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Abstract:

Currently, it is recognized that manufacturing systems are complex in their structure
and dynamics. Management, control and forecasting of such systems are very difficult
tasks due to complexity. Numerous variables and signals vary in time with different
patterns so that decision makers must be able to predict the behavior of the system.
This is a necessary capability in order to keep the system under a safe operation.
This also helps to prevent emergencies and the occurrence of critical events that may
put in danger human beings and capital resources, such as expensive equipment and
valuable production. When dealing with chaotic systems, the management, control,
and forecasting are very difficult tasks. In this article an application of neural networks
and vector support machines for the forecasting of the time varying average number
of parts in a waiting line of a manufacturing system having a chaotic behavior, is
presented. The best results were obtained with least square support vector machines
and for the neural networks case, the best forecasts, are those with models employing
the invariants characterizing the system’s dynamics.
Keywords: chaos; forecast; neural networks; vector support machines; manufactur-
ing systems

1 Introduction

Manufacturing systems are conceived as complex ones; although the complex term does not
have a unique definition [1] it is possible to distinguish two kinds of complexities in production
systems: a) structural complexity or static complexity dealing with the number of system’s
components and their relationships, and b) dynamic complexity dealing with the uncertainty
in the systems behavior [2]. It may seem paradoxical that an artificial system engineered for
making a set of given tasks had its own laws as if it was a natural system. This is due to the
fact that production systems are becoming everyday more complex by the technological progress
and the transformation of the supply chain. Flexible manufacturing machinery, global markets,
and supply network relationships are typical examples of such changes. Managing these systems
to bring them under control is today a difficult task. The dynamic complexity of production
systems has been demonstrated by the kinds of behavior that they can exhibit, among these a
chaotic behavior [3], [4], [5]. Several metrics have been proposed for measuring the complexity of
manufacturing systems [2], [6], [7], [8]. These studies relate metrics of performance with metrics
of complexity. In this article, a way of control by forecasting the system’s behavior is shown.
For this purpose, a time series of the average number of parts in the waiting line of a chaotic
manufacturing system is utilized [3]. As forecasting methods, Support Vector Machines (SVMs)
and Artificial Neural Networks (ANNs) have been selected because these methods can distinguish
chaotic patterns and therefore they can predict the evolution of an observed control variable.
In [9] SVMs have been used for support vector regression (SVR) analysis of several exchange
rates with respect to the US dollar. In the present work, a least square support vector regression
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(LS-SVR) with less computational effort than the one reported in [10] is proposed. In [11] an
ANN model for forecasting the observed error of monitoring units of the sea level in Singapore is
presented. In [12] an ANN is constructed for forecasting the behavior of a diode having a chaotic
pattern; in this case the local dimension and the time delay are proposed for determining the
network architecture.

The originality of this work consists of the study of the performance of two forecasting
techniques: LS-SVM and ANN as applied to chaotic series. Similar studies have been made but
for series that are not chaotic [13], [14]. Also, it is a novel application in the manufacturing area.

The paper is organized as follows: section 2 shows in a summarized way the manufacturing
system from which the time series was obtained; section 3 presents the methods utilized for
the forecasting; section 4 shows the results of the analysis of the time series by using non-
linear dynamic systems (NLDS) theory. Forecasting results are detailed in Section 5. Finally,
conclusions and research directions are given.

2 System under study

2.1 Variable to be analyzed

The system under study is described in [3]. The variable to be analyzed is the average in time
of the number of parts in the waiting line of a flexible manufacturing system. By utilizing a time
series of this variable the system’s dynamics is characterized by means of the theory of non-linear
dynamic systems. The machining shop is formed by three different machines producing three
types of parts. Each part has a set of operations which can be executed in different machines
according to the operations sequence. Figure 1 shows the layout of the system under study.

Figure 1: Machining shop layout.

2.2 Operation of the system

• The arrivals rate and service rate are such that the system is under equilibrium; that is,
the number of parts neither tends to zero nor infinity.

• Upon arrival of a part, a function f assigns the part to a machine able to perform the
operation and that has the least number of parts in queue.

• The priority of the queue of each part type at any machine is first-in first-out (FIFO).
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• The machine works cyclically with a kind of part, during a time interval equivalent to the
time needed to complete the stock of that kind of part at the k-th machine. The function gk
manages the execution cycle according to the part type. The values of plant parameters are
shown in Table 1, where βj is the arrival rate of the j-th part type (number of parts/time
unit) and Oij is the i-th operation of the j-th part. The values in the table represent the
operation time at each machine.

3 Forecasting Methods Utilized

Research on forecasting models has received considerable attention over the last 50 years.
Currently, there exist numerous forecasting methods [15]. For the case of chaotic systems, the
very theory on NLDS provides forecasting methods [16]. In this article, NLDS theory is used
as a base for constructing ANN and VSM models. These techniques are proposed due to their
capacity for recognizing chaotic patterns.

3.1 Artificial Neural Networks

An artificial neural network (ANN) is a computational model of the brain. It consists of a
limited number of connected elements (neurons) and it is distributed in an input layer, one or
more hidden layers, and an output layer.An ANN is a mathematical structure that allows pattern
recognition; in this work we use a Back-Propagation type of network, as shown in figure 2.

As it is known that the system is chaotic, it is proposed as the number of neurons in the
input layer the dimension of the phase space. This value is obtained by the method of false
neighbors. The temporal distance between the input variables corresponds to the time delay
in the construction of the systemďż˝s attractor. This value is obtained from the average of the
mutual information [16]. The transfer function is of the sigmoidal type and the network is defined
by the equation (1).

xt = β0 +

n
∑

i=1

βif(sωi0 +

d
∑

j=1

ωijxt−j) (1)

Where n is the number of neurons in the hidden layer, d is the number of neurons in the
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Figure 2: Neural Network for Forecasting

input layer, s is the standard deviation of the weights matrix and βi, ωij are the weights. The
number of neurons in the hidden layer is due to the following empirical relationship 2:

Nobs

10
≥ (Ne + 1)Nc + (Nc + 1)Ns (2)

Where Nobs is the number of observations, Ne, Nc and Ns are the number of neurons in the
input layer, hidden layer, and output layer, respectively.

3.2 Support vector machines for least squares regression

Support vector machines (SVM) algorithms emerged from the artificial intelligence field and
they have been successfully used in a variety of applications for problems of classification and
regression. The least-squares vector support machine is a modified version of a standard VSM for
regression; the model is trained by solving a linear system instead of a quadratic programming
optimization model [10]. The LS-SVM are closely related with regularization networks and
Gaussian processes, buy they emphasize and exploit its interpretation from the viewpoint of the
optimization theory. The general formulation for a LS-SVR is shown in (3):

y = wT f(x) + b (3)

Where x is the input vector of the data series, Y is the output vector. Parameters w and b

are obtained from the optimization problem given by equations (4), (5).

Min τ(w, b, e) =
1

2
‖w‖2 + γ

1

2

N
∑

i=1

e2i (4)

s.t. (yi − (〈w, xi〉) + b) = ei ∀i = 1, ...N (5)

In (4), γ is an arbitrarily chosen parameter. For learning, the kernel utilized is the radial
base function (RBF) (6).

k(xi, xj) = exp(−
‖yi − xi‖

2

σ2
) (6)
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The architecture of the LS-SVR [17] is shown in figure 3.

Figure 3: Architecture generated by regression SVM

4 Characterization of the system’s dynamics

It has been stated that the system has a chaotic behavior; in figures 4, 5, 6, 7, 8, 9 the analysis
confirming this assumption is shown. In figure 4 the time series plot is seen, figure 5 shows the
Fourier spectrum where the erratic nature of the series is verified; figure 6 presents the time
delay corresponding to the first minimum of the mutual information average. Figure 7 shows the
phase space dimension d = 5, which has been obtained by the percentage of false neighbors [16].
However, figure 8 shows that the local dimension is 3 (correlation dimension 2.784). Finally, in
figure 9 is observed that the highest Lyapunov’s exponents value is 0.41, which corroborates the
signal’s chaotic character.

Figure 4: Average of the number of parts in
time

Figure 5: Fourier power spectrum
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Figure 6: Mutual information average Figure 7: Dimension of phase space

Figure 8: Correlation Dimension Figure 9: Lyapunov’s exponents

5 Forecasting models results

In order to measure the performance of the models, the Apropiability Index (IA) and the
Normalized root of quadratic error (RMS) are used, as defined by (7) and (8) respectively:

IA = 1−

∑n
i=1

(yi − y
,
i)
2

∑n
i=1

(|yi|+ |y
,
i|)

2
(7)

RMS =

√

∑n
i=1

(yi − y
,
i)
2

∑n
i=1

(yi)2
(8)

Where, yi is the value of the average number of parts at period i, y,i is the value predicted
by the model, and n is the number of forecasted periods. The IA indicates the proportion of
the variance that is explained by the model; values greater than 0.9 are expected. Whereas, the
RMS compares the error between the desired output and the one generated by the model; values
close or below to 0.1 are expected.

The series has 12001 data or periods, which correspond to the time persistent average number
of parts in a time interval of 0.15 time units. A 70% is used for training and the remaining 30%
for validation.

5.1 Experimental Results for ANN

For the forecasting model, a neural network is designed based on the time delay τ and the
dimension d which were obtained from the chaotic system’s characterization. Five forecasting
models are constructed with 1, 3, 5, 7 and 10 neurons in the input layer, with a time delay τ = 4
in each model. The number of neurons in the hidden layer is obtained by the relationship (2) for
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each model; thus it is obtained: 279, 167, 119, 93, 69 neurons, respectively. All of the models
were implemented by using the MATLABTMANN toolbox. Figures 10, 11, and 12 show the
results for the cases of 3, 5 and 10 neurons in the input layer.

Figure 10: Forecast with three neurons in
the input layer

Figure 11: Forecast with five neurons in the
input layer

Figure 12: Forecast with ten neurons in the input layer

Table 2 show the values of IA and RMS indicators for the different models.

It is observed that the model of 10 neurons is superior in 0.03% to the model with five neurons
in the input layer. However, if the RMS of the same models are compared, the model with 10
neurons is greater in 3.65%. In a similar analysis between the models with three and ten neurons,
it can be seen that the difference of the IAs is 0.05% and the RMS’s 0.67%. Then, it is possible
to state that the best models can be found between the ones with three and five neurons in the
input layer. These values are exactly those corresponding to the local dimension and the global
dimension in the phase space.

5.2 Experimental Results for LS-SVR

The values of the RBF kernel parameters associated with the optimization problem described
by equations (4), (5) and (6) are γ = 256 and σ = 8. As time delay in the input variables τ =
4 has been used. Likewise the ANN case, five models have been constructed with 1, 3, 5, 7 and
10 input vectors. The models were implemented by using MATLABTM LSSVMlab1.7. Figures
13, 14 and 15 show results for 3, 5 and 10 input vectors.
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Figure 13: Forecast with three input vectors Figure 14: Forecast with five input vectors

Figure 15: Forecast with ten input vectors

Table 3 shows the values of the indicators IA and RMS for the different models.

The results in Table 3 are not the expected ones; the best results correspond to seven and ten
input vectors but not between dimensions three and five as with ANNs. The same experiment
was executed without time delay, that is τ = 1 was assumed. The results are shown in Table 4.

Again, it is observed that best results are for seven and ten input vectors. Thus, for this
specific case, it is verified that does not exists a behavior pattern based on NLDS characterization.

5.3 Comparison between experimental results for ANN and LS-SVR

Even though the difference between the IA of the best ANN and LS-SVR models is 0.11%
in these models (five neuron for ANN and seven input vector for LS-SVR) the LS- SVR’s RMS
value is practically a half the ANN’s. Hence, it is possible to conclude that the best model is the
one constructed with LS-SVR. Nevertheless, it is observed that in general terms both approaches
perform adequately.
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6 Conclusions

As seen, the best results were obtained with least square support vector machines. Similar
results have been reported for SVR and ANN for non-chaotic series [13], [14]. Notwithstanding,
it can be stated that both models are efficient for the forecasting of a chaotic series obtained from
a flexible manufacturing system. According to the results, it can be concluded that the system’s
behavior can be predicted in one time step, that is 0.15 time units. As research directions, it
is suggested to develop models able to predict a longer time interval. For this purpose, ongoing
work by the authors is addressing the use of the inverse of the Lyapunov’s exponent in order to
determine the number of neurons in the output layer for the ANN case, and of the number of
output vectors for the LS-SVR.

Acknowledgments

This research has been supported by DICYT ( Scientic and Technological Research Bureau)
of The University of Santiago of Chile (USACH) and Department of Industrial Engineering.

Bibliography

[1] EIMaraghy H., Kuzgunkaya 0., Urbanic R., Manufacturing Systems Configuration Complex-

ity, CIRP ANNALS-MANUFACTURING TECHNOLOGY, ISSN 0007-8506, 54(1): 445-450,
2005.

[2] Papakostas N., Efthymiou K., Mourtzis D., Chryssolouris G., Modelling the complex-

ity of manufacturing systems using nonlinear dynamics approaches, CIRP ANNALS-
MANUFACTURING TECHNOLOGY, ISSN 0007-8506, 58: 437-440, 2009.

[3] Alfaro M., Sepúlveda J. Chaotic behavior in manufacturing systems, INT. J. PRODUCTION
ECONOMICS, ISSN 0925-5273, 101: 150-158, 2006.

[4] Papakostas N., Mourtzis D., An Approach for Adaptability Modeling in Manufacturing- Anal-

ysis Using Chaotic Dynamics, CIRP ANNALS-MANUFACTURING TECHNOLOGY, ISSN
0007-8506, 56(1): 491-494, 2007.

[5] Donnera R., Scholz-Reiter B., Hinrichs U., Nonlinear characterization of the performance

of production and logistics networks, JOURNAL OF MANUFACTURING SYSTEMS ISSN:
0278-6125, 27(2): 84-99, 2008.

[6] Wu Y., Frizelle G., Efstathiou J., A study on the cost of operational complexity in customer-

supplier systems, INT. J. PRODUCTION ECONOMICS, ISSN 0925-5273, 106(1): 217-229,
2007.

[7] Phukan A., Kalava M., Prabhu V.,Complexity metrics for manufacturing control architectures

based on software and information flow, Computers and Industrial Engineering ISSN: 0360-
8352, 49(1): 1-20, 2005.

[8] Wang H., Hu S., Manufacturing complexity in assembly systems with hybrid configurations

and its impact on throughput, CIRP ANNALS-MANUFACTURING TECHNOLOGY, ISSN
0007-8506, 59: 53-56, 2010.



Forecasting Chaotic Series in Manufacturing Systems by Vector Support Machine Regression
and Neural Networks 17

[9] Huang S., Chuang P., Wub C., Lai H., Chaos-based support vector regressions for exchange

rate forecasting, EXPERT SYSTEMS WITH APPLICATIONS, ISSN: 0957-4174, 37: 8590-
8598, 2010.

[10] He K., Lai K., Yen J., A hybrid slantlet denoising least squares support vector regression

model for exchange rate prediction, PROCEDIA COMPUTER SCIENCE ISSN 1877-0509,
1: 2397-2405, 2010.

[11] Sun Y., Babovic V., Chan E., Multi-step-ahead model error prediction using time-delay

neural networks combined with chaos theory, JOURNAL OF HYDROLOGY, ISSN 0022-
1694, 395(1): 109-116, 2010.

[12] Hanias M., Karras D. On ef?cient multistep non-linear time series prediction in chaotic diode

resonator circuits by optimizing the combination of non-linear time series analysis and neu-

ral networks, ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE ISSN
0952-1976, 22(1): 32-39, 2009.

[13] Vanajakshi L., Rilett L.,A Comparison of The Performance Of Artificial. Neural Networks

and Support Vector Machines for the Prediction of Traffic Speed, IEEE INTELLIGENT VE-
HICLES SYMPOSIUM ISBN 0-7803-8310-9, 194-199, Parma, Italy June 2004.

[14] Yoon H.,Jun S, ,Hyun Y.,Bae G., Lee K.,A comparative study of artificial neural networks

and support vector machines for predicting groundwater levels in a coastal aquifer, JOURNAL
OF HYDROLOGY, ISSN 0022-1694, 396(1): 128-138, 2011.

[15] Scott J., it Principles of Forecasting, University of Pennsylvania, Kluwer Academic Pub-
lisher 2001.

[16] Abarbanel H., Analysis of observed chaotic data. New York, Springer-Verlag, 1996.

[17] Vapnik V., Statistical Learning Theory, Wiley. Springer, New York. USA. 1998.


