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Abstract: Proportional-Integral-Derivative (PID) control is the most com-
mon method applied in the industry due to its simplicity. On the other hand,
due to its difficulties, parameter tuning of the PID controllers are usually per-
formed poorly. Generally, the design objectives are obtained by adjusting the
controller parameters repetitively until the desired closed-loop system perfor-
mance is achieved. This allows researchers to use more advanced and even
some heuristic methods to achieve the optimal PID parameters. This paper
focuses on application of the chaos embedded particle swarm optimization al-
gorithm (CPSO) for PID controller tuning, and demonstrates how to employ
the CPSO method to find optimal PID parameters in details. The method is
applied to optimal PID parameter tuning for three typical systems with various
ordered, and comparisons with the conventional PSO and the Ziegler-Nichols
methods are performed. The numerical results from the simulations verify the
performance of the proposed scheme.
Keywords: Particle Swarm Optimization (PSO); chaos theory; PID control;
multidimensional optimization.

1 Introduction

Numerous control techniques have so far been introduced and applied in industrial problems.
On the other hand, since its invention in 1910, Proportional-Integral-Derivative (PID) control
has become the best known controller due to its simplcitiy and efficiency in various control
problems. Industrial implementation of the PID controller is remarkable that its tuning still
presents a challenge in many applications. Primary problem associated with such systems is to
obtain the optimal PID controller parameters for a satisfactory control performance, which is a
quite difficult task. Therefore, enormous amount of research results have been reported in the
literature, among which the well-known tuning method was proposed by Ziegler and Nichols in
1942. Despite the huge number of proposed approaches for PID parameter tuning, most of them
(as well as the Ziegler-Nichols method) occasionally yield poor performance in practice.

Generally, conventional tuning methods use the root locus and frequency response for PID
parameter tuning. Early presentation of the most common conventional tuning method, the
Ziegler-Nichols method, was based on the open-loop step response of the system. With such
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definition, the performance was observed to be inadequate and poor. Later, the authors im-
proved the method by making it dependent on the frequency response of the close-loop system.
The procedure imposed by this method can be summarized as follows: i) First, the system is
assumed to be under proportional control only. The proportion parameter is increased until the
system becomes critically stable. The proportion parameter yielding this condition is recorded
as well as the corresponding oscillation period; ii) Based on these values, other parameters (i.e.
corresponding to the integral and derivative operations) are determined via some look-up-tables
which can be found any Control Theory textbook. However, this method yields unsatisfactory
phase and gain margins. In addition, due to its off-line unautomatized nature, the Ziegler-Nichols
method is not quite applicable to processes in the working systems in practice. For this reason,
recently, heuristic methods have been employed for PID parameter tuning in order to improve
the controller performance.

In the last decade, heuristic approaches have received increased attention from researchers
dealing with engineering problems. Over the years, several heuristic methods have been proposed
for PID parameter tuning. In 1995, a novel heuristic approach called the Particle Swarm Opti-
mization (PSO) was introduced by Eberhart and Kennedy [7]. Compared to other optimization
algorithms, PSO has a very simple mathematical definition yielding easy-to-implement and short
computer programs, which can generate high-quality solutions with reasonable speed. However,
like other heuristic methods, conventional PSO suffers from premature convergence especially
in higher order complicated problems. In order to improve PSO, so far numerous variants have
been introduced. Compared to the conventional PSO, most of these variants show relatively
better performance. Much research is still in progress for improvement of the performance of
PSO especially in complicated problems. In this study, we present a simple method for PID
controller parameter tuning by using the chaos embedded particle swarm optimization algorithm
(CPSO).

PID parameter tuning achives in such a way that parameters are adjusted in real-time when
the controller is active, which is called on-line tuning or the parameters are measured than the
tuned controller is performed on a plant, which is called off-line tuning. Hence, in this study, the
CPSO is applied to overall system to obtained the design objectives by adjusting the controller
parameters at each iteration repetitively until the desired closed-loop system performance is
achieved. This attitude is off-line tuning.

The performance of the closed-loop system can defined in terms of rise time, overshoot,
settling time and steady state error. In general, the system with fast rise and settling time under
no steady-state error and almost zero overshoot is desired. Hence, in this study to provide a
desired performance, mean value of squared error signal, which is different between reference
signal and the system output, is minimized by using CPSO and PSO.

These methods (CPSO, PSO and Ziegler-Nichols) are applied to three typical systems of
different orders. The first system under investigation is the acceleration model of an object in a
frictional environment. The second one is the inverted pendulum control problem, and the last
issue is the field-controled of a DC motor problem. When these systems are controlled via PID
controller, the closed-loop performance is sensitively dependent to the PID parameters. Hence,
determination of these parameters becomes quite critical. Therefore, PID parameter tuning
methods should be performed on the closed-loop system.

In Section 2 of the paper, the descriptions and formulations of the controller and problems
under investigation are presented. Section 3 contains the definitions of the PSO and CPSO
algorithms; and finally, Section 4 presents the numerical results and Section 5 contains the
comparisons together with discussions and concluding remarks.
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Table 1: Increase in each PID parameter and its impact on transient response
Parameter Rise Time Overshoot Settling Time Steady State Error

KP Decrease Increase Increase Decrease
KI Decrease Increase Increase Decrease
KD Decrease Decrease Decrease Slight Change

2 Problem Statement

In this study, PID control is discussed and three systems of different orders are investigated
for the performance comparison of the proposed CPSO method with the Ziegler-Nichols method
and conventional PSO. Each system is summarized via pictorial description as well as its transfer
function in the upcoming subsections.

2.1 The Proportional-Integral-Derivative (PID) Control

The basic form of the PID controller composes from sum of the multiplication, integration and
differentiation of the error signal, and each operator is multiplied by three control parameters.
Time domain representation of PID control equation is presented in Eq. 1, meanwhile the transfer
function is given in Eq. 2:

u(t) = KP e(t) +KI

∫
e(t)dt+KD

de(t)

dt
, (1)

G(s) =
U(s)

E(s)
=
KDs

2 +Kps+KI

s
, (2)

where KP , KI and KD are the control parameters, u(t) is the controller output/system input,
and e(t) is error signal. In frequency domain, the transfer function of the PID controller has one
pole at the origin, and two zeros with locations depending on the tuning strategy.

Table 1 presents the separate and isolated impact of change in each parameter on the system
performance. However, in reality, the parameters must be mutually tuned. Therefore, these
impacts listed in Table 1 should not be considered as rules-of-thumb, and applied directly for
parameter tuning.

2.2 A System of First Order: Acceleration Control of an Object in a Fric-
tional Environment

The first order system in this study results from the acceleration of an object against the
friction due to the ground contact, which is one of the fundamental models in vehicular control.
The Figure 1 depicts the pictorial description of the relevant system.

Figure 1: Accelerated object model in a frictional environment.

The transfer function of the system is given in Eq. 3. The model presents the equation of
motion for the speed of an object with mass m. Assuming that the input u imposes a force;
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Table 2: Setup1a and Setup1b descriptors
Descriptor Symbol Setup1a Setup1b

Friction constant (N.sec/m) b 50 50
Mass of the object (kg) m 100 50

Desired velocity of the object (m/sec) v 1 1

meanwhile the friction force bv restricts the movement of the object, where v is the velocity of
the object as well as the output of the overall system. The aim of the controller is to make the
object to reach to a desired velocity.

V (s)

U(s)
=

1/m

s+ b
m

(3)

For this particular type of problem, two different setups are constructed and investigated.
From now on, these setups will be referred to as Setup1a and Setup1b. The descriptor parameters
of these setups are given in Table 2.

2.3 A System of Second Order: Inverted Pendulum

The inverted pendulum is one of the benchmark problems of control theory for illustration
and comparison of different control methodologies. The problem comes from the motivation on
development of missiles, rockets, robots and other transportation means. In general, the aim in
the inverted pendulum problem is to maintain the pendulum at upright position. Therefore, in
addition to the PID control, various techniques (such as optimal control [15], linear [9] control,
nonlinear control [5], intelligent and adaptive control methods [3]) have also been applied to this
problem.

Figure 4 shows the general model of the inverted pendulum. The pendulum is composed of a
free moving pendulum with the mass mp and length l attached to the cart with mass mt, where
a force f is applied to this setup.

Figure 2: Inverted Pendulum Model.

Eq. 4 shows the transfer function of the inverted pendulum system. The moment of inertia
I about the pendulum’s mass center is defined as I = (1/3)mpl

2.

θ(s)

U(s)
=

mpl

((I +mpl2)−m2
pl

2)s2 −mpgl(mp +mt)
. (4)

For this particular type of problem, four different setups are constructed and investigated.
From now on, these setups will be referred to as Setup2a, Setup2b, Setup2c and Setup2d. The
descriptor parameters of these setups are given in Table 3.
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Table 3: Setup2a - Setup2d descriptors
Descriptor Symbol Setup2a Setup2b Setup2c Setup2d

Mass of the cart (kg) mt 0.5 0.5 1 1
Mass of the pole (kg) mp 1 1 1 1

Length of the pole (m) l 0.5 0.5 2 2
Initial value of the rod angle (rad) θ 0.4 0.8 0.4 0.8

Table 4: Setup3a and Setup3b descriptors
Descriptor Symbol Setup3a Setup3b

Motor constant (N.m/A) km 50.10−3 50.10−3

Friction constant (N.sec/m) b 50.10−3 50.10−3

Resistance (Ω) Rf 1 10
Field time effect (msec) τf 1 10

Rotor time constant (msec) τl 100 10
Rotor angle (rad) θ 2 2

2.4 A System of Third Order: Field-Controlled DC Motor

The third problem under investigation is the field-controlled DC motor problem depicted in
Figure 1, which has a third order transfer function. The main purpose of this type of systems
are to increase speed while reduce the torque. Eq. 5 gives the transfer function of the system.

Figure 3: Field-controlled DC motor model.

θ(s)

vf (s)
=

km/(bRf )

s(τfs+ 1)(τls+ 1)
, (5)

where km is the motor constant, b is the friction constant, τf = Lf/Rf is the field time effect,
τl = J/b is the rotor time constant, and J is the rotor inertia, vf is the input and θ is the output
of the system.

For this particular type of problem, two different setups are constructed and investigated.
From now on, these setups will be referred to as Setup3a and Setup3b. The descriptor parameters
of these setups are given in Table 4.

3 Particle Swarm Optimization (PSO)

The PSO algorithm depends on motions of particles (swarm members) searching for the
global best in an N -dimensional continuous space. The position of each particle is nothing but
a solution candidate, and every time, the fitness of this candidate is re-evaluated. In addition
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to its exploration capability (i.e. the tendency for random search throughout the domain), each
particle has a cognitive behavior (i.e. remembering its own good memories, and having tendency
to return there); as well as a social behavior (i.e. observing the rest of the swarm and having
tendency to go where most other particles go).

The original PSO formulation of Kennedy and Eberhart [7] depends on the update of the
position xi[k] and the velocity vi[k] of the ith particle (swarm member) at the kth iteration as
follows:

vi[k + 1] = vi[k] + c1 × rand()× (pbesti − xi[k]) + c2 × rand()× (gbesti − xi[k]), (6)

xi[k + 1] = xi[k] + vi[k + 1]×∆t, (7)

where c1 and c2 are measures indicating the tendencies of approaching to pbest and gbest, which
are the best positions achieved personally by the ith particle and the whole swarm, respectively.
In other words, c1 and c2 are the measures of the cognitive and the social behaviors (called
cognitive and social parameters), respectively. rand() is a uniformly distributed pseudo-random
number generator which produces random numbers between 0.0 and 1.0; and the time step size
∆t is taken to be unity for simplicity.

This optimization algorithm demonstrates an outstanding performance under complicated
problems. But still, it occasionally faces problems such as getting stuck at local optima and
stagnation for multi-dimensional and complex problems. Thus, various improvements have been
proposed in order to get rid of these problems. One of the important innovations was introduced
by Shi and Eberhart [11], who proposed a term called "inertial weight" in order to improve
the performance of the method (used for controlling local and global exploration behavior of
the population). By introduction of this term, which puts an additional control on the current
velocity of the particles, Eq. 6 is modified as:

vi[k + 1] = w[k]× vi[k] + c1 × rand()× (pbesti − xi[k]) + c2 × rand()× (gbesti − xi[k]), (8)

which is referred to as the inertial weight PSO, and is currently accepted as the de-facto PSO
formulation. Moreover, in a following study [11], Shi and Eberhart showed that the ideal choice
for the inertial weight is to decrease it linearly from 0.9 to 0.4. The following pseudocode presents
the PSO algorithm.

PSO Algorithm

initialize random velocity and position

do

for i = 1 to swarm size

1) Calculate fitness function (fit) aimed to be minimized.

This is the function that the mean squre error of the

difference between reference signal and the output of the

system

if fit < best pattern

ith particle best position = ith particle position

best pattern = fit

end if

end for

find min best pattern and corresponding particle

for i = 1 to swarm size

Update velocity
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Update position

end for

check the limits of the maximum velocity

while maximum iterations are not exceeded or minimum error is not achieved

4 Chaos Embedded Particle Swarm Optimization (CPSO)

After PSO has been presented, various hybrid and innovative methods were introduced
in order to get rid of its drawbacks such as premature convergence and stagnation for multi-
dimensional and complicated problems. One of the ideas for preventing premature convergence
is to embed chaotic maps into PSO. In recent years, chaotic maps have been utilized for generat-
ing pseudo-random numbers, and they have been applied to many areas like communication and
control theory, since they can produce sufficiently random numbers enhancing the overall per-
formance of the systems. For PSO, the chaotic maps can be helpful for prevention of premature
convergence [2]; moreover, it can improve the global/local searching capabilities of the algorithm.
Implementation of chaotic maps in PSO can be categorized into two different approaches:

In the first approach, variables and/or random number generators are reinforced with the
chaotic maps without any radical changes in the algorithm. In a similar manner, any stochastic
algorithm can be improved by using chaotic maps. For PSO, the performance of the algorithm
is greatly dependent on the parameters w, c1, c2 as well as the random number generators.
Thus, any improvement performed on these variables would slightly have influence on the overall
performance.

In the second approach, chaos is used in order to interact with the PSO algorithm for searching
the solution space. The modification in the PSO algorithm must be fulfilled. In addition to the
conventional algorithm, the add-on code is evaluated in order to find a solution candidate with
better fitness. At each iteration, the search space boundary is reduced for increasing the searching
efficiency. By this way, the particles are kept away from local optimum. This phenomenon is
called Chaos Search. In this study, due to its effective performance, the second approach is
preferred to the first approach.

The Chaos Embedded Particle Swarm Optimization (CPSO) [8] differs from the conven-
tional PSO with four new operators, which are: chaotic map, variable mapping, inverse variable
mapping, and search range operators.

4.1 Chaotic Maps

The discrete-time dynamical system in the iteration form in Eq. 9 is called chaotic mapping
or chaotic map.

cxi+1 = F (cxi, P ), (9)

where F : S → S and S ∈ ℜ , S = [0, 1] or S = [−1, 1]. P is the chaos parameter, cx is a
vector and F is a nonlinear transformation. The equation starting from the initial value cx0 in
the iterative map is obtained. Chaotic maps have sensitivity on initial value and they produce
pseudo - random sequences based on cx0.

One of the most common chaotic maps is the logistic map. The logistic map which is a model
of population biology, is frequently used with PSO [8].

cxi+1[k] = µcxi[k](1− cxi[k]), (10)

where µ (which is called bifurcation parameter) is set to 4 for ergodicity as seen in Figure 4.
There are two fixed points (If the condition cx∗ = F (cx∗, P ) holds cx∗ is called fixed point) exists
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at 3/4 and 0. Moreover, if the chaotic map will be used with CPSO, the fixed points must be
checked at the algorithm.

Figure 4: Bifurcation Diagram of Logistic Map.

The chaotic map is a function producing a random number based on the initial value. In
CPSO, the initial value is the current position for a particle and chaotic map produces a new
position. If the fitness value related to the new position is optimal than the initial position, then
the position of a particle is changed as the new position. Thus, it is essential that the chaotic
orbit must be ergodic, which means the initial value of the chaotic map must be varied. However,
the range of the particle position is not between [−1, 1] or [0, 1]. Hence, the particle position
should be mapped into chaotic space. Therefore, the variable mapping operator is defined for
this purpose.

4.2 Variable Mapping

The position of the particle should be mapped into the chaotic domain by using carrier
equation as defined in Eq. 11 [14].

cxi[k] = (xi[k]−Xmin)/(Xmax −Xmin), (11)

where cxi is decision variable, which is the initial value of the chaotic map, x is the position of
the particle and Xmin and Xmax are the boundaries of the search space. This function maps the
range [Xmin, Xmax] to the range of chaotic variable [0, 1].

The procedure; variable mapping a particle position and then using this position as an initial
value of a chaotic map is called Chaos Search. However, when the optimal point is obtained, it
should be mapped to a search space. Hence, the inverse mapping operator is produced.

4.3 Inverse Variable Mapping

After determination of the chaotic variable from a chaotic map with the initial value from
variable mapping, the chaotic variable is converted into the particle position by using Eq. 12.
This function maps the range of chaotic variable [0, 1] to the range of solution space [Xmin, Xmax].

xi[k] = Xmin + cxi[k](Xmax −Xmin) (12)

The position, which is taken from the inverse mapping, is used in order to evaluate the new
solutions. If the new solution is better than the non-chaos-search one, the new solution is put
pursuant to chaos search.
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4.4 Search Range

If the search space extends in a wide area, the searching cannot be completed in the optimal
area in a short time. Hence, in order to obtain high performance, the chaotic search is run in a
small range. This search area is changed in the current optimal solution neighborhood [4].

Xmin = max(Xmin, xg − r(Xmax −Xmin)), (13)
Xmax = min(Xmax, xg + r(Xmax −Xmin)), (14)

where xg is the global best position so far and r is the variable between 0 and 1. In this study, r
is chosen as 0.45, and xg is chosen as 0 for simplicity. Decreasing the range of the chaotic search
will increase the searching efficiency.

The outline of the CPSO used in this study can be listed as follows:

Chaos PSO Algorithm

initialize random velocity and position

do

for i = 1 to swarm size

1) Calculate the fitness function (fit) aimed to be minimized.

This function is nothing but the mean square error of the

difference between reference signal and the output of the

system

if fit < best pattern

ith particle best position = ith particle position

best pattern = fit

end if

end for

find min best pattern and corresponding particle

for i = 1 to swarm size

Update velocity

Update position

end for

check the limits of the maximum velocity

1) Execute variable mapping that maps the positions into chaos

variables

(Section 4.2)

2) Use Logistic map and find new chaos variable

(Section 4.1)

3) Execute Inverse Variable Mapping that converts chaos

variable into positions

(Section 4.3)

if (new position < old position)

Position = New Position

break

end if

4) Change the search area

(Section 4.4)

end for

while maximum iterations are not exceeded or minimum error is not achieved



Application of Chaos Embedded PSO for PID Parameter Tuning 213

Table 5: Optimization algorithm parameters for the simulation
Property Value

Number of particles in population 10
Number of iterations (maxiter) 50

Social and cognitive parameters (c1 and c2) 1.494
Inertia weight (wmax and wmin) 0.9 down to 0.4

Table 6: PID controller parameter values for Setup1a
Parameter Value Obtained Value Obtained Value Obtained

by CPSO by PSO by Ziegler-Nichols
KP 100 22.64 30.52
KI 38.745 100 109.01
KD 1 0.1 30.52

5 Simulation Results

In this study, a simulation environment is constructed in order to apply the tuning methods
and make performance comparisons. Figure 5 shows the overall setups for all cases; and the
selected parameters for the optimization algorithms are given in Table 5.

Figure 5: Overall Setups for all Cases.

The brief summary of the solution strategy to the control problems in this study is as follows:
1) initialize the overall system with random PID parameters; 2) obtain the error, which is
the transient response of the system where the reference signal is zero; 3) calculate the fitness
function; 4) update the parameters by using Ziegler-Nichols, PSO or CPSO; 5) return to step 2
until the maximum iteration is achieved.

5.1 Results for Setup1

For this type of problem, the PID parameters are tuned by using PSO, CPSO and Zeigler-
Nichols methods. Figure 6 shows the transient responses of the closed loop system for Setup1a
and Setup1b. Table 6 and 7 present the obtained PID parameters for Setup1a and Setup1b by
means of different methods.

It can be observed from the figure that for Setup1a, PSO yields the worst PID parameters.
CPSO has no overshoot and better rise time compared to PSO and Ziegler-Nichols. For Setup1b,
Ziegler-Nichols yields the worst performance. Even though CPSO seems to outperform to PSO,
it can be concluded that CPSO performance is almost the same with PSO.

In summary, for this particular type of problem, CPSO presents better performance compared
to PSO and Ziegler-Nichols.
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Figure 6: Transient response of the system for a) Setup1a and b) Setup1b.

Table 7: PID controller parameter values Setup1b
Parameter Value Obtained Value Obtained Value Obtained

by CPSO by PSO by Ziegler-Nichols
KP 33.86 24.89 0.85
KI 49.3 45.57 43.6
KD 1 1 0.85

5.2 Results for Setup2

For this type of problem, again, the PID parameters are tuned by using PSO, CPSO and
Ziegler-Nichols methods. Tables 8 and 9 give the obtained PID parameters, and Figure 3 shows
the transient responses of designs.

The results as seen in Figure 3 indicates that CPSO outperforms to PSO and Ziegler-Nichols.
However, in Case 2a and Case 2b CPSO performance is similar to that of Ziegler-Nichols and
PSO. From the simulations, it is observed that, CPSO is better than PSO; on the other hand, it
should be noted that for this particular type of problem, Ziegler-Nichols outperforms to conven-
tional PSO. This result emphasizes the importance of the efforts spent for improvement of the
conventional PSO.

5.3 Results for Setup3

The PID parameters obtained for this type of problem are presented in Tables 10 and 11,
and illustrated in Figure 8.

Table 8: PID controller parameter values for Setup2a and Setup2b
Parameter Value Obtained Value Obtained Value Obtained

by CPSO by PSO by Ziegler-Nichols
KP 93.6226 60.0136 60.3788
KI 10.4097 0 4.997
KD 10.1 3.6553 4.977
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Figure 7: Transient response of the system for a) Setup2a, b) Setup2b, c) Setup2c and d) Setup2d.

Table 9: PID controller parameter values for the Setup2c and Setup2d
Parameter Value Obtained Value Obtained Value Obtained

by CPSO by PSO by Ziegler-Nichols
KP 162.9 169.7 190
KI 10 79.03 4.9
KD 10 10 5.12

Table 10: PID controller parameter values for Setup3a
Parameter Value Obtained Value Obtained Value Obtained

by CPSO by PSO by Ziegler-Nichols
KP 395.33 219.20533 1.08
KI 1.1 55.2488 0.0314
KD 41.6245 1 6.22
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Figure 8: Transient response of the system for a) Setup3a and b) Setup3b.

Table 11: PID controller parameter values for the Setup3b
Parameter Value Obtained Value Obtained Value Obtained

by CPSO by PSO by Ziegler-Nichols
KP 28.73 62.7446 0.2442
KI 186.95 1.7 87.205
KD 8.7 1 1.7 10−4

The results once more indicate the efficiency of the CPSO algorithm. At this point, the
following remark shall be made: Even though for Setup3b PSO seems to have a better rise time
as well as a settling time compared to CPSO, it yields a steady state error. Therefore, it can still
be claimed that CPSO has a better overall performance compared to PSO and Ziegler-Nichols.

6 Conclusion and Future Works

In this study, the chaos embedded particle swarm optimization algorithm (CPSO) is devel-
oped, and applied to the some popular engineering problems. The parameter tuning of the PID
controller is performed by applying CPSO to three systems. At each iteration, the PID parame-
ters are found off-line; then, the optimized controller is applied to the system. The effectiveness
of the proposed method is exposed by comparing it to PSO and Ziegler-Nichols methods. It
is observed and concluded that CPSO outperforms to PSO and Ziegler-Nichols, and it is quite
efficient for usage in other systems. The scope of the current study is limited to off-line deter-
mination of the PID parameters; but simple and parallelizable structure of PSO (and also of
CPSO) gives the impression that it is feasible to have real-time implementations of PSO (and
also CPSO) in industrial applications for on-line PID controller parameter tuning.
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