
INT J COMPUT COMMUN, ISSN 1841-9836
Vol.7 (2012), No. 3 (September), pp. 459-472

Inverse Kinematics Solution for Robot Manipulator based on Neural
Network under Joint Subspace

Y. Feng, W. Yao-nan, Y. Yi-min

Yin Feng, Wang Yao-nan, Yang Yi-min
The College of Electrical and Information Engineering
Hunan University, Changsha, Hunan Province 410082, P.R.China
E-mail: yinfeng83@126.com, yaonan@hnu.cn, yimin-yang@126.com

Abstract: Neural networks with their inherent learning ability have been widely ap-
plied to solve the robot manipulator inverse kinematics problems. However, there are
still two open problems: (1) without knowing inverse kinematic expressions, these
solutions have the difficulty of how to collect training sets, and (2) the gradient-based
learning algorithms can cause a very slow training process, especially for a complex
configuration, or a large set of training data. Unlike these traditional implementa-
tions, the proposed metho trains neural network in joint subspace which can be easily
calculated with electromagnetism-like method. The kinematics equation and its in-
verse are one-to-one mapping within the subspace. Thus the constrained training sets
can be easily collected by forward kinematics relations. For issue 2, this paper uses
a novel learning algorithm called extreme learning machine (ELM) which randomly
choose the input weights and analytically determines the output weights of the single
hidden layer feedforward neural networks (SLFNs). In theory, this algorithm tends
to provide the best generalization performance at extremely fast learning speed. The
results show that the proposed approach has not only greatly reduced the computation
time but also improved the precision.
Keywords: Inverse kinematics, neural network, extreme learning machine.

1 Introduction

The inverse kinematics (IK) problem for a serial-chain manipulator is to find the values of the joint
positions given the position and orientation of the end-effector relative to the base. There are many
solutions to solve the inverse kinematics problem [1] , such as geometric, algebraic, and numerical
iterative methods. In particular, some of the most popular methods are mainly based on inversion of
the mapping established between joint space and task space by the Jacobian matrix. This solution uses
numerical iteration to invert the forward kinematic Jacobian matrix and does not always guarantee to
produce all possible inverse kinematics solutions. The artificial neural network, which has significant
flexibility and learning ability, has been used in the inverse kinematics problem. One solution followed
a closed-loop control scheme where a neural network is used to directly learn the nonlinear relationship
between the displacement in the workspace and control signal in the joint angle space to achieve a desired
position([2] and [3]) . Other schemes used neural networks to learn a mapping function from the world
space to joint space. Although there are various neural networks, the multi-layer perceptron network
(MLPN) and the radial basis function network (RBFN) are the most popular neural network applied to
functional approximation problems.

In [4], the effects of structural parameters, iteration steps and different numbers of training points
on the performance of the inverse kinematics approximation were investigated. The results showed that
a more complex MLPN configuration is likely to produce a more accurate inverse kinematics approxi-
mation. However, it also leads to the number of iterations increasing significantly to satisfy the required
training goal. Similarly, the neural networkss generalization ability seems to be improved when the num-
ber of training sets is increased. However, if the numbers of hidden neurons or training sets are too large,

Copyright c⃝ 2006-2012 by CCC Publications

460 Y. Feng, W. Yao-nan, Y. Yi-min

the training process can not even converge to an expected error goal in some cases. In [5], an MLPN
with various structures of the input layer were proposed to solve the inverse kinematics problem of a 6
DOF manipulator. Three different forms representing the orientation of the end-effector with respect to
the base were defined: a 33 rotation matrix, a set of 3 Euler angles and one angle and a 13 unit vector.
Another solution combining an MLPN and a lookup table to solve an inverse kinematics problem of a
redundant manipulator was proposed in [6]. Although the use of MLPN in the inverse kinematics prob-
lem has a greater extent, there have some significant disadvantages. For example, there is no reasonable
mechanism to select a suitable network configuration relating to the system characteristics represented
by training sets. In addition, training MLPN using the back-error propagation algorithm is complex and
slow. For a complex MLPN structure required for a complex configuration manipulator, or a large set
of training data, the training process is slow to converge to a specific goal. Therefore, trends towards
using RBFN which are conceptually simpler and possess the ability to model any nonlinear function
conveniently have become more popular.

In [7], a variety of network configurations based on RBFN were developed to explore the effect of
various network configurations on the performance of the network. In [8], a novel architecture of RBFN
with two hidden layers was developed for a inverse kinematics problem of a 3-link manipulator. A
fusion approach was proposed in [9]. The proposed approach used RBFN for prediction of incremental
joint angles which in turn were transformed into absolute joint angles with the assistance of forward
kinematics relations. Another RBFN-based method was presented in [10]. It developed a structure of
six parallel RBFN, each of which consists of six inputs which represent a location of the end-effector
and one output as the joint angle. Thus, the group of six parallel RBFN (one for each joint angle) could
perform an inverse kinematics approximation. In addition, some hybrid techniques made use of neural
networks along with expert system [11], fuzzy logic [12] and genetic algorithm [13] for solving the
inverse kinematics. Though these intelligence approaches can be applied for two or three DOF planar
robots, they often demand high performance computing systems and complex computer programming
for complex robotic system.

Traditionally, all the parameters (weights and biases) of the feedforward networks need to be turned.
For past decades gradient descent-based methods have mainly been used in various learning algorithms.
It is clear that the learning process often needs many training patterns and times to cover the entire
workspace. Thus, it is not surprising to see that it may take several hours and several days to train
neural networks to solve the inverse kinematics. Unlike these traditional implementations, this paper
uses a novel learning algorithm called extreme learning machine (ELM) for single hidden layer feedfor-
ward neural networks (SLFN) which randomly chooses the input weights and biases, and analytically
determines the output weights of SLFN [14,15]. In theory, this algorithm tends to provide the best
generalization performance at extremely fast learning speed.

Another issue of concern for solving the inverse kinematics using neural networks is the training data
sets. As we know, the joint space of the robot can be considered as an inverse image of the Cartesian
space and vice versa. Thus, the forward kinematics can be assumed to be an inverse image of inverse
kinematics and vice versa [9]. The pose P can be used as an input and the corresponding joint angle
Q as the output for the neural network training data. In other words, Q−→P relationship is used while
generating the data whereas P−→Q mapping is done while training the neural network. Usually, the
inverse kinematics problems have multiple solutions. For example, the PUMA 560 robot has at most
eight solutions when there are no joint limits imposed. Hence, the inverse kinematics equation is one-to-
many mapping.Unfortunately,the neural network can not match the actual output with the desired output.
So the learning error of neural network is hard to be calculated when training. An effective solution is that
the training sets are constrained to only one solution set so that the one-to-one mapping can be achieved.
For simple structure, such as two-link planar manipulator, the training sets can be collected based on
the inverse kinematics equation which only consist of either the positive or negative solution. However,
this solution has the difficulty of how to collect constrained data without knowing the inverse kinematic

Inverse Kinematics Solution for Robot Manipulator based on Neural
Network under Joint Subspace 461

expressions of the complex robotic system. The present work attempts to resolve this crucial issue by
using a novel heuristic algorithm, called electromagnetism-like method (EM)[16,17], for determining
a joint subspace which includes one and only one inverse kinematics solution for a given pose. For
convenience’s sake, a graphic depiction of the proposed method is illustrated by using a 2D example, as
shown in figure 1.

1

2

The whole joint space

 Joint subspace

1
d

2
d

1

2

3

Figure 1: An illustration of the proposed algorithm. The point 1 and 2 is true solution and point 3 is an
approximate solution

In Figure 1, assume that there are two inverse solutions in the whole space. One approximate solution
is denoted by (θ∗1, θ

∗
2) . If we select appropriate dθ1 and dθ2 such that θ1 ∈ [θ∗1 − dθ1, θ∗1 + dθ1] and

dθ2 ∈ [θ∗2 − dθ2, θ∗2 + dθ2], this joint subspace includes just one true solution point 1. Based on this,
the data required for training of neural network is proposed to be derived from the joint subspace with
the forward kinematics relations instead of deriving a set complex inverse kinematics equations from the
whole joint space. Then the true solution point 1 can be approached by using the trained network. The
proposed method can be summarized as follows:

1. Given a desired coordinate of position and orientation of the end-effector, making use of EM to
calculate an approximate solution near to one true solution.

2. Specify appropriate value of dθk such that θk ∈ [θ∗k − dθk, θ∗k + dθk](k = 1, 2, · · · , n), where n is the
number of joint and θ∗k is the approximate solution of the k joint variable calculated with EM in step 1.
For the sake of simplicity, all dθ can be set to be the same value.

3. Collect the training sets from the joint subspace, and train the neural network with ELM.
For a new coordinate of position and orientation of the end-effector, the neural networks usually need

to be retrained following the steps above. Fortunately, our results show that the training process is very
fast. Thus, the retraining procedure appears to be acceptable.

2 Calculation of joint subspace with EM

2.1 Problem formulation

As shown in Figure 2, the desired position vector and orientation matrix of a manipulator end-effector
are denoted by: Pd and [Rd] = [d1, d2, d3], where dj (j=1, 2, 3) are unit vectors along the xd, yd, zd

axes. Ph is the current position vector of the end-effector. The current orientation matrix is defined by
: [Rh] = [h1,h2, h3], where hj (j=1,2,3) are unit vectors along the xh, yh, zh axes and the joint variables
are denoted by the n×1 vector, θ = [θ1, θ2, · · · , θn]T.

The error between the current and the desired locations of the end-effector can be described by the
following functions [18]:

462 Y. Feng, W. Yao-nan, Y. Yi-min

Figure 2: The current and the desired end-effector configurations

Position error:

∆p(θ) =∥ Pd − Ph(θ)∥ (1)

Orientation error:

∆o(θ) =
3∑

j=1

(d j · h j(θ) − 1)2 (2)

The total error:

e(θ) = ∆p(θ) + ∆o(θ) (3)

Where (·) denotes the vector dot product. Furthermore, the total error can be chosen to be a weighted
sum of the position and orientation components:

e(θ) = wp∆p(θ) + wo∆o(θ) (4)

Where wp and wo are weighting factors assigned to position and orientation, respectively, such that
wp + wo = 1. Now the inverse kinematics problem is to find a solution θ∗, such that e(θ∗) ≤ ε(ε −→ 0).It
is clear that this problem can be transformed into the following minimization problem:

mine(θ) s.t. θ ∈ ℜn|lk ≤ θk ≤ uk, i = 1, 2, · · · , n (5)

2.2 Brief of Electromagnetism-like method (EM)

To solve the problem in (5), the general scheme of EM is given by following procedures: Initialize,
local search, calculation of charge and total force vector and movement according to the total force.

Initialization

The procedure initialization is used to sample m points, θ1, · · · , θm, randomly from the feasible do-
main of the joint variables, where θi = [θi1, · · · , θin](i = 1, · · · ,m). The procedure uniform sampling can
be determined by following

θik = lk + rand · (uk − lk) k = 1, 2, · · · , n (6)

Inverse Kinematics Solution for Robot Manipulator based on Neural
Network under Joint Subspace 463

The procedure ends with m points identified, and the point that has the best function value is stored
in θbest.

Local search

The local search procedure is used to gather the local information and improve the current solutions.
It can be applied to one or many points for local refinement per iteration. The selection of these two
procedures, does not affect the convergence result.

Calculation of charge and total force vector

The charges of the points are calculated according to their objective function values, and the charge
of each point is not constant and changes from iteration to iteration. The charge of the ith point, qi, is
evaluated as following

qi = exp[−n
(e(θi) − e(θbest))

m∑
k=1

(e(θk) − e(θbest))
], i = 1, 2, · · · ,m (7)

In this way, points that have better objective values possess higher charges. Notice that, unlike
electrical charges, no signs are attached to the charge of an individual point in (7). Instead, the direction of
a particular force between two points is decided after comparing their objective function values. Hence,
the total force Fi exerted on point i is computed by the following equation

Fi =

m∑
j,i

(θ j − θi) q jqi

∥ θ j − θi ∥2 , i f e(θ j) < e(θi)

m∑
j,i

(θi − θ j)
q jqi

∥ θ j − θi ∥2 , others

(8)

According to (8), the point that has a better objective function value attracts the other one. Contrarily,
the point with worse objective function value repels the other. Since θbest has the minimum objective
function value, it acts as an absolute point of attraction. Then it attracts all other points in the population
to better region.

Movement according to the total force

After evaluating the total force vector Fi, the point i is moved in the direction of the force by a
random step length in (8). Here the random step length λ is assumed to be uniformly distributed between
0 and 1.

θi = θi + λ
Fi

∥Fi∥
RNG, i = 1, 2, · · · ,m (9)

In (9), RNG is a vector whose components denote the allowed feasible movement toward the upper
bound uk or the lower bound lk of the joint variables.

After finishing the above procedures, the positions of points are updated and we have finished one
iteration calculation of EM. Take the Figure 3 for example. There are three particles and their own
objective values are 15, 10 and 5, respectively. Because particle 1 is worse than particle 3 while particle
2 is better than particle 3, particle 1 represents a repulsion force which is F13 and particle 2 encourages
particle 3 that moves to the neighborhood region of particle 2. Consequently, particle 3 moves along with
the total force F.

464 Y. Feng, W. Yao-nan, Y. Yi-min

1

2

3

() 5f x

() 15f x

() 10f x

F13{Repulsion}

F

F23 {Attraction}

Figure 3: An example of attract-repulse effect on particle number 3

2.3 Performance evaluation of EM in solving the inverse kinematics

This example is used to examine the precision of the approximate solution calculated by EM, which
directly impact the choice of the interval width dθ. The robot structure for this example is based on
PUMA 560. The link parameters are given in Table 1.

Table 1 The Link parameters of the PUMA 560 Robot

Joint Link length (m) Twist angle (degree) Offset length (m) Joint limitations (degree)

1 0 -90 0.6604 [−160, 160]

2 0.4320 0 0.2000 [−225, 045]

3 0 90 -0.0505 [−045, 225]

4 0 -90 0.4320 [−110, 170]

5 0 90 0.0000 [−100, 100]

6 0 0 0.0565 [−266, 266]

The desired configuration of the end-effector is given by: Pd=[0.7433, 0.3111, 0.7883] (m), and d1=
[-0.6366, 0.7712, -0.0084], d2= [0.0227, 0.0296, 0.9993], d3 = [0.7709, 0.6359, -0.0364]. Note that there
are multiple solutions within the joint limitations shown in table 1. For the sake of simplicity, the joint
1 and 3 limitations are rearranged into [-120,160] and [-45,120], respectively. For the given coordinates
of the end-effector, it corresponds to an exact solution of θ = [10 20 30 40 50 60](degree) within the
adjusted joint limitations. Then the error between an approximate solution and the true solution can be
easily calculated. The stopping criterion for EM is defined by ε =0.01. In other words, stop calculation
when the total error (see (3)) is less than ε. In this example, 100 trials have been conducted for EM and
the maximum absolute error (absolute value) at each joint angle is shown in Figure 4.

From Figure 4, the widths of the joint limitations are set as about 20◦ at least, i.e.dθ = 10◦, which
can guarantee that the one-to-one mapping is achieved. It should be noted that EM is not suitable for
high precision applications. As can be seen in figure 5, the number of evaluations drastically increases
with precision. However, during the early stage of computations, EM algorithm is highly efficient. Thus,
EM is suitable for providing a good initial guess.

3 Model the inverse kinematics with neural network

The architecture used for solving the inverse kinematics problems is shown in Figure 6. The single
layer network consists of n outputs (joint angles) and 12 inputs [n, s, a, p] which represents a location
(position and orientation) of the end-effector. As mentioned earlier, the training set have been constrained
to only one solution set so that the one-to-one mapping could be achieved.

For the present work, a fast and accurate learning algorithm called as Extreme learning machine

Inverse Kinematics Solution for Robot Manipulator based on Neural
Network under Joint Subspace 465

Figure 4: Maximum absolute error at each joint angle among 100 trials

0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Steps

T
ot

al
 e

rr
or

Figure 5: The performance of EM

466 Y. Feng, W. Yao-nan, Y. Yi-min

x
p

y
p

z
p

x
n

y
n

z
n

x
s

y
s

z
s

x
a

y
a

z
a

1

2

1n

n

Position and orientation

of the end-effector

Output:

 joint angles

Figure 6: A general structure of the SLFN to approximate the inverse kinematics

(ELM) are used to train the neural network in modeling the inverse kinematics of robot. Test results
show that the learning speed of ELM algorithm is much faster than the traditional methods. For example,
the learning speed of ELM is at least 1000 and 2000 times faster than BP and SVM for solving the
benchmark problem of California Housing [14]. Thus, this new training method is very suitable for
solving the inverse kinematics.

3.1 Brief of Extreme learning machine (ELM)

ELM is a unified with randomly generated hidden nodes independent of the training data. The output
of an SLFN with L hidden nodes can be represented by

fL(x) =
L∑

i=1

βiG(ai, bi, x), x ∈ Rn, ai ∈ Rn (10)

Where ai and bi are the learning parameters of hidden nodes and βi is the weight connecting in ith
hidden node to the output node. G(ai, bi, x) is the output of the ith hidden nodes with respect to the input
x. Additive and RBF hidden nodes are used often in applications.

For additive hidden node with the activation function g(x) (e.g. sigmoid,threshold,sin,etc.), G(ai, bi, x)
is given by

G(ai, bi, x) = g(ai · x + bi), bi ∈ R (11)

Where ai is the weight vector connecting the input layer to the ith hidden node and bi is the bias of
the ith hidden node. ai · x denotes the inner product of vectors.

For RBF hidden node with activation function g(x) (e.g. Gaussian), G(ai, bi, x) is given by

Inverse Kinematics Solution for Robot Manipulator based on Neural
Network under Joint Subspace 467

G(ai, bi, x) = g(bi ∥ x − ai ∥) bi ∈ R+ (12)

Where ai and bi are the center and impact factor of ith RBF node. R+ indicates the set of all positive
real values. The RBF network is a special case of SLFN with RBF nodes in its hidden layer. Each RBF
node has its own centroid and impact factor, and its output is given by a radially symmetric function of
the distance between the input and the center.

For a given set of trainning samples(xi, ti)N
i=1 ⊂ Rn × Rm,if the outputs of the network are equal to the

targets, we have

fL(x j) =
L∑

i=1

βiG(ai, bi, xi) = t j j = 1, 2, · · · ,N. (13)

Above equation can be written compactly as

Hβ = T (14)

Where

H =

G(a1, b1, x1), · · · ,G(aL, bL, x1)

..., · · · ,
...

G(a1, b1, xN), · · · ,G(aL, bL, xN)

N×L

(15)

β =

βT

1
...

βT
L

L×m

and T =

tT
1
...

tT
N

N×m

(16)

βT is the transpose of a matrix or vector β. H is called the hidden layer output matrix of the network;
the ith column of H is the ith hidden node’s output vector with respect to input and the jth row of H is
the output vector of the hidden layer with respect to input x j.

Usually, when the number of training data is larger than the number of hidden nodes N > L, one
can not expect an exact solution of the system (14).After the hidden nodes are randomly generated and
given the training data, the hidden-layer output matrix H is known and need not be tuned. Thus, training
SLFNs simply amounts to getting the solution of a linear system (14) of output weights β. Under the
constraint of minimum norm least square, i.e., min ∥β∥ and∥Hβ − T∥ , a simple representation of the
solution of the system (14) is given explicitly as

β̂ = H†T (17)

Where H† is the Moore-Penrose generalized inverse of the hidden-layer output matrix H. The simple
learning algorithm can be summarized as follows:

Algorithm ELM: Given a training setℜ = (xi, ti)|xi ∈ Rn, ti ∈ Rm, i = 1, · · · ,N, activation function
g(x),and hidden neuron number N

Step 1: Assign arbitrary input weight wi and bias bi, i = 1, · · · ,N;
Step 2: Calculate the hidden layer output matrix H;
Step 3: Calculate the output wight β : β = H†T

Where H,β and T are defined as formula (15) and (16).

468 Y. Feng, W. Yao-nan, Y. Yi-min

4 Performance evaluation and discussion

Example 1: This simple example demonstrates that the neural network trained by the constrained
data can produce a better approximation of the inverse kinematics function. An RBFN is used to approx-
imate the inverse kinematics function of two-link manipulator. It consists of two revolute joints and two
links that have the same length of 30mm. Two coordinate values x, y describe the position of the tip of
the manipulator. The forward kinematics is x = l1cosθ1 + l2cos(θ1 + θ2)

y = l1sinθ1 + l2sin(θ1 + θ2)
(18)

The inverse kinematics can be described by

θ2 = Atan2(±

√
1 − (

x2 + y2 − l21 − l22
2l1l2

)2,
x2 + y2 − l21 − l22

2l1l2
) (19)

θ1 = Atan2(y, x) − Atan2(l2sinθ2, l1 + l2cosθ2) (20)

Given a desired configuration of the end-effector, there are usually two desired true solutions which
correspond with the lower-elbow structure and the upper-elbow structure respectively. We test the neural
network with three different cases.

1. The training set randomly sample from the whole joint space.
2. The training set randomly sample from the constrained joint space which only consisted of the

positive solution (+sign in (19)).
3. The training set randomly sample from the sub joint space.
All the simulation are carried out in Matlab 6.5 environment running in an Intel(R) Core(TM) 2

Duo CPU 3.00GHz Pc. The training process of the neural network can be executed using Matlab code
"newrb". The root mean squared (RMS) error goal is defined by 0.001, and the number of training sets
is 1000.

0 100 200 300 400 500
10

−4

10
−2

10
0

10
2

10
4

Steps

R
M

S
 e

rr
or

case1,training time:84.8590s

case2, training time: 10.5620s

case3,training time:1.3440s

Figure 7: The training convergence performance

As can be seen in the figure 7, the same network trained by the constrained training data produces a
better convergence performance.Moreover, the neural network trained within the sub joint space produces
the best performance. For case 1, the training sets contain the many-to-one mapping from the joint space
to the Cartesian space. It may be one reason that leads to training failure.

Inverse Kinematics Solution for Robot Manipulator based on Neural
Network under Joint Subspace 469

Example 2: In this example, the performance comparison of the new proposed ELM algorithm and
the gradient-based learning algorithm has been conducted for an inverse kinematics of PUMA robot. The
desired configuration of the end-effector is the same with section 2.3.

Test 1:Training the network with traditional algorithm
First, the approximate solution is calculated by EM. Set the dθ = 30◦, then one of the sub space is

determined for each joint, as shown in table 2.

Table 2 One group of joint subspace

Joint Number joint 1 joint 2 joint 3 joint 4 joint 5 joint 6

Subrange (degree) [-20.1, 39.9] [-8.7, 51.3] [2.1, 62.1] [2.9, 62.9] [11.9, 71.9] [37.6, 97.6]

Next, different training size, which is 100, 500 and 1000 respectively, sample randomly from the
sub joint space. Other 500 data set is used for testing the performance of neural network. The root
mean squared error goal and the maximum number of neurons are set as 10−8 and 500, respectively.
And the spreads in three cases are experimentally selected as 3, 1.2 and 1.2 so that the RBFN can
produce an appropriate performance. The training steps are repeated until the network’s root mean
squared error falls below goal or the maximum number of neurons are reached. Figure 8 shows the
training convergence performance obtained by using different training size. The training time increases
greatly with the number of the training data, as can be seen in the figure 8. Although the training error
fail to reach the goal 10−8 using 500 and 1000 training data, all three trained networks are considered to
achieve a good approximate performance. Since the training error successfully reach the 10−4 in three
case, which is an accepted result for inverse kinematics. These conclusions can also be confirmed by
the following results. Figure 9, 10 and 11 shows the testing root mean square (RMS) error at each joint
angle using the corresponding networks trained above. It can be seen that the RMS error is very small.
In addition, the network trained using 500 and 1000 size performs similarly. And the generalizations of
both of them are better than the network trained using 100 data size. This occurs because less training
data reduces the generalization of the network. However, taking into account training time, the network
trained with less data size appears to be a better choice.

0 100 200 300 400 500

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Steps

R
M

S
 e

rr
or

training size=1000,
training time=100.0780s

training size=500
training time=44.320s

training size=100
training time=0.8750s

Figure 8: Network training convergence with dif-
ferent training size.

Figure 9: Absolute error at each joint angle using
100 training set

Test 2: Training the network with ELM
In this example, a single feedforward network with sigmoidal additive activation function is used. For

ELM, the input weights and biases are randomly chosen from the range [-1, 1].To compare the results of
ELM and gradient-based learning algorithm in test 1, two groups of tests use the same training/testing
sets. Figure 12 shows the training RMS errors with different hidden nodes number in three cases. The
corresponding testing RMS errors are plot in Figure 13. The average training time is 0.0014 s, 0.0056 s
and 0.012 s, respectively. As observed from Figure 12 and 13, in general, the network trained using three

470 Y. Feng, W. Yao-nan, Y. Yi-min

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Joint number

T
ra

in
in

g
 R

M
S

 e
rr

o
r(

d
e

g
re

e
)

Figure 10: Absolute error at each joint angle using
500 training set.

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−4

Joint number

T
ra

in
in

g
 R

M
S

 e
rr

o
r

(d
e

g
re

e
)

Figure 11: Absolute error at each joint angle using
1000 training set

groups of training data performs similarly. Furthermore, the lowest validation error is achieved when
the numbers of hidden nodes are within the ranges [15, 50]. The results show that the generalization
performance obtained by the ELM algorithm is very close to the generalization performance of gradient-
based learning algorithm. However, the ELM algorithm can be simply conducted and runs much faster.
According to our results, the average learning speed of ELM algorithm is at least 1000 times than the
gradient-based learning algorithm.

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

(a) Number of Hidden nodes

T
ra

in
in

g
R

M
S

 e
rr

or

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

(b) Number of Hidden nodes

T
ra

in
g

R
M

S
 e

rr
or

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

(c) Number of Hidden nodes

T
ra

in
g

R
M

S
 e

rr
or

Figure 12: The training RMS error (degree) with ELM, the training size: (a) 100, (b) 500 and (c) 1000.

Example 3: This example demonstrates that the proposed method can be used for continuous joint
space trajectory planning. The robot structure for this example is still based on PUMA 560 robot. The
desired trajectory of the end-effector is a circle centered at (0.2, 0.05, 0.5) (m) with respect to the base
coordinate frame and a radius equal to 0.2(m). The trajectory is discretized into 72 equally spaced
points. To ensure the existence of solution, the joint limitations are released in this example. Moreover,
noting that multiple solutions do exit, in order to prevent a sudden jump to another solution, a unique
orientation is assigned and the approximate solution for each of the successive points is given by the
solution of the preceding point. For example, if the calculated solution of the k point is denoted by
θk, the joint variable limitations are set as [θk − dθ, θk + dθ] for the k+1 point, instead of re-computing
the approximate solution. The computed joint trajectories and the corresponding total error (sum of the
position and orientation error) are plotted in Figure 14 and Figure 15, respectively. It should be noted

Inverse Kinematics Solution for Robot Manipulator based on Neural
Network under Joint Subspace 471

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of Hidden nodes

T
es

tin
g

R
M

S
 e

rr
or

 (
de

gr
ee

)

training data size=100
training data size=500
training data size=1000

Figure 13: The testing RMS error with ELM.

that the trajectory in Figure 14 is just one of the multi-trajectory for PUMA robot.

0 10 20 30 40 50 60 70 80
−100

−50

0

50

100

150

200

trackpoint

Jo
in

t v
al

ue
(d

eg
re

e)

theta1
theta2
theta3
theta4
theta5
theta6

Figure 14: Computed trajectories of the joints.

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
x 10

−9

Trackpoint

To
ta

l e
rr

or
 (t

he
 p

os
iti

on
 a

nd
 o

rie
nt

at
io

n
er

ro
r)

Figure 15: Total error at each track point

The results in Figure 15 show that the idea of using a neural network has produced an excellent ap-
proximation of the inverse kinematics function. Although neural network solutions are usually not suited
for high precision robotic application, high precision results are achieved here. This occurs because the
joint varies are limited within a small space when training network.

5 Conclusions

The proposed hybrid approach combined the electromagnetism-like method and the neural network
to solve the inverse kinematics problem. Unlike the traditional neural network approaches that generate
the training data from the whole joint space, the neural network in the proposed approach collects the
training data from a sub joint space, in which the training set is constrained to only one solution set so
that the one-to-one mapping is achieved. Another important feature of the proposed approach is to use an
efficient learning algorithm, ELM, to train the neural network. The learning speed of this novel training
algorithm can be thousands of times faster than traditional feedforward network learning algorithms
while obtaining better generalization performance. The results show that the proposed hybrid approach
has not only greatly reduced the computation time but also improved the precision.

472 Y. Feng, W. Yao-nan, Y. Yi-min

Bibliography

[1] Bruno Siciliano, Oussama Khatib, Springer Handbook of robotics,Springer Press,2008.

[2] H JACK, DMA LEE, RO BUCHAL and WH ELMARAGHY, Neural networks and the inverse kine-
matics problem, Journal of intelligent manufacturing,4:43-66,2003.

[3] FL Lewis,Neural network control of robot manipulators,IEEE Expert,11(3):64-75,1996.

[4] BB Choi and C Lawrence,Inverse kinematics problem in robotics using neural networks,NASA
Technical Memorandum-105869.

[5] Z Binggul, HM Ertunc and C Oysu, Comparison of inverse kinematics solutions using neural net-
work for 6R robot manipulator with offset,In Proceedings of the 2005 Congress on Computational
Intelligence Method and Application,pp:1-5.

[6] AS Morris , A Mansor,Finding the inverse kinematics of manipulator arm using artificial neural
network with look-up table. Robotica,15:617-625,1997.

[7] JA Driscoll,Comparison of neural network architectures for the modeling of robot inverse kinemat-
ics,In Proceedings of the 2000 IEEE,3:44-51,2000.

[8] SS Yang, M Moghavvemi and John D Tolman,Modelling of robot inverse kinematics using two
ANN paradigms, In Proceedings of TENCON2000 Intelligent System and Technologies for the New
Millennium,3:173-177,2000.

[9] Shital S, Chiddarwar N and Ramesh Babu,Comparison of RBF and MLP neural networks to solve
inverse kinematic problem for 6R serial robot by a fusion approach,Engineering Applications of
Artificial Intelligence,, 23(7):1083-1092,2010.

[10] PY Zhang, TS Lu and LB Song, RBF neworks-based inverse kinematics of 6R manipulator,Int.
Journal of advanced manufacturing technology,26:144-147,2004.

[11] Eimei Oyama, Arvin Agah and Karl F, A modular neural architecture for inverse kinematics model
learning,Neurocomputing, 38(40):797-805,2001.

[12] Srinivasan Alavandar, MJ Nigam, Neuro-Fuzzy based approach for inverse kinematics solution of
industrial robot manipulators, Int. J. of computers, Communication and Control, 3(3):224-234,2008.

[13] Karlra P, Prakash NR, A neuro-genetic algorithm approach for solving inverse kinematics of robotic
manipulators, IEEE International Conference on Systems, Man and Cybernetics,2:1979-1984,2003.

[14] Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew, Extreme learning machine: A new learning
scheme of feedforward neural networks, In Proceedings of IEEE International joint conference on
Neural Networks,2:985-990,2004.

[15] Guang-Bin Huang, Lei Chen, Enhanced random search based incremental extreme learning ma-
chine,Neurocomputing, 71(16-18):3460-3468,2008.

[16] Birbil SI, Fang SC, An electromagnetism-like mechanism for global optimization,Journal of Global
Optimization, 23(3):263-282,2003.

[17] Birbil SI, Fang SC, Sheu RL, On the convergence of a population-based global optimization algo-
rithm,Journal of global optimization, 30:301-318,2004.

[18] Wang LCT, Chen CC, A combined optimization method for solving the inverse kinematics problem
of mechanical manipulators,IEEE Transaction on Robotics and Automation, 7(4):489-499,1991.

