
INT J COMPUT COMMUN, ISSN 1841-9836
8(6):845-853, December, 2013.

An Improved Genetic Algorithm for the Multi Level
Uncapacitated

Facility Location Problem

V. Korać, J. Kratica, A. Savić

Vanja Korać*, Jozef Kratica
Mathematical Institute, Serbian Academy of Sciences and Arts
Kneza Mihaila 36/III, 11 000 Belgrade, Serbia
vanja@mi.sanu.ac.rs, jkratica@mi.sanu.ac.rs
*Corresponding author: vanja@mi.sanu.ac.rs

Aleksandar Savić
University of Belgrade, Faculty of Mathematics
Studentski trg 16, 11000 Belgrade, Serbia
aleks3rd@gmail.com

Abstract: In this paper, an improved genetic algorithm (GA) for solving the multi-
level uncapacitated facility location problem (MLUFLP) is presented. First improve-
ment is achieved by better implementation of dynamic programming, which speeds up
the running time of the overall GA implementation. Second improvement is hybridiza-
tion of the genetic algorithm with the fast local search procedure designed specially
for MLUFLP. The experiments were carried out on instances proposed in the lit-
erature which are modified standard single level facility location problem instances.
Improved genetic algorithm reaches all known optimal and the best solutions from
literature, but in much shorter time. Hybridization with local search improves several
best-known solutions for large-scale MLUFLP instances, in cases when the optimal
is not known. Overall running time of both proposed GA methods is significantly
shorter compared to previous GA approach.
Keywords: evolutionary approach, metaheuristics, discrete location, combinatorial
optimization.

1 Introduction

During the last decades, there was an expansive growth in the ways of solving facility lo-
cation problems. Research has been concentrated mostly on location problems, which require
minimization of total travel time, physical distance, or some other related cost. In most cases
it is assumed that facilities are large enough to meet any demand. So far, there are several
deterministic uncapacitated models proposed in the literature.

The multi-level uncapacitated facility location problem (MLUFLP) is NP-hard, since it is
a generalization of the uncapacitated facility location problem which is proven to be NP-hard
in [7].

The multi-level version of uncapacitated facility problem is discussed only in several papers
([1–5, 8, 9]), compared to several hundreds of papers about the basic version of the problem.
Moreover, most of the papers that deal with MLUFLP were of theoretical nature, without ex-
perimental results. The only exceptions are papers [5] and [8].

In [5] four methods for solving MLUFLP are implemented. Three algorithms are based on
linear programming relaxation of the model, described in Section 2, which has an enormous
number of variables and moderate number of constrains. Consequently, these three algorithms
are capable of solving only small size MLUFLP instances with up to 52 potential facility locations.
Running times of these methods are greater than 100 seconds. Gap values are rather satisfying

Copyright © 2006-2013 by CCC Publications

846 V. Korać, J. Kratica, A. Savić

but the corresponding running times are very long even for these small size instances. Obviously,
all three linear programming based methods are unable to solve larger size problem instances.
The fourth method produce very quick results (up to 0.07 seconds), but the gaps are very large
- up to 732%. From these facts, it can be concluded that none of these algorithms is capable of
solving real medium-size and large-scale MLUFLP instances.

The only method capable of reaching optimal solutions in solving small and medium-size
MLUFLP instances was an evolutionary approach presented in [8]. It also gives results on
large-scale MLUFLP instances in a reasonable running time. A binary encoding scheme with
appropriate objective function containing dynamic programming approach for solving subprob-
lem wad used, which consisted of finding sequence of located facilities on each level to satisfy
clients’ demands. Used dynamic programming approach has the polynomial number of states
and steps, since the given subproblem is a special case of the shortest path problem. That ap-
proach enables the GA to use the standard genetic operators and caching technique, which helps
genetic algorithm to reach promising search regions.

2 Previous work

Let us first give a mathematical formulation of the MLUFLP problem as presented in [5]. The
input data to the MLUFLP consists of a set of facilities F (|F | = m) partitioned into k levels,
denoted F1, . . . , Fk, a set of clients D (|D| = n), a fixed cost fi for establishing facility i ∈ F , and
a metric that defines transportation costs cij for each i, j ∈ F ∪D. A feasible solution assigns
each client a sequence of k facilities, one from each level Fk, . . . , F1, respectively. A feasible
solution is charged the sum of the fixed costs of the facilities used, plus the transportation costs
of the clients’ assignments. Each client’s transportation cost is the sum of transportation cost
from itself to the first facility of its sequence, plus the transportation cost between successive
facilities. An optimal solution is a feasible solution with a minimum total cost.

The assignment of a client j ∈ D to a valid sequence of facilities can now be represented as
the assignment of j to a path p from j to one of the top level facilities F1. The set of all valid
sequences of facilities is defined with P = Fk × . . .× F1 and the transportation cost of client j’s
assignment to sequence p = (ik, . . . , i1) by cpj = cjik + cikik−1

+ . . .+ ci2i1 . Variable yi has value
of 1 if facility i is established and 0 otherwise. Similarly, variable xpj represents whether or not
a client j is assigned to the path p. Using the notation mentioned above, the problem can be
written as:

min
∑
i∈F

fiyi +
∑
p∈P

∑
j∈D

cpjxpj (1)

∑
p∈P

xpj = 1, for each j ∈ D, (2)

∑
p∋i

xpj ≤ yi, for each i ∈ F, j ∈ D, (3)

xpj ∈ {0, 1} , for each p ∈ P, j ∈ D, (4)

yi ∈ {0, 1} , for each i ∈ F. (5)

An Improved Genetic Algorithm for the Multi Level Uncapacitated
Facility Location Problem 847

Table 1: Fixed costs
Facilities f1 f2 f3 f4 f5 f6
Fixed cost 70 50 30 20 20 40

Table 2: Distance between facilities on level 1 and level 2
f1 f2

f3 58 23
f4 44 74
f5 67 15
f6 29 38

The objective function (1) minimizes the sum of overall transportation cost and fixed costs
for establishing facilities. Constraint (2) ensures that every client is assigned to a path while
constraint (3) guarantees that any facility on a path used by some client is paid for. Constraints
(4) and (5) reflect binary nature of variables xpj and yi.

The problem can be illustrated with one small example.
Example 1 An example of the MLUFLP is shown below. It assumes k = 2 levels of m = 6

facilities: the first level contains 2 potential facilities and the second 4 potential facilities. in this
example there are n = 5 clients to be served. The fixed costs of establishing facilities are given
in Table 1, the distances between facilities of different levels and the distances between clients
and facilities on the second level are given in Table 2 and Table 3, respectively.

The total enumeration technique, described in Section 4, is used to obtain an optimal solution.
Established facilities are: f2 on the first and f3, f5 on the second level. The objective function
value is 329. The sequences of facilities for each client are shown in Table 4.

3 Improved GA method

Proposed genetic algorithm proposed in this paper is an improved version of GA used in [8],
so after the short summary of the overall genetic algorithm implementation we only give the
detailed description of the improvement parts. The outline of our GA implementation is given
below, where Npop denotes the overall number of individuals in the population, Nelite is a number
of elite individuals and ind and objind mark the individual and its value of objective function.

Input_Data();
Population_Init();
while not Stopping_Criterion() do

for ind:= (Nelite + 1) to Npop do

Table 3: Distance between clients and facilities
f3 f4 f5 f6

client 1 38 13 57 41
client 2 47 52 63 15
client 3 42 48 13 54
client 4 9 54 41 43
client 5 15 18 36 22

848 V. Korać, J. Kratica, A. Savić

Table 4: Sequences of facilities for clients
level 2 level 1

client 1 f3 f2
client 2 f3 f2
client 3 f5 f2
client 4 f3 f2
client 5 f3 f2

if (Exist_in_Cache(ind)) then
objind:= Get_Value_From_Cache(ind);

else
objind:= Objective_Function(ind);
Local_Search(ind,objind);
Put_Into_the_Cache_Memory(ind,objind);
if (Full_Cache_Memory()) then

Remove_LRU_Block_From_Cache_Memory();
endif

endif
endfor
Fitness_Function();
Selection();
Crossover();
Mutation();

endwhile
Output_Data();

The encoding of the individuals used in this implementation is binary. The set of facilities F
which will be used is naturally represented as the individual represented with a binary string of
length m. Digit 1 at the i-th place of the string denotes that yi = 1, while 0 shows the opposite
(yi = 0).

Now, for any individual, through its genetic code, string of established facilities is given.
Objective function value can now be computed using dynamic programming explained in [8] if
the array of established facilities has at least one established facility. Otherwise, solution is not
valid and individual is marked as infeasible.

Genetic operators are the same as in [8]. We can briefly summarize them

• Selection operator is fine-grained tournament selection - FGTS [6],

• Crossover operator is a standard one-point crossover operator,

• Mutation operator is a standard simple mutation modified for frozen genes,

• Initialization of first population is random.

The elitist strategy is applied to Nelite elite individuals, which are directly passing to the next
generation. The genetic operators are applied to the rest of the population (Nnnel = Npop−Nelite

non-elite individuals).
All duplicates of every individual are eliminated. Individuals with the same objective function

value, but different genetic codes are limited with the number of their appearance - Nrv.

An Improved Genetic Algorithm for the Multi Level Uncapacitated
Facility Location Problem 849

The Fitness_Function(), the fitness find of individual ind 1,2, ..., Npop is computed by
scaling values of objective function objind of all individuals into the interval [0,1], so that the
best individual indmin has fitness 1 and the worst one indmax has fitness 0.

Caching technique applied in this improved version of GA is the same as described in [8].

3.1 Improved objective function

In [8] for feasible individual ind, the Objective_Function(ind), is evaluated in four steps.

1. In the first step,the values of variables yi are obtained from the genetic code. Let us denote
the number of established facilities (number of yi’s with value 1) with m1.

2. In the second step, the array of minimal costs cs is initialized. The array cs carries infor-
mation about total minimal costs for serving clients and established facilities (except the
ones on the first level), regarding the costs for serving facilities on the upper level. The
minimal cost values in cs, for the established facilities on the first level are initially set to
zero, while the costs for established facilities on remaining levels and clients are set to a
large constant INF = 1030.

3. The minimal costs for each client and each facility are calculated by dynamic program-
ming. For each facility in each level (except the first one), the array of total minimal costs
(initialized in the second step) is updated. The minimal cost value for each facility is the
minimum of the sum of the minimal cost for established facility on the upper level and
transportation cost between the two facilities. The same procedure is done for each client:
Among the established facilities from the last level, the one with the minimal sum of the
corresponding minimal cost value and the transportation cost facility-client, is taken.

4. Finally, the objective value is computed by adding all transportation costs facility-client
and fixed costs for all established facilities.

As can we seen from the previous algorithm, some of the operation is unnecessary. For
example, all pairs of facilities from the two consecutive levels are taken into consideration where
as only pairs of established facilities are what matters. In Example 1. there is an optimal solution
only for 1 out of 2 facilities established on the first level and only for 2 out 4 facilities established
on the second level. Therefore, for calculating minimal cost between the first and the second
level, previous algorithm performs 2*4=8 operations (one operation per facility pair), while as
only 1*2=2 is really needed. A similar situation arises in calculating facility-client costs, which
in previous algorithm as 5*4=20 operation, while only 2*5=10 is really needed.

In order to correct shortcomings of previous algorithm, the following improvements are pro-
posed. New array of established facility indices is constructed. When calculating minimal costs
with dynamic programming approach, instead of using all pairs of facilities on consecutive levels
we used only pairs of established facilities obtained from the newly constructed array. Similarly,
when calculating minimal facility-client costs, , instead of using of all facilities on the last level,
only the established once are taken into consideration.

Therefore, usage of this procedure effectively improves objective function calculation which
makes the major part in running time of the overall GA implementation. In presented example
we have a significant improvement, but for large scale instances improvement can be even greater.

This can be seen on finding objective function for the largest instance
mt1_5L_60_120_250_500_1070.2000 Best known solutions has 1 established facility on the
first 4 levels and 5 established facilities on the 5th level.

Now, instead of calculating

850 V. Korać, J. Kratica, A. Savić

1. 60*120 pairs of facilities between level 1 and 2, there is only one pair of facilities;

2. 120*250 pairs of facilities between level 2 and 3, there is only one pair of facilities;

3. 250*500 pairs of facilities between level 3 and 4, there is only one pair of facilities;

4. 500*1070 pairs of facilities between level 4 and 5, there are five pairs of facilities;

5. 1070*2000 pairs of facilities-clients we have 5*2000 pairs of facilities-clients.

Although objective function calculation has spped up factor greater than 200, speed up of
overall GA implementation is about 6.5 times. This discrepancy can be explained that the
running time of calculating objective function was conducted previously, instead of representing
the major part, becomes dominated by running time of other parts of GA implementation. It
is obvious that this way of calculating objective function is much faster so its running time is
significantly shorter than those of genetic operators (selection, crossover and mutation).

3.2 Local search

In order to improve the accuracy of the solutions additionally, the proposed GA approach
incorporates a local search procedure. It considers the array of facilities and regards which
facilities are established and, which are not. In the array facilities which are established they
are marked with 1 and those that are not, are marked with 0. Local search starts from the first
facility in the array and tries to change its status. If there is an improvement in the value of
objective function, local search starts from the beginning of the array, otherwise it moves to the
next facility. If the facility that is momentarily in consideration is the only established facility
on that level, local search moves to the next facility in the array. This procedure is repeating
until there are no more facilities in the array.

Improvement can be determined in two ways, according to the status of the regarded facility.
1) Let us first consider the case where the facility is non-established, and its status is changed

into being established. Then new value of objective function is determined in the following way.
All established facilities on the previous levels are unchanged with their fixed transport costs. On
the current level costs are added with the fact that running facility is now established. All other
transport costs are unchanged. On the next level already found transport costs are compared
with transport costs through the new established facilities and changed if the latter is smaller.
On the levels following this all transport costs must be evaluated anew. This includes transport
costs from the last level of facilities to the clients.

2) In the second case an established facility becomes non-established. Transport costs for
that level are then reduced for transport cost of that facility. The array is not reduced in
length but all paths through that facility are out of consideration. On the next level transport
costs are again calculated only for those that were connected through facility considered. On
the following levels, transport costs are determined only for those that were on paths leading
through the facility considered.

Local search is applied only on the best individual in population and this only if it stayed
unchanged in Nrep generations (in this work Nrep = 5). On the one individual, local search is
applied only once, because of its deterministic nature. If the best individual is replaced with
another individual with equal value of an objective function but different genetic code and that
individual stays unchanged through Nrep generations, local search is again applied. In this paper,
local search was not applied in the first 50 generations, whatsoever.

An Improved Genetic Algorithm for the Multi Level Uncapacitated
Facility Location Problem 851

Table 5: GA results on the instances with previously known optimal solution
Instance name Optimal GA ImprovedGA GA+ LS

solution sol ttot sol ttot sol ttot
cap71_2L_6_10.50 1813375.51 opt 0.202 opt 0.195 opt 0.226
cap71_3L_2_5_9.50 4703216.31 opt 0.22 opt 0.195 opt 0.233
cap101_2L_8_17 1581551.39 opt 0.274 opt 0.224 opt 0.269
cap101_3L_3_7_15.50 3227179.81 opt 0.258 opt 0.223 opt 0.265
cap131_2L_13_37.50 1592548.45 opt 0.557 opt 0.358 opt 0.407
cap131_3L_6_14_30.50 3201970.46 opt 0.546 opt 0.355 opt 0.396
cap131_4L_3_7_15_25.50 3630297.67 opt 0.515 opt 0.32 opt 0.352

4 Computational results

All tests were carried out on an Intel 2.5 GHz with 2 GB memory. The algorithms were
coded in C programming language.

The GA is tested on the same instances as in [8] to show improvement obtained by improved
objective function and hybridization with local search. In this paper, only those instances with
multiple levels of facilities are taken into consideration, since for the basic problem with only
one level several hundreds of papers are available. Therefore, instances with multiple levels are
the main interest of this research, while results on instances with only one level of facilities are
omitted. For small size instances, optimal values are known from the literature which is indicated
in Table 1.

For fair and direct comparison of the results, we leave same GA parameters as in [8]. The
finishing criterion of GA is the maximal number of generations Ngen = 5000. The algorithm
also stops if the best individual or best objective value remains unchanged through Nrep = 2000
successive generations. Since the results of GA are nondeterministic, the GA was run 20 times
on each problem instance.

In [8] experimental results are not totally in accordance with the instances. It was possi-
ble to repeat testing and about 1/3 of instances values of objective function cannot be vali-
dated as presented in that quoted paper. For example, value of objective function, for instance
cap131_4l_3_7_15_25.50, is 3630297.67 in the paper and in repeated testing, but for instance
capa_3l_15_30_55.100 value function in the paper is 40725103.254, and 25424361.91 in the
repeated testing. Furthermore, for some instances, results obtained in literature and in repeated
testing slightly differ, but that can be caused by slightly different random seed. For example, for
instance ms1_4l_64_128_256_552.1000 values of objective function in the literature and in
repeated testing are 30936.585 and 31257.27 respectively which means that result in the quoted
paper is slightly better. For instance mt1_4l_120_250_520_1110.2000 respective results are
65044.003 and 64995.454 which means that result in repeated testing is slightly better. Because
of these differences, results of repeated testing will be presented in the whole paper as results
obtained by original GA implementation.

Table 1 presents the GA result on smaller and medium instances. In the first column names
of instances are given. The instance’s name carries information about the number of levels,
the number of facilities on each level and the number of clients respectively. For example, the
instance capb_3l_12_25_63.1000 is created by modifying ORLIB instance capb, which has 3
levels with 12, 25, 63 facilities, respectively and 1000 clients.

The second column contains the optimal solution on the current instance, if it is previously
known, otherwise sign as − . The best GA value GAbest and running time ttot of the original
GA is is given in the following two columns, with marked optimum in cases when GA reached

852 V. Korać, J. Kratica, A. Savić

Table 6: GA results on the instances with unknown optimal solution
Instance name GA Improved GA GA+ LS

sol ttot sol ttot sol ttot
capa_2L_30_70.1000 14829245.63 32.715 14829245.63 16.589 14829245.63 17.517
capa_3L_15_30_55.1000 25424361.91 17.76 25424361.91 8.679 25424361.91 8.933
capa_4L_6_12_24_58.1000 35421258.15 16.231 35421258.15 7.49 35421258.15 7.636
capb_2L_35_65.1000 14479223.79 27.062 14479223.79 14.118 14479223.79 14.283
capb_3L_12_25_63.1000 25986997.29 28.16 25986997.29 12.147 25986997.29 12.477
capb_4L_6_13_31_50.1000 41787432.24 17.371 41787432.24 8.631 41787432.24 9.083
capc_2L_32_68.1000 14072575.52 29.437 14072575.52 16.218 14072575.52 16.901
capc_3L_13_27_60.1000 26751918.75 26.85 26751918.75 12.932 26751918.75 12.773
capc_4L_4_9_27_60.1000 47109818.66 24.491 47109818.66 11.316 47109818.66 11.184
mq1_2L_100_200.300 8341.287 25.561 8341.287 3.091 8341.287 3.180
mq1_3L_30_80_190.300 12994.871 23.95 12994.871 2.903 12994.871 2.951
mq1_4L_18_39_81_162.300 18048.0305 21.233 18048.0305 3.002 18048.0305 3.000
mq1_4L_20_40_80_160.300 17648.0095 20.759 17648.0095 3.141 17648.0095 3.070
mr1_2L_150_350.500 6733.815 88.939 6733.815 8.979 6733.815 10.277
mr1_2L_160_340.500 6707.505 88.878 6707.505 8.752 6707.505 10.096
mr1_3L_55_120_325.500 10911.319 80.546 10911.319 8.39 10911.319 9.401
mr1_4L_30_65_140_265.500 15237.2605 76.126 15237.2605 7.852 15237.2605 8.297
ms1_2L_320_680.1000 13361.3895 479.724 13361.3895 66.767 13361.3895 98.085
ms1_3L_120_250_630.1000 21923.331 364.135 21881.384 64.965 21881.384 89.360
ms1_4L_64_128_256_552.1000 31257.27 385.73 30902.742 54.715 30902.742 79.729
ms1_5L_25_55_120_250_550.1000 40494.7435 373.781 40249.2415 57.169 40094.335 80.764
mt1_2L_650_1350.2000 27733.057 2410.92 27733.057 457.427 27733.057 685.593
mt1_3L_255_520_1225.2000 46278.719 2398.943 46529.979 426.48 46278.719 622.719
mt1_3L_256_600_1144.2000 46095.09 2403.649 46095.09 406.855 46095.09 585.418
mt1_4L_120_250_520_1110.2000 64995.454 2318.705 64995.454 402.143 64851.16 567.867
mt1_5L_60_120_250_500_1070.2000 83486.9185 2265.78 83363.586 371.867 83363.586 543.857

the optimal solution. In the following two columns are given best values and running times,
Improved GA and ttot of the improved GA algorithm. Finally, in the last two columns best
values and running times are given, GA+LS and ttot of the hybridized version of GA algorithm.

As it can be seen from Table 5, there are three variants of GA reached optimal solutions.
As expected, running times of the improved GA has been better than for original GA for all
instances, and improvement is up to 40 percent. Hybridized GA with LS in some instances also
has better running times (4 of 7) than the original GA. It can be noticed that better running
times in both variants are accomplished on instances with the greater number of levels and
greater number of facilities.

In Table 6 results on larger instances are given. In this case, optimal solutions are not known
so that the column is omitted and all other columns have same meaning as in Table 1.

From Table 6 can be concluded that improvements in both new variants of GA were val-
idated. Improved GA has all running times faster than original GA (in some cases like the
instances with 500 clients up to 10 times faster)without losing on quality of results. Only in one
instance, was result was obtained by improved GA, greater than that obtained by original GA
(instance mt1_3L_255_520_1225.2000). In all other instances improved GA has better results.
Hybridization with local search also produced improvements. Results obtained from this variant
are the best in all instances. This variant of GA produced better results than original GA in 5
instances (mostly in the largest instances), and was better than the improved GA in 3 instances.
An interesting fact is that GA with LS has running times shorter almost in all instances (except
the smallest instances), and sometimes like in those instances with 300 clients GA with LS run

An Improved Genetic Algorithm for the Multi Level Uncapacitated
Facility Location Problem 853

up to 8 times faster than the original GA. Even in the largest instances hybridized version ran
up to 44 times faster and also produced better results. As it could be expected, running times
of the hybridized version were always longer than those of Improved GA.

5 Conclusions and Future Works

This paper presented improved genetic algorithm for solving multi-level uncapacitated fa-
cility location problem. Improvements are achieved, firstly, in formulating the new version of
finding objective function for the problem which resulted in much shorter running times, and
secondly, through hybridization with fast and reliable local search procedure, which achieved
better results and in almost all cases run faster than original GA approach. These improvements
are considerable, since hybrid GA is obtained 5 new best-known solutions and running times are
shorter sometimes up to one order of the magnitude compared to original GA version. It can be
concluded that both of these versions represent considerable improvements in solving MLUFLP.

Future research can be directed to parallelization of presented GA, hybridization with some
other heuristics and its application in solving similar facility location problems.

Bibliography

[1] K. Aardal, F. Chudak, D.B. Shmoys, A 3-approximation algorithm for the k-level uncapaci-
tated facility location problem, Information Processing Letters, 72:161–167, 1999.

[2] A. Ageev, Improved approximation algorithms for multilevel facility location problems, Op-
erations Research Letters, 30: 327–332, 2002.

[3] A. Ageev, Y. Ye, J. Zhang, Improved combinatorial approximation algorithms for the k-level
facility location problem, SIAM Journal on Discrete Mathematics, 18: 207–217, 2005.

[4] A.F. Bumb, W. Kern, A Simple Dual Ascent Algorithm for the Multilevel Facility Location
Problem, Proceedings of the 4th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems and 5th International Workshop on Randomization
and Approximation Techniques in Computer Science: Approximation, Randomization and
Combinatorial Optimization, 55-62, August 18–20, 2001.

[5] N.J. Edwards, Approximation algorithms for the multi-level facility location problem. Ph.D.
Thesis, Cornell University, 2001.

[6] V. Filipović, J. Kratica, D. Tošić, D. I. Ljubić, Fine Grained Tournament Selection for the
Simple Plant Location Problem. it Proceedings of the 5th Online World Conference on Soft
Computing Methods in Industrial Applications - WSC5, 152–158, September 2000.

[7] J. Krarup, P. M. Pruzan, The simple plant location problem: Survey and synthesis, European
Journal of Operational Research, 12: 36–81, 1983.

[8] M. Marić, An efficient genetic algorithm for solving the multi-level uncapacitated facility
location problem, Computing and Informatics, 29(2): 183–201, 2010.

[9] J. Zhang, Approximating the two-level facility location problem via a quasi-greedy approach.
Mathematical Programming, 108: 159–176, 2006.

