
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 9(6):741-748, December, 2014.

PARMODS: A Parallel Framework for MODS Metaheuristics

E.D. Nino Ruiz, S. Miranda, C.J. Ardila, W. Nieto

Elias D. Nino Ruiz*, Stella Miranda,
Carlos J. Ardila, Wilson Nieto
Universidad del Norte
Computer Science Department
Colombia, Barranquilla
{enino,stellam,carila,wnieto}@uninorte.edu.co
*Corresponding author: enino@uninorte.edu.co

Abstract: In this paper, we propose a novel framework for the parallel solution of
combinatorial problems based on MODS theory (PARMODS) This framework makes
use of metaheuristics based on the Deterministic Swapping (MODS) theory. These ap-
proaches represents the feasible solution space of any combinatorial problem through
a Deterministic Finite Automata. Some of those methods are the Metaheuristic Of
Deterministic Swapping (MODS), the Simulated Annealing Deterministic Swapping
(SAMODS), the Simulated Annealing Genetic Swapping (SAGAMODS) and the Evo-
lutionary Deterministic Swapping (EMODS) Those approaches have been utilized in
different contexts such as data base optimization, operational research [1–3, 8] and
multi-objective optimization. The main idea of this framework is to exploit parallel
computation in order to obtain a general view of the feasible solution space of any
combinatorial optimization problem. This is, all the MODS methods are used in a
unique general optimization process. In parallel, each instance of MODS explores a
different region of the solution space. This allows us to explore distant regions of
the feasible solution which could not be explored making use of classical (sequential)
MODS implementations. Some experiments are performed making use of well-known
TSP instances. Partial results shows that PARMODS provides better solutions than
sequential MODS based implementations.
Keywords: MODS, Combinatorial Optimization, Parallel Framework.

1 Introduction

Combinatorial Optimization (CO) is a branch of optimization in which problems can be
represented (or reduced) to discrete structures. In this ramification, we find many problems
related to operational research and networking fields. Moreover, since the number of possible
solutions in this kind of problems increase exponentially with regard to the input parameters,
their numerical solution can be very hard (or impossible) to obtain, for instance solving their
mathematical formulations. Thus, two important considerations should be taken into in account
when we want to solve CO problems: the number of solutions to consider is only a subset of
the feasible solution space and the solutions should be obtained in a polynomial time. The
first item addresses the necessity of having good solutions and the second one, demands the
elapsed time to be small for the proposed implementation. However, those features are opposite,
this means, when the number of solutions explored from the feasible solution space is small,
the solution is obtained in short time but maybe, the approximated optimal solutions are not
good enough. On the other hand, exploring more and more the feasible solution space provides
better approximations to the optimal solution but, the performance of the method is affected
considerably (long elapsed times). Thus, we need methods which in a polynomial time consider
more and more solutions from the feasible solution space. Notice, we are not taking about
exhaustive methods such as brute force but, combining information from different metaheuristics
in a polynomial time which can be done in parallel.

Copyright © 2006-2014 by CCC Publications



742 E.D. Nino Ruiz, S. Miranda, C.J. Ardila, W. Nieto

This paper is organized as follows: in section 2 the TSP problem is introduced and MODS
metaheuristics are presented, section 3 describes the proposed implementation and, section 4
and 5 provide the experimental results and conclusions, respectively.

2 Preliminaries

Following the previous section, one of the most widely used CO problems is the Traveling
Salesman Probem (TSP) Its importance is derived owing to its application to different branch
and fields from optimization. Moreover, some well-known problems such as the Vehicle Routing
Problem and the Transportation Problem are derived from the TSP formulation. In general, this
problem is defined as follows: we have a set of N cities C = {c1, c2, . . . , cN}, a matrix of weights
W ∈ RN×N whose elements wi,j provides the weight of going from ci to cj , for 1 ≤ i, j ≤ N and,
the cost function

J (α) = wN,α1 +
N−1∑
i=1

wαi,αi+1 , (1)

which is subjected to

• Visiting each city from C once.

• Coming back to the initial city once the path α has been completed.

Rudely speaking, we want to find the optimal path α∗ which provides the optimal components
wα∗

i ,α
∗
i+1

, for 1 ≤ i ≤ N−1, from W such that (1) is minimized. Note that, the number of possible
solutions for the TSP problem increases by N ! with regard to the number of cities N .

As we mentioned before, the numerical solution of CO problems can be an exhaustive work
making use of numerical methods and the TSP problem is not the exception. Note that, the TSP
problem can be seen as a linear programming problem therefore well-known numerical methods
based on Integer Programming and Simplex Methods could be used in order to solve (1) but,
they have been proved to fail when the number of cities is large, as is usual in practice. On
the other hand, the optimal solution of the TSP problem can be approximated making use of
metaheuristics, we address one set of them in this paper, those are based on the Metaheursitic Of
Deterministic Swapping (MODS) MODS is a metaheuristic inspired on the Automata Theory.
Its application ranges from the Operational Research field to the Database Query Optimization
area [7]. It is very important to note that, MODS methods are not novel methods, in general,
they are nothing but classical combinatorial optimization methods represented on Deterministic
Finite Automata structures. This improves the manner to design the solution of the problem
since the optimial solution space and the transition between solutions (states of the automata)
are defined prior any optimization process. This avoids, for instance, to explore unfeasible regions
of the solution space.

MODS considers the next Deterministic Finite Automata (DFA)

QMODS = {S,Σ, δ,S0,J } , (2)

where S is the feasible solution space, Σ is the input alphabet which is utilized by δ : S → S
in order to perturb the solutions, S0 contains the initial solutions and, J is the cost function
to be optimized. The S space is unknown since it contains all the possible solutions of the CO
problem. Putting all in the TSP context, S contains all the possible paths, S0 provides the
initial path, J is the cost function (1) and Σ and δ provides all the possible manners to perturb



PARMODS: A Parallel Framework for MODS Metaheuristics 743

a given path, for instance, given the path α′ = [1, 2, 3, 4] and the duple σ1 = (2, 3) ∈ Σ then,
δ(α′, σ1) = [1, 3, 2, 4]. The MODS metaheuristic is defined in Algorithm 2.

Algorithm 2 MODS Metaheuristic
Require: Σ, δ,S0,J
Ensure: α+ ≈ α∗

1: α+ ← s ∈ S0
2: for k = 1→M do
3: σk ← σ ∈ Σ
4: α− ← δ(α+, σk)
5: if J (α−) < J (α+) then
6: α+ ← α−

7: end if
8: end for

Algorithm 3 SAMODS Metaheuristic
Require: Σ, δ,S0,J , T0, ρ, L
Ensure: α+ ≈ α∗

1: α+ ← s ∈ S0
2: for k = 1→M do
3: for i = 1→ L do
4: σi ← σ ∈ Σ
5: α− ← δ(α+, σi)
6: if J (α−) < J (α+) then
7: α+ ← α−

8: else
9: Generate (uniformly) η ∈ [0, 1]

10: Compute

γ = exp

(
−J (α

+)− J (α−)

Tk

)
(3)

11: if η < γ then
12: α+ ← α−

13: end if
14: end if
15: end for
16: Tk+1 ← ρ · Tk

17: end for

SAMODS is a Simulated-Annealing (SA) based MODS method which explores the feasible
solution space S in a more “generous” manner. It allows bad solution to be accepted in small
optimization intervals (usually at the beginning of the iterations) Alike MODS, SAMODS makes
use of the DFA

QSAMODS = {S,Σ, δ,S0,J , T0, ρ, L} , (4)

where S, Σ, δ, S0 and, J remain unchanged, T0 is the initial temperature, ρ is the cooling
factor and, L is the number of refinement iterations. Note that, MODS accepts a new solution



744 E.D. Nino Ruiz, S. Miranda, C.J. Ardila, W. Nieto

only when its optimal value is better than the current value (from the current path) On the
other hand, SAMODS makes use of the Boltzamm distribution (5) in order to give the chance
of a bad solution to be improved. This may provides a better solution than the best solution
considered so far. Thus, at the beginning of the iterations, the number of solutions accepted as
good is large but, this number is decreased when the iterations draws on since the parameter Tk

is large and then, the condition of line 11 in Algorithm 3 is almost never satisfied. Following the
SA principles, SAGAMODS [5] is defined on the SAMODS method but, when a bad solution is
rejected (line 11 in Algorithm 3), the solution is improved making use of Genetic Algorithms.
The supporting automata of SAGAMODS method is defined as follows:

QSAGAMODS = {S,S0, C(s, r, k), F (s)}

S and S0 remain unchanged from the previous methods. In addition, C(s1, s2, k) is the crossover
operator where s1 ∈ S and s2 ∈ S are parents solutions. Likewise, k provides the cross point.
SAGAMODS method is presented in the Algorithm 4.

Algorithm 4 SAGAMODS Metaheuristic
Require: Σ, δ,S0,J , T0, ρ, L
Ensure: α+ ≈ α∗

1: α+ ← s ∈ S0
2: for k = 1→M do
3: for i = 1→ L do
4: σi ← σ ∈ Σ
5: α− ← δ(α+, σi)
6: if J (α−) < J (α+) then
7: α+ ← α−

8: else
9: Generate (uniformly distributed) η ∈ [0, 1]

10: Compute

γ = exp

(
−J (α

+)− J (α−)

Tk

)
(5)

11: if η < γ then
12: α+ ← α−

13: else
14: Generate integer number (uniformly distributed) β ∈ [1,modelsize]
15: call C(α+,α−, β)
16: end if
17: end if
18: end for
19: Tk+1 ← ρ · Tk

20: end for

EMODS [6] is an evolutionary MODS method which improves the solutions making use of
evolutionary techniques (crossover and mutation). A complete taxonomy of SAGAMODS and
EMODS methods can be read in [4, Chapter 4].

Now we are ready to present our parallel approach of MODS based methods.



PARMODS: A Parallel Framework for MODS Metaheuristics 745

3 Proposed Implementation

To start, consider an array of processors available at time t:

P = [p1, p2, . . . , pn] , (6)

where n is the number of processors. For simplicity, we avoid the use of time indexes. Moreover,
we consider that the metaheuristics MODS, SAMODS, SAGAMODS and EMODS can be run
independently at different processors. Thus, we want to split the number of available processors
per the number of metaheuristics, this is:

jobsproc =
n

4
. (7)

Consider the initial solution s ∈ S0, then we denote the next DFAs based on the index
1 ≤ i ≤ n:

Qi =



Q1 = QMODS = {. . . , s} for i = 1, 5, . . .

Q2 = QSAMODS = {. . . , s} for i = 2, 6, . . .

Q3 = QSAGAMODS = {. . . , s} for i = 3, 7, . . .

Q4 = QEMODS = {. . . , s} for i = 4, 8, . . .

, (8)

and then, we are ready to launch different processes based on the next rule

jobi =



P(Q1, s) for i = 1, 5, . . .

P(Q2, s) for i = 2, 6, . . .

P(Q3, s) for i = 3, 7, . . .

P(Q4, s) for i = 4, 8, . . .

, (9)

where the i-th process jobi (P(., .)) is executed in the processor pi of (6), for 1 ≤ i ≤ n. Note
that, in (8) we choose the automata to be utilized and in (9), we launch the process. For
instance, MODS metaheuristic is executed on processors 1,4,..., likewise, SAMODS is executed
on processors 2,5,... and so on.

Denote by s1, s2, s3, and s4 the approximated optimal solutions provided by MODS, SAMODS,
SAGAMODS and EMODS among processors, respectively, this is

s1 = argmin
s
(i)
MODS

{
J
(
s
(i)
MODS

)
, for i = 1, 4, . . .

}
s2 = argmin

s
(i)
SAMODS

{
J
(
s
(i)
MODS

)
, for i = 2, 5, . . .

}
s3 = argmin

s
(i)
SAGAMODS

{
J
(
s
(i)
MODS

)
, for i = 3, 6, . . .

}
s4 = argmin

s
(i)
EMODS

{
J
(
s
(i)
MODS

)
, for i = 4, 7, . . .

}
where, for instance, s(1)1 is the approximated optimal solution of MODS from the processor 1.
Then, we choose the best approximation,

s+ = argmin
si

{J (sk) , for 1 ≤ k ≤ 4} (10)



746 E.D. Nino Ruiz, S. Miranda, C.J. Ardila, W. Nieto

which will serve as the new initial solution in S0. This iterative process is called PARMODS
(Parallel MODS) and it is summarized in Algorithm 5. Note that, the required components
of this metaheuristic varies from the definitions of the automatas, that is why the common
components are shown in the inputs and the optional parameters are expressed by dots.

Algorithm 5 PARMODS Metaheuristic
Require: Σ, δ,S0,J , . . .
Ensure: α+ ≈ α∗

1: α+ ← S0
2: for t = 1→M do
3: for all i = 1→ n do
4: Launch jobi according to (9).
5: end for
6:

α− = argmin
s
(j)
∗MODS

{
J
(
s
(j)
∗MODS

)
, for 1 ≤ j ≤ n

}
7: if J (α−) < J (α+) then
8: α+ ← α−

9: end if
10: end for

Notice, the computational cost of the method per iteration will be given by the number of
iterations of PARMODS times the upper bound

O (APARMODS) = max (O(AMODS),O(ASAMODS),O(ASAGAMODS),O(AEMODS)) ,

where the letter A counts for “Algorithm". Note that, since all the methods are executed in
parallel, the computational effort of PARMODS is provided by the largest upper bound, which,
in general, is provided by SAGAMODS.

4 Experimental Results

We study the performance and efficiency of PARMODS making use of TSP instances from
the TSPLIB. The selected TSP instances are KROA100 and KROA150 which contain 100 and
150 cities, respectively. The solutions obtained by the methods are presented in Table 1 and
figure 1.

Metaheuristic Processors J KROA100 J KROA150
MODS N/A 1.6165 2.6122
SAMODS N/A 0.6583 0.9865
SAGAMODS N/A 0.3739 0.5399
EMODS N/A 1.5340 2.4663
PARMODS 4 0.3545 0.3664
PARMODS 8 0.2827 0.3359
PARMODS 12 0.2827 0.3359

Table 1: Cost function values ×105 for different MODS implementations.



PARMODS: A Parallel Framework for MODS Metaheuristics 747

In figure 1 can be seen how PARMODS outperforms the other MODS implementations (se-
quential MODS, SAMODS, SAGAMODS and EMODS) in terms of accuracy. Moreover, the
MODS implementations are divided evenly onto the number of processors available (n) For in-
stance, four processors means one instance of MODS, SAMODS, SAGAMODS and EMODS
are used at each processor when PARMODS is executed. Notice, PARMODS do not make use
of parallel resources in order to split the domain but to obtain information about the feasible
solution space. Since PARMODS spread MODS instances among processors, the best solution
is used in the next generation of each MODS implementation (initial state of each Automata).

5 10 15 20 25
Iteration

 

MODS
SAMODS
SAGAMODS
EMODS
PARMODS

(a) KROA100 n = 4

5 10 15 20 25
Iteration

 

MODS
SAMODS
SAGAMODS
EMODS
PARMODS

(b) KROA150 n = 4

5 10 15 20 25
Iteration

 

MODS
SAMODS
SAGAMODS
EMODS
PARMODS

(c) KROA100 n = 8

5 10 15 20 25
Iteration

 

MODS
SAMODS
SAGAMODS
EMODS
PARMODS

(d) KROA150 n = 8

5 10 15 20 25
Iteration

 

MODS
SAMODS
SAGAMODS
EMODS
PARMODS

(e) KROA100 n = 12

5 10 15 20 25
Iteration

 

MODS
SAMODS
SAGAMODS
EMODS
PARMODS

(f) KROA150 n = 12

Figure 1: Graphical comparison of the cost function values per iteration for the different MODS
implementations.

5 Conclusions

We propose a novel parallel method based on MODS theor5522894y. The proposed imple-
mentation exploits the attractive features of each MODS implementation. Initial results show
that PARMODS provides better results among the compared methods. Moreover, when the
number of processors is increased, the results are improved. However, we note that the results
obtained for 8 and 12 processors are the same. This motivates to study theoretical bounds
regarding the number of processors and the percentage of improvement on the solutions.

Bibliography

[1] Anonnimus (1964); Operational research studies in inventory sequencing simulation, Produc-
tion Engineer, 43(9):437–438, DOI: 10.1049/tpe.1964.0060.

[2] Anonnimus (1964); Operational research studies. project a-inventory. Production Engineer,
43(9):438–447, DOI: 10.1049/tpe:19640061.

[3] Junyi Chen and Pingyuan Xi (2010); Simulation and application on modern operational
research. In Computer and Automation Engineering (ICCAE), 2010 The 2nd International
Conference on, 4: 118–121.



748 E.D. Nino Ruiz, S. Miranda, C.J. Ardila, W. Nieto

[4] Elias D. Niño (2012); Real-World Applications of Genetic Algorithms, chapter Evolutionary
Algorithms Based on the Automata Theory for the Multi-Objective Optimization of Combi-
natorial Problems. InTech, Oxford, 2012. Book edited by Olympia Roeva.

[5] Elias D. Nino, Carlos J. Ardila, and Anangelica Chinchilla (2012); A novel, evolutionary,
simulated annealing inspired algorithm for the multi-objective optimization of combinatorial
problems. Procedia Computer Science, 9(0):1992 – 1998.

[6] Elias D. Nino-Ruiz (2012); Evolutionary Algorithm based on the Automata Theory for the
Multi-objective Optimization of Combinatorial Problems. International Journal Of Comput-
ers Communication & Control, 7(5):916–923.

[7] Miguel Rodríguez, Daladier Jabba, Elias D. Niño, Carlos J. Ardila, and Yi-Cheng Tu (2013);
Automata theory based approach to the join ordering problem in relational database systems.
In Markus Helfert, Chiara Francalanci, and Joaquim Filipe, editors, DATA, pages 257–265.
SciTePress.

[8] Li Zhengfeng and Ye Jinfu (2010); Study on the evolutionary mechanism from operational re-
search activities to sustainable competitive advantage. In Intelligent Computation Technology
and Automation (ICICTA), 2010 International Conference on, 3: 580–584.


