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Abstract:
We consider the problem of speech denoising using source separation. In this study
we have proposed a hybrid technique that consists in applying in the first step, the
Bionic Wavelet Transform (BWT) to two different mixtures of the same speech sig-
nal with noise. This speech signal is corrupted by a Gaussian white noise with two
different values of the Signal to Noise Ratio (SNR) in order to obtain those two mix-
tures. The second step consists in computing the entropy of each bionic wavelet
coefficient and finds the two subbands having the minimal entropy. Those two sub-
bands are used to estimate the separation matrix of the speech signal from noise by
using the source separation. Our proposed technique is evaluated by comparing it to
the denoising technique based on source separation in time domain.
Keywords: Bionic wavelet transform, Blinde Source Separation, entropy, speech
enhancement.

1 Introduction

In signal processing, the source separation constitutes an attractive problem. Its goal is to extract from
many signals mixture, the meaningful signals. This is performed with minimum a priori information on
the mixture process. In the case of instantaneous mixture, many approaches employing the ICA algorithm
can solve the problem of the source separation. One of those approaches permits to estimate the unmixing
matrix by minimizing the mutual information between the separated sources [1, 2]. Others exploit the
non-Gaussianity of the source signals and perform separation by maximizing this non-Gaussianity [2].
For example, a technique using a subband decomposing in combination with ICA, has been developed
by Tanaka et al [3]. Kisilev et al [4] have employed geometric algorithms for separating mixed signals.
Rachid Moussaoui et al [5] have proposed an algorithm using the idea of applying a preprocessing in the
transformed domain but the separation is performed in the time domain. In this paper we have used the
source separation with Bionic Wavelet Transform (BWT) for enhancement of speech signal corrupted
by white noise. The source separation is performed with ICA and instead of using the wavelet packet
transform as used in the technique proposed by Rachid et al [5], we have used in this work the BWT.
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2 Restrictions of ICA

The ICA standard formulation needs at least as many sensors as sources. Therefore, we suppose in
this paper that the source number is equals to the sensor number. In the instantaneous mixture case, the
sources are not directly observed but as a linear combination such as:

xi(t) =
j=N∑
j=1

ai jS j(t), (1)

where x are the observed signals, s are the source signals and A = [ai j] is unknown full rank mixing
matrix.

Figure 1: ICA Principle.

Figure 1 shows the ICA principle. The ICA aim is practically to find the inverse matrix of A, which
is the unmixing matrix W = A−1. To make an estimation of W, certain assumptions have to be made and
some restrictions have to be imposed [2]: we assume that the individual components si(t) are statistically
independent over the observation time and the individual components must have non Gaussian distribu-
tions. In comparison to previous work, the novelty of the approach of Rachid Moussaoui et al [5] resides
in the preprocessing implementation before the source separation process in to:

- Relax the previous restrictions by increasing the non-Gaussanity which is a pre-requirement for
ICA.

- Initiate a preliminary separation by decreasing the mutual information between the resultant sig-
nals from the preprocessing.

The preprocessing transforms the observed signals to find an adequate representation where the sig-
nals distributions are non-Gaussian. For this reason, the wavelet transform is used in order to emphasize
the non Gaussian nature of the observed signals. Once we have found the inverse matrix W with the
wavelet packets based ICA then, the separation is performed in the time domain [5]. Figure 2 illustrated
an overview of the system proposed by Rachid Moussaoui et al [5].

In this paper we have chosen s2(t) to be a white noise that corrupted the clean speech signal s1(t)
with two different values of the Signal to Noise Ratio (SNR).
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Figure 2: Overview of the source separation system proposed by Rachid Moussaoui et al [5].

3 The proposed technique

The proposed speech enhancement system, illustrated in Figure 4, is inspired from that of Rachid
Moussaoui et al [5]. The latter is conceived for multi-channel source separation and is based on wavelet
based independent component analysis. It comprises two modules shown in dotted boxes in Figure 4. The
first module (pre-processing) extracts appropriate signals from the observed signals in order to facilitate
the separation of the speech and noise signals. For this, the observed signals are projected on suitable
bases, more specifically on bionic wavelet bases. The second module (speech and noise separation)
performs the source separation using standard ICA [1]. The input of this module is the extracted signals
from module 1 and the observed signals. Its output is the cleaned or the enhanced speech signal ŝ1(t).
Figure 4 illustrated an overview of the proposed speech enhancement system which is summarized by
the following steps:

i Decompose the observed signals (the two noisy speech signals) into bionic wavelet subbands by
applying the BWT.

ii Compute the entropy value of each subband and select the two subbands having the minimum
entropy.

iii Use those two subbands as the inputs of the ICA system in order to estimate the separation matrix,
A−1.

iv Estimate the enhanced speech signal ŝ1(t) by applying A−1 to the temporal mixtures x1(t) and x2(t)
.

The used entropy in this work, is the Shannon entropy which is defined for each subband w·, j, 1 ≤
j ≤ 30 as:

H( j) = −
∑

pilog(pi). (2)
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Note that in the expression w·, j, 1 ≤ j ≤ 30, · is replaced by 1 if we apply the BWT to x1(t) and is
replaced by 2 if we apply the BWT to x2(t).

The probability pi is expressed as: pi =
w·, j(i)2

∥W∥2 , 1 ≤ i ≤ N and N is the number of samples in the
subband w·, j and W is obtained by concatenating all the subbands w·, j, 1 ≤ j ≤ 30.

4 The bionic wavelet transform

J. Yao and Y. T. Zhang have proposed the bionic wavelet transform (BWT) as a new time-frequency
technique by referring to the perceptual model [6]. The term "bionic" means that the BWT is guided by
an active biological mechanism [7]. Moreover, the BWT decomposition is both perceptually scaled and
adaptive [8]. The initial perceptual aspect of the transform comes from the logarithmic spacing of the
baseline scale variables which are designed to match basilar membrane spacing [8]. Then, two adapta-
tion factors control the time-support employed at each scale, based on a non-linear perceptual model of
the auditory system [8]. The basis of this transform is the Giguerre -Woodland non-linear transmission
line model of the auditory system [9, 10], an active-feedback electro-acoustic model incorporating the
auditory canal, middle ear, and cochlea [8]. The model yields estimates of the time-varying acoustic
compliance and resistance along the displaced basilar membrane, as a physiological acoustic mass func-
tion, cochlear frequency-position mapping, and feedback factors representing the active mechanisms of
outer hair cells. The net result can be seen as a technique for the estimation of the time-varying quality
factor Qeq of the cochlear filter banks as the input sound waveform function [8]. The references [6–9]
give the complete details on the elements of this model. The BWT adaptive nature is ensured by a time-
varying linear factor T (a, τ) which represents the scaling of the cochlear filter bank quality factor Qeq at
each scale over time [8]. For each scale and time, the adaptation factor T (a, τ) of BWT is computed by
using the update equation [8]:

T (a, τ + ∆τ) =
1[

1 −G1
Gs

Gs+|XBWT (a,τ)|
] [

1 +G2| ∂∂t XBWT (a, τ)|
] (3)

where Cs is a constant (typically Cs = 0.8) that represents non linear saturation effects in the cochlear
model [6, 8].

The quantities G1 and G2 are respectively the active gain factor, which represents the outer hair cell
active resistance function, and the active gain factor representing the time-varying compliance of the
basilar membrane [8]. Practically speaking, the partial derivative in equation (3) can be approximated by
using the first difference of the previous points of the BWT at that scale [8]. XBWT (a, τ) represents the
bionic wavelet transform (BWT) of the signal x(t) and it is given by:

XBWT (a, τ) =
1

T (a, τ)
√

a

∫
x(t) · φ̃∗

[
t − τ

a · T (a, τ)

]
· e− jω0( t−τ

a )dt, (4)

where a denotes the parameter of scale, τ is the shifting parameter in time and φ̃ is the mother wavelet
envelop given by [7]:

φ(t) =
1

T (a, τ)
√

a
φ̃

[
t

T (a, τ)

]
· e jω0t (5)

where ω0 is the base fundamental frequency of the unscaled mother wavelet.
In practice ω0 is equals to 15165.4 for the human auditory system [6]. The discretization of the scale

a is achieved by employing a pre-determined logarithmic spacing across the desired frequency range, so
that at each scale the center frequency is expressed by [8]:

ωm =
ω0

(1.1623)m ,m = 0, 1, 2, . . . . (6)
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Based on Yao and Zhang’s original work for cochlear implant coding [9], coefficients at 22 scales, m
= 7,. . . ,28, are calculated employing numerical integration of the continuous wavelet transform. These
22 scales correspond to center frequencies logarithmically spaced from 225 Hz to 5300 Hz. (Although
the scales used here match those from Yao and Zhang’s original work, empirical variation of the number
of scales and frequency placement showed minimal effect on the overall enhancement results). For this
implementation, we have used coefficients at 30 scales. In the formula (4), the role of first factor T (a, τ)
multiplying

√
a is to ensure that the energy remains the same for each mother wavelet. The role of second

factor T (a, τ) is to adjust the envelop φ̃(t) without adjusting the central frequency of φ(t) [7]. Thus, the
main difference between (BWT) and the continuous wavelet transform (CWT) is based on the fact that
the time-frequency resolution achieved by (BWT) can be adjusted in an adaptive manner not only by
frequency variation of the signal but also by instantaneous amplitudes of this signal. It is the mother
wavelet which makes the continuous wavelet transform adaptive, while the adaptive characteristic of
the BWT comes from the mechanism of active control in the human auditory model. which adjusts the
mother wavelet associated to (BWT) according to the analyzed signal. Basically, the idea of the (BWT)
is inspired from the fact that we need to make the mother wavelet envelop variable in time according to
the signal characteristics.

The employed mother wavelet φ(t) in [7] is the Morlet wavelet and its envelop φ̃(t) is given by [8]:

φ̃(t) = e
[
−( t

T0
)2

]
(7)

where T0 denotes the initial time-support.
Figure 3 illustrated the real and the imaginary parts of the complex Morlet mother wavelet.

Figure 3: The Morlet wavelet.

It can be shown [7, 9] that the obtained BWT coefficients, XBWT (a, τ) are derived by using the fol-
lowing formula [8]:

XBWT (a, τ) = K(a, τ)XWT (a, τ), (8)

where K(a, τ) is given by:

K(a, τ) =
√
π

C
T0√

1 + T 2(a, τ)
(9)

where C represents a normalizing constant calculated from the squared mother wavelet integral.
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This representation yields to an effective computational technique for calculating in direct manner,
the BWT coefficients from those of the wavelet transform. This is performed without using the BWT
definition given by equation (4). There are some key differences between the discretized CWT employing
the Morlet wavelet used for the BWT and a filterbank based WPT using an orthonormal wavelet. One of
them is that the WPT provides a perfect reconstruction, while the discretized CWT is an approximation
whose exactness depends on the number and placement of frequency bands selected [8].

Figure 4: Overview of the proposed system.

5 Criterion of evaluation

For evaluating our proposed technique, we have compared it to the temporal technique based on
runica. The evaluation is based on SNR, SSNR, ISd and PESQ computation. These parameters are
defined as follow:

- Signal-to-noise ratio
The signal-to-noise ratio (SNR) of the enhanced speech signal is defined by:

S NRdB = 10Log10

 ∑N−1
n=0 x(n)2∑N−1

n=0 (x(n) − x̂(n))2

 , (10)

where x(n) and x̂(n) represent respectively the original and the enhanced speech signals, and N is
the samples number per signal.

- Segmental signal to noise ratio
The segmental signal-to-noise ratio (segSNR) is calculated by averaging the frame based SNRs
over the signal:

segS NRdB =
1
M

M−1∑
m=0

10Log10


∑Nm+N−1

n=Nm
x(n)2∑Nm+N−1

n=Nm
(x(n) − x̂(n))2

 , (11)
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where M designates the number of frames, N is the size of frame, and Nm is the beginning of the
m− th frame. As the SNR can become negative and very small during silence periods, the segSNR
values are limited to the range of [-10dB, 35dB] as per [10].

- Itakura-Saito distance
The distance of Itakura-Saito (ISd) measures the spectrum changes and can be computed employ-
ing the coefficients of linear prediction (LPC) and this according to the following equation:

IS D(a, b) =
(a − b)T R(a, b)

aT Ra
, (12)

where a represents the LPC vector of the original speech signal x(n). R is the matrix of autocorre-
lation and b is the LPC coefficients vector of the enhanced speech signal x̂(n). In this work, a 10th

order LPC based measure is employed.

- Perceptual evaluation of speech quality
The perceptual evaluation of speech quality (PESQ) algorithm [11, 12] is an objective quality
measure, that is approved as the ITU-T recommendation P.862. It is a tool of objective measure-
ment conceived to predict the results of a subjective Mean Opinion Score (MOS) test. It was
proved [13,14] that the PESQ is more reliable and correlated better with MOS than the traditional
objective speech measures.

6 Results and discussion

From Table 1 to Table 8, we report the obtained results from the application of our proposed speech
enhancement technique and the temporal technique based on runica on eight noisy sentences taken from
the Timit database.

Table 1: Sentence 1.
Parameters Proposed method Temporal method

SNRi of the first mixture 0.7672 0.7672
SNRi of the second mixture -3.4638 -3.4638

SNRf(dB) 69.5528 58.7147
SSNRi of the first mixture -3.5715 -3.5715

SSNRi of the second mixture -6.3509 -6.3509
SSNRf(dB) 34.8736 34.1366

PESQi of the first mixture 1.3110 1.3110
PESQi of the second mixture 1.0983 1.0983

PESQf 4.4989 4.4936
ISdi of the first mixture 2.4029 2.4029

ISdi of the second mixture 3.9475 3.9475
ISdf 4.181 10−10 4.948 10−8

These results show clearly that our proposed technique outperforms the temporal technique of source
separation using standard ICA [1].

Fig. 5 and Fig. 6 illustrate an example of speech enhancement using our proposed technique.
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Table 2: Sentence 2.
Parameters Proposed method Temporal method

SNRi of the first mixture -2.1038 -2.1038
SNRi of the second mixture -6.6325 -6.6325

SNRf(dB) 66.5296 48.9184
SSNRi of the first mixture -5.8749 -5.8749

SSNRi of the second mixture -7.8815 -7.8815
SSNRf(dB) 34.2126 30.7198

PESQi of the first mixture 1.4577 1.4577
PESQi of the second mixture 1.2445 1.2445

PESQf 4.4981 4.4535
ISdi of the first mixture 2.8500 2.8500

ISdi of the second mixture 4.6523 4.6523
ISdf 1.4043 10−9 3.1847 10−6

Table 3: Sentence 3.
Parameters Proposed method Temporal method

SNRi of the first mixture 4.2400 4.2400
SNRi of the second mixture -0.2606 -0.2606

SNRf(dB) 77.4719 49.5281
SSNRi of the first mixture -1.4316 -1.4316

SSNRi of the second mixture -4.6465 -4.6465
SSNRf(dB) 34.7279 31.6486

PESQi of the first mixture 1.9873 1.9873
PESQi of the second mixture 1.7460 1.7460

PESQf 4.4999 4.4621
ISdi of the first mixture 1.8622 1.8622

ISdi of the second mixture 3.1204 3.1204
ISdf 2.5837 10−10 8.2210 10−6

7 Conclusion

In this paper, we have proposed a new speech enhancement technique that consists in applying in
the first step, the Bionic Wavelet Transform (BWT) to two different mixtures of the same speech signal
with gaussian white noise with two different values of Signal to Noise Ratio (SNR). The second step
consists in computing the entropy of each bionic wavelet coefficient and finds the two subbands having
the minimal entropy. Those two subbands are used to estimate the separation matrix of the speech
signal from noise by employing the source separation. The obtained results from the SNR, SSNR, ISd
and PESQ computation, show clearly that the proposed speech enhancement technique outperforms the
temporal technique of source separation using standard ICA.
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Table 4: Sentence 4.
Parameters Proposed method Temporal method

SNRi of the first mixture 1.6366 1.6366
SNRi of the second mixture -2.7143 -2.7143

SNRf(dB) 61.8042 55.4325
SSNRi of the first mixture -4.3027 -4.3027

SSNRi of the second mixture -6.3345 -6.3345
SSNRf(dB) 31.4223 29.4299

PESQi of the first mixture 1.5414 1.5414
PESQi of the second mixture 1.2476 1.2476

PESQf 4.4816 4.4506
ISdi of the first mixture 2.5180 2.5180

ISdi of the second mixture 4.0632 4.0632
ISdf 7.4591 10−8 8.9142 10−7

Table 5: Sentence 5.
Parameters Proposed method Temporal method

SNRi of the first mixture -0.7340 -0.7340
SNRi of the second mixture -5.7034 -5.7034

SNRf(dB) 59.5033 57.0129
SSNRi of the first mixture -5.6047 -5.6047

SSNRi of the second mixture -7.6901 -7.6901
SSNRf(dB) 31.4463 30.8201

PESQi of the first mixture 1.3907 1.3907
PESQi of the second mixture 1.1391 1.1391

PESQf 4.4814 4.4748
ISdi of the first mixture 2.6384 2.6384

ISdi of the second mixture 4.2292 4.2292
ISdf 2.4528 10−8 1.0487 10−7

Table 6: Sentence 6.
Parameters Proposed method Temporal method

SNRi of the first mixture 2.5544 2.5544
SNRi of the second mixture -2.1241 -2.1241

SNRf(dB) 62.4473 62.2521
SSNRi of the first mixture -3.3643 -3.3643

SSNRi of the second mixture -5.8605 -5.8605
SSNRf(dB) 31.4816 31.4398

PESQi of the first mixture 1.3805 1.3805
PESQi of the second mixture 1.0564 1.0564

PESQf 4.4929 4.4926
ISdi of the first mixture 2.6047 2.6047

ISdi of the second mixture 4.1036 4.1036
ISdf 9.3330 10−8 1.0324 10−7
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Table 7: Sentence 7.
Parameters Proposed method Temporal method

SNRi of the first mixture -0.0411 -0.0411
SNRi of the second mixture -4.9428 -4.9428

SNRf(dB) 69.0167 67.9430
SSNRi of the first mixture -5.7362 -5.7362

SSNRi of the second mixture -7.8201 -7.8201
SSNRf(dB) 33.9383 33.8069

PESQi of the first mixture 1.6015 1.6015
PESQi of the second mixture 1.4326 1.4326

PESQf 4.4978 4.4974
ISdi of the first mixture 2.5867 2.5867

ISdi of the second mixture 4.1275 4.1275
ISdf 4.6205 10−10 6.7472 10−10

Table 8: Sentence 8.
Parameters Proposed method Temporal method

SNRi of the first mixture -1.7018 -1.7018
SNRi of the second mixture -6.5995 -6.5995

SNRf(dB) 68.1109 52.2155
SSNRi of the first mixture -5.8031 -5.8031

SSNRi of the second mixture -7.8610 -7.8610
SSNRf(dB) 33.2544 29.8972

PESQi of the first mixture 1.3814 1.3814
PESQi of the second mixture 1.1889 1.1889

PESQf 4.4968 4.4504
ISdi of the first mixture 3.3273 3.3273

ISdi of the second mixture 5.1147 5.1147
ISdf 3.1514 10−9 5.4382 10−6
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Figure 5: (a) clean speech signal, (b) enhanced speech signal.

Figure 6: (c) first mixture, (d) second mixture.
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