bt)t∈[0,T ] be a one-dimensional standard Brownian motion.

The corresponding Donsker’s delta distribution is given by

δ0 (Bt − x) = δ0
(〈
·,1[0,t]

〉
− x
)
=

1

2π

∫
R
exp

(
iλ
(〈
·,1[0,t]

〉
− x
))

dλ.

It has been proved that δ0 (Bt − x) ∈ (S)∗. Furthermore, its S-transform is given by

Sδ0 (Bt − x) (φ) =
1√
2πt

exp

(
− 1

2t

(〈
φ,1[0,t]

〉
− x
)2)

,

for any φ ∈ S(R). For details and proofs see e.g. [8, 12]. The Donsker delta distribution

is an important research object in the Gaussian analysis. For example, it can be used to

study local times, self-intersection local times, stochastic current and Feynman integrals,

see e.g. [2, 3, 6, 14, 15, 18]. The derivatives of Donsker’s delta distribution has been also

studied in [16]. In [17] Donsker’s delta distribution is analyzed in the context of stochastic

processes with memory.

3 Main Result

Now we are ready to prove the main finding of the paper.

Theorem 3.1. Let B = (Bt)t∈[0,T ] be a one-dimensional standard Brownian motion and

consider an interval [a, b] ⊂ R. The occupation time

MT,[a,b](B) :=

∫ T

0

∫ b

a

δ0 (Bt − x) dx dt

is a Hida distribution.



Proof: It is apparent, at least formally, that occupation times can be obtained by integrat-

ing Donsker’s delta distribution with respect to the product measure on [a, b] × [0, T ]. In

this regard we will use Kondratiev-Streit integration theorem (Theorem 2.2) to prove the

statement. Observe that for any φ ∈ S(R)

Sδ0 (Bt − x) (φ) =
1√
2πt

exp

(
− 1

2t

(∫ t

0

φ(s) ds− x

)2
)

is a measurable function with respect to the product measure on [0, T ] × [a, b]. Now for

any z ∈ C and φ ∈ S(R) we have

|Sδ0 (Bt − x) (zφ)|

=

∣∣∣∣∣ 1√
2πt

exp

(
− 1

2t

(∫ t

0

zφ(s) ds− x

)2
)∣∣∣∣∣

=
1√
2πt

∣∣∣∣exp(− 1

2t

(〈
zφ,1[0,t]

〉
− x
)2)∣∣∣∣

=
1√
2πt

∣∣∣∣exp(− 1

2t

(〈
zφ,1[0,t]

〉2 − 2x
〈
zφ,1[0,t]

〉
+ x2

))∣∣∣∣
=

1√
2πt

exp

(
−x2

2t

) ∣∣∣∣exp(− 1

2t

〈
zφ,1[0,t]

〉2)
exp

(x
t

〈
zφ,1[0,t]

〉)∣∣∣∣
≤ 1√

2πt
exp

(
−x2

2t

)
exp

(
1

2t

∣∣〈zφ,1[0,t]

〉∣∣2) exp
(∣∣∣x

t

〈
zφ,1[0,t]

〉∣∣∣)
=

1√
2πt

exp

(
−x2

2t

)
exp

(
1

2t
|z|2

∣∣〈φ,1[0,t]

〉∣∣2) exp

(
|x|√
t

|z|√
t

∣∣〈φ,1[0,t]

〉∣∣)
≤ 1√

2πt
exp

(
−x2

2t

)
exp

(
1

2t
|z|2 |φ|2

∣∣1[0,t]

∣∣2) exp

(
x2

2t

)
exp

(
1

2t
|z|2 |φ|2

∣∣1[0,t]

∣∣2)
=

1√
2πt

exp
(
|z|2 |φ|2

)
.

The first factor

C1(t, x) =
1√
2πt

is an integrable function on [0, T ]× [a, b] while the second factor

C2(t, x) = exp
(
|z|2 |φ|2

)
is a bounded function of t and x. Theorem 2.2 gives the desired result.

Corollary 3.2. The S-transform of the occupation times of Brownian motion is given by

SMT,[a,b](B)(φ) =

∫ T

0

1√
2πt

∫ b

a

exp

(
− 1

2t

(∫ t

0

φ(s) ds− x

)2
)

dx dt,



for any φ ∈ S(R).

Proof: Since MT,[a,b](B) ∈ (S)∗ then according to Theorem 2.2 for every φ ∈ S(R) it

holds

SMT,[a,b](B)(φ) = S

∫ T

0

∫ b

a

δ0 (Bt − x) dx dt(φ)

=

∫ T

0

∫ b

a

Sδ0 (Bt − x) (φ) dx dt

=

∫ T

0

∫ b

a

1√
2πt

exp

(
− 1

2t

(∫ t

0

φ(s) ds− x

)2
)

dx dt

=

∫ T

0

1√
2πt

∫ b

a

exp

(
− 1

2t

(∫ t

0

φ(s) ds− x

)2
)

dx dt.

Corollary 3.3. The expected value of the occupation times of Brownian motion is given

by

Eµ

(
MT,[a,b](B)

)
=

∫ T

0

1√
2πt

∫ b

a

exp

(
−x2

2t

)
dx dt.

Proof: The expected value with respect to the white noise measure of the occupation

times of Brownian motion is obtained by taking the S-transform and evaluating the value

at 0:

Eµ

(
MT,[a,b](B)

)
= SMT,[a,b](B)(0)

=

∫ T

0

1√
2πt

∫ b

a

exp

(
− 1

2t

(∫ t

0

0 ds− x

)2
)

dx dt

=

∫ T

0

1√
2πt

∫ b

a

exp

(
−x2

2t

)
dx dt.

4 Conclusions

We give a mathematically rigorous meaning to the occupation times of a standard

Brownian motion as a Hida distribution. An expression for the expected value for the

occupation times is also obtained. For the application point of view it is desirable to have

a more explicit form for the expected value. This will be done in the future work. We

would like also to mention that our present result is limited to one-dimensional setting.

For further research we plan to generalize the result to higher spatial dimensions.



Acknowledgements

The author would like to thank anonymous reviewers for their valuable comments

and suggestions. Financial support from the Institute for Research and Community Ser-

vice (LPPM) Universitas Sanata Dharma through research grant No. 017/Penel./LPPM-

USD/IV/2022 is gratefully acknowledged.

References

[1] W. Bock et al,”Parameter estimation from occupation times—a white noise ap-

proach,” Communications on Stochastic Analysis, 26(3), 29-40, 2014.

[2] W. Bock, J. L. da Silva, and H. P. Suryawan, ”Local times for multifractional Brow-

nian motion in higher dimensions: A white noise approach,” Infinite Dimensional

Analysis, Quantum Probability and Related Topics, 19(4), id. 1650026, 16 pp, 2016.

[3] W. Bock, J. L. da Silva, and H. P. Suryawan, ”Self-intersection local times for multi-

fractional Brownian motion in higher dimensions: A white noise approach,” Infinite

Dimensional Analysis, Quantum Probability and Related Topics, 23(1), id. 2050007,

18 pp, 2020.
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