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Abstract: In this paper an electromagnetism-like approach (EM) for solving the
low autocorrelation binary sequence problem (LABSP) is applied. This problem is a
notoriously difficult computational problem and represents a major challenge to all
search algorithms. Although EM has been applied to the topic of optimization in
continuous space and a small number of studies on discrete problems, it has potential
for solving this type of problems, since movement based on the attraction-repulsion
mechanisms combined with the proposed scaling technique directs EM to promis-
ing search regions. Fast implementation of the local search procedure additionally
improves the efficiency of the overall EM system.
Keywords: low autocorrelation binary sequence problem, electromagnetism-like
metaheuristic, combinatorial optimization.

1 Introduction

Low autocorrelation binary sequence problem (LABSP) is a very hard combinatorial opti-
mization problem with quite a simple formulation. The mathematical formulation of LABSP is
based on a binary sequence s of length n. Let s ∈ {−1, 1}n, i.e. s be represented by (s1, s2, ... ,
sn), where si ∈ {−1, 1} for 1 ≤ i ≤ n. Each sequence s is associated with the value of its energy
function which is defined as follows:

E(s) =
n−1∑
j=1

C2
j (s), where

Cj(s) =
n−j∑
i=1

sisi+j

(1)

Now, the low autocorrelation problem for binary sequences with length n, can be formulated
as finding a sequence s of length n whose energy function is as minimal as possible. The second
measure of quality of the sequence s is a merit factor

F (s) =
n2

2E(s)
, (2)

defined by Bernasconi in [2]. Mathematically, LABSP can be formulated as max
s∈{−1,1}n

F (s). Both

formulations are equivalent, and either of them can be used when it is convenient.

2 Previous work

LABSP has been deeply studied since the 1960s by both the communities of physics and
artificial intelligence. There are two reasons behind this interest:

• It arises in many diverse areas including statistical mechanics and configuration state anal-
ysis [2], calibration of surface profile metrology tools [1], satellite and space applications [8],
digital signal processing [16], etc.;
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• LABSP is also a significant challenge of exact and/or heuristic applications, since it is
known that the problem has "bit-flip" neighborhood structure of combinatorial landscapes
[5, 6]. With this type of neighborhood, it is extremely steep around the optimum, which
is sometimes referred to as ”golf hole” landscapes and it poses a very difficult optimization
problem. In that case, small changes in argument values usually cause drastic difference
in objective value. For example, alteration of only one bit in binary sequence s can affect
the objective value change by several tens of percents. From these reasons the LABSP is
also listed as a problem 005 in the CSPLIB library.

Although Golay in [9] estimated that lim
n→∞

F (s) = 12.32, it is not well enough, because
for dimensions between 21 and 60 the merit factor varies from F (s) = 5.627 for n = 23 up to
F (s) = 9.85 for n = 27, which is obviously far from the estimated limit 12.32.

The state-of-the-art exact method given in [12,13] is based on exhaustive search and it solves
problem optimally up to n = 60. The experimental research was carried out for several days on
a multiprocessor cluster of 160 CPUs. Up to now it is the largest dimension with known optimal
solution.

A hybrid evolutionary approach described in [4] combines the evolutionary search described
in [14] and Kerninghan-Lin heuristic defined in [11]. That evolutionary approach uses a specially
defined termination criterion based on statistical analysis of known optimal solutions and their
asymptotic behavior.

A detailed analysis of different stand-alone local search strategies is given in [7]. That analysis
is later used in embedding the best local search strategy within other metaheuristic approaches.
The results indicate that pure evolutionary algorithm cannot cope with the complexity of the
problem and the assistance of local-search operators it is required to provide optimal or subopti-
mal results consistently. As a best choice for solving LABSP a memetic algorithm endowed with
a tabu search local searcher is proposed, and that approach consistently finds optimal sequences
in considerably less time than approaches previously reported in the literature.

Another metaheuristic method for solving LABSP, based on the stochastic local search (SLS),
is presented in [10]. In-depth analysis of LABSP fitness landscape and the white-box visualization
get insights on how SLS can be effective and lead to a slightly better strategy.

Local search algorithm described in [15], on the other hand, uses a quite different strategy
compared to previous local search approaches, which is based on the randomized form of back-
tracking. In that way, the optimization problem is reduced to a series of constraint satisfaction
problems which are to be solved iteratively, with decreasing upper bounds on the given objective
function. Experimental results indicate that the algorithm is time consuming. For example, the
average running time for n = 40 is over 1000 seconds.

3 Proposed EM method

An electromagnetism-like (EM) metaheuristic is a powerful algorithm for global optimization
that converges rapidly to optimum [3]. The method is also used for combinatorial optimization
as a stand-alone approach or as an accompanying algorithm for other methods.

EM is a population based algorithm that can solve nonlinear optimization problems. In the
following text each member pk, k = 1, 2, ...,m of the population maintained by the algorithm will
be referred to as EM point (or solution), and the population itself will be referred as a solution
set.

The proposed EM algorithm for solving LABSP is given by the following pseudo code:
EM points in the first iteration are randomly initialized from [−1, 1]n (function Random_Init()).
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For a given EM point pk, sequence s is obtained by rounding, i.e. si =

{
1, pki ≥ 0

−1, pki ≤ 0
, for each

coordinate i = 1, ..., n. Energy E(s) and merit factor F (s) are computed by using (1) and (2).

3.1 Local search and scaling

This step is used to move the sample points towards the local optima that are near them.
Points are pushed towards the local valleys using a neighborhood search procedure. The local
search method used in this algorithm is simple but effective. Regarding the importance of the
local search step, it is described in Algorithm 2.

The proposed local search procedure uses the first improvement strategy, which means that
when an improvement is detected, the improvement is immediately applied and local search
continues. If for each member of sequence s swap produces energy value greater or equal than
the original one, the local search ends with no further improvement.

In this implementation, scaling procedure is also applied, which additionally moves points
towards solutions obtained by local search. It is considered only with some factor λ ∈ (0, 1) to
prevent falling into a local optimum and become trapped there. An EM point pk is moved by
the following formula

pk ← λ · pk′+ (1− λ) · pk (3)

where pk′ denotes sequence s of the k-th EM point in the current iteration when the local search
procedure finished its work.

Choosing appropriate value of the scale factor λ is significant for governing the search process.
In the extremal case, when λ is close to 1, the search process will likely fall into a local optimum
and become trapped. Another extremal case, when λ is equal to 0, obviously represents no-scaling
situation. Experiments showed that λ = 0.1 is a good compromise which yields satisfactory
results.

3.2 Attraction-repulsion mechanism

As can be seen from the literature, the strength of the EM algorithm lies in the idea of
directing the sample points towards local optima utilizing an attraction-repulsion mechanism.
Therefore, after applying the local search procedure to each solution in the current population,
the solutions must be moved towards promising regions in order to get closer to the optimal
solution.
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In this process, each sample point is considered as a charged particle. The charge of each
sample point is calculated by the following formula:

qi = exp

−n f(pi)− f(pbest)
m∑
k=1

f(pk)− f(pbest)

 . (4)

The amount of charge relates to the value of the objective function (f(pk) = E(s)) at the point,
which also determines the magnitude of attraction or repulsion of the point over the sample
population.

According to the superposition principle of electromagnetism theory, the force exerted on a
point via another point is inversely proportional to the distance between the points and directly
proportional to the product of their charges. Mathematically, the power of attraction or repulsion
of charges is calculated as follows:

Fi =
m∑

j=1,j ̸=i

F j
i , where

F j
i =


(

qiqj
||pj−pi||2

)
· (pj − pi), f(pj) < f(pi)(

qiqj
||pj−pi||2

)
· (pi − pj), f(pj) ≥ f(pi)

(5)

where ∥pi − pj∥ is the Euclidean distance between EM points pi and pj .
As mentioned before, by using the Move() procedure of the electromagnetism approach,

current solutions are shifted towards the best ones. All the EM points are moved with the
exception of the current best solution. Detailed explanations about movement are given in
Algorithm 3.
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As can be seen from Algorithm 3, the movement of each EM point is in the direction of total
force exerted on it by a random step length β. This length is generated from uniform distribution
between [0,1]. As can be seen in [3], the candidate solutions have a nonzero probability to move
to the unvisited solution along this direction when random step length is selected. Moreover,
normalizing the total force exerted on each candidate solution implies that infeasible solutions
cannot be produced.

4 Experimental results

In this section, the proposed EM solution procedure on LABSP is tested for n up to 40 nodes,
for which the optimal solutions are known in the literature.

Each numerical experiment was repeated 20 times and the results are summarized in Table
1, which is organized as follows:

• The first three columns contain n, optimal solution value (merit factor F (s)) and the EM
best solution obtained in 20 runs;

• The average running time (t) and number of iterations iter used to reach the final EM
solution for the first time are given in the fourth and fifth columns, while the total running
time ttot necessary to finish EM is given in the sixth column.

• The last two columns (agap and σ) contain information on the average solution quality:

agap is a percentage gap defined as agap = 1
20

20∑
i=1

gapi, where gapi = 100∗ EMbest−EMi
EMbest

and

EMi represents the EM solution (merit factor F (s)) obtained in the i-th run, while σ is the

standard deviation of gapi, i = 1, 2, ..., 20, obtained by formula σ =

√
1
20

20∑
i=1

(gapi − agap)2.

The computational results were performed on an Intel 2.5 GHz single processor with 1GB
memory, under Windows operating system. All EM runs were made with the following empiri-
cally determined parameters: m = 10, itermax = 100000 and λ = 0.1. These values cause most
charges to exhibit convergent behavior with a few individuals diverging, thereby providing a good
balance between local and global search. In this case all these values were chosen experimentally
as a matter of convenience because they provide good results.



An Electromagnetism-Like Approach for Solving
the Low Autocorrelation Binary Sequence Problem 693

Table 1: Computational results
n Optsol EMbest t ttot agap σ

(sec) (sec) (%) (%)
3 4.500000 opt. 0.0010 1.5503 0.000 0.000
4 4.000000 opt. 0.0010 4.3613 0.000 0.000
5 6.250000 opt. 0.0010 4.8269 0.000 0.000
6 2.571429 opt. 0.0010 11.6996 0.000 0.000
7 8.166667 opt. 0.0010 9.8925 0.000 0.000
8 4.000000 opt. 0.0010 16.4588 0.000 0.000
9 3.375000 opt. 0.0010 17.3339 0.000 0.000

10 3.846154 opt. 0.0010 20.3198 0.000 0.000
11 12.100000 opt. 0.0017 16.8205 18.462 34.585
12 7.200000 opt. 0.0010 17.4573 0.000 0.000
13 14.083333 opt. 0.0031 17.3925 11.429 25.806
14 5.157895 opt. 0.0010 26.4173 0.000 0.000
15 7.500000 opt. 0.0900 22.1761 1.739 7.715
16 5.333333 opt. 0.0010 23.1151 0.000 0.000
17 4.515625 opt. 0.0031 25.3597 0.000 0.000
18 6.480000 opt. 0.0052 28.1081 2.424 7.453
19 6.224138 opt. 0.0249 23.8753 1.212 3.681
20 7.692308 opt. 0.3983 26.3590 8.235 12.230
21 8.480769 opt. 0.0865 26.3949 19.226 12.095
22 6.205128 opt. 0.0266 33.8676 3.404 7.048
23 5.627660 opt. 0.1937 30.9995 2.745 3.847
24 8.000000 opt. 0.2528 32.9262 19.003 13.390
25 8.680556 opt. 0.8880 32.2269 13.759 12.523
26 7.511111 opt. 1.6412 36.4104 4.887 9.350
27 9.851351 opt. 0.9698 35.7136 29.084 18.230
28 7.840000 opt. 1.1606 37.8760 17.338 11.389
29 6.782258 opt. 3.7152 36.8581 6.531 6.318
30 7.627119 opt. 1.7120 42.7611 13.471 10.877
31 7.171642 opt. 2.6340 43.7440 9.258 6.876
32 8.000000 opt. 2.7331 46.6714 15.540 11.667
33 8.507813 opt. 4.4168 49.8097 15.667 9.911
34 8.892308 opt. 6.9574 51.4971 25.079 9.309
35 8.390411 opt. 1.8435 52.5394 19.264 8.260
36 7.902439 opt. 2.4458 55.0151 17.239 8.781
37 7.959302 opt. 6.4090 55.7682 15.507 7.856
38 8.298851 opt. 2.6012 61.6151 20.118 9.361
39 7.681818 opt. 7.8379 62.7660 13.623 8.275
40 7.407407 opt. 9.4135 73.1222 14.369 6.279
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Observing the data shown in Table 1, it is remarkable that EM identifies optimal solutions
in all cases. Moreover, the EM performs very efficiently, since the total running time was less
than 74 seconds with one million objective function evaluations. Note that, most of this time is
spent after the EM reach optimal solution merely to satisfy the finishing criterion. Also mind
that in the case when n = 40, search space is 240 and EM searched only 1.17 · 10−7 part of it to
reach the optimal solution.

5 Conclusions and Future Works

In this article, a hybrid approach combining an electromagnetism-like method (EM) with
a scaling technique for solving the LABSP is proposed. The fast local search procedure and
the applied scaling scheme were adapted to facilitate the use of EM to boost the performance
of the proposed algorithm. To show the efficiency of the proposed hybrid EM, a number of
experiments was carried out and the results were compared with the optimal solutions taken
from the literature. The obtained results clearly indicate that EM is a useful tool for solving this
problem.

As a direction for future studies, it can be interesting to parallelize the EM and run it on a
powerful multiprocessor computer. Another orientation of future research can be incorporation
of this method in some exact solution framework.
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