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Abstract: In this study, we focus on the trajectory tracking control problem of
a wheeled mobile robot (WMR) in an uncertain dynamic environment. Concerning
the fact that the upper boundary may be usually achieved in prior according to the
physical properties of the terrain, this crucial message is utilized to construct the
controllers. Firstly, a dynamic model for WMR including the rolling resistance is
presented, whose state variables are longitudinal and rotational velocities, as well as
the rotational angle of the mobile platform. Secondly, with the aid of backstepping
technique, the robust controllers based on the upper boundary are proposed and the
globally asymptotic stability of the closed-loop system is proven by the Lyapunov
theory in the following. Lastly, a saturation function is applied to replace the signum
function, by which the inherent chattering can be suppressed greatly. Numerical
simulation results demonstrate that the proposed controllers with upper bound in
prior possess robustness characteristics which yields potentially valuable applications
for the mobile robot, especially in the unstructured environment.
Keywords: Wheeled Mobile Robot (WMR), boundary estimation, uncertain rolling
resistance.

1 Introduction

In practice, the physical properties of the wheeled mobile robot (WMR) within an unstruc-
tured environment are seldom considered in lots of trajectory tracking control issues. Among
these physical properties, the rolling resistance acting on the robot wheels is such a crucial physi-
cal behavior that can effect the control performances greatly. Particulary, in some rough terrain,
such as loose soil and sand conditions, it is difficult to obtain high-performance of trajectory
tracking without considering the influences of the rolling resistance. Therefore, when the WMR
explores in an outdoor environment and even planetary surface, the rolling resistance may not
be neglected for designing the system controllers [1].

Many efforts are devoted to the rolling resistance acting on the WMR’s wheels recently. Most
References (see [2,3]) had investigated the interactions of soil and wheels and then some new me-
chanical structures had also been reported to enhance the contact between the wheels and terrain.
However, there are only a few investigations to deal with rolling resistance problem by control
methods. After analysing of the terrain properties, we notice that the boundary (especially for
the upper bound) of off-road rolling resistance can be calculated in advance according to the geo-
logic parameters when the terrain of the exploration is determined. For practical implementation,
the rolling resistance appears drastically changing, which is similar to the disturbances to the
mobile benchmark, but with the aid of the boundary message in prior, the robust controller for
WMR can be designed to make it possible to against the uncertain dynamics directly. It should
be mentioned that, compared with modifying the system mechanical structure, the adopted con-
trol approach yields much more flexibility for the mobile robot. Certainly, we are also aware of
adaptive scheme to update the upper bound, but the control algorithm with adaptive scheme
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may make the regulation process more elastic and cause further time-delay usually [4, 5]. To
overcome this drawback, a powerful robust control approach is determine to employ to deal with
the uncertain problem of the unavoidable rolling resistance.

On another hand, if the rolling resistance is concerned, the dynamics of the WMR must be
considered. For the past decades, most efforts have been done to the WMR with nonholonomic
constraint on kinematic model, all of which the system velocities were assumed to be the control
inputs [6, 7]. But unfortunately, there are only a few researches address the dynamic behaviors
of nonholonomic system, where control inputs are transformed to be the system actuators, i.e.,
in most cases the driving torques of motors [8–10]. Since the rolling resistance is described in
torque form when it takes place in practice, the dynamic properties must be considered when
designing the system controllers to overcome this kind of uncertain dynamics.

With a widely survey of the current dynamic models for the WMR, we observe that a dynamic
model proposed by Watanabe et.al [11] is so succinct and effective to describe the relationship
between the rolling resistance and robot posture on the level of dynamics. Then, we utilize this
dynamic model to establish the control system in this investigation. Particularly, it should be
noted that the rolling resistance is somewhat difference from the external disturbances and un-
modeled dynamics, because the rolling resistance lies in the movement process around a constant
value; while the external disturbances and unmodeled dynamics possess white noise property
which is around zero. The objective of this study is to address the rolling resistance behaviors of
the WMR in detail, and derives the dynamic model to discuss the influence of rolling resistance.
Based on addressed dynamic model, a simple and effective approach to stabilize the trajectory
tracking system via backstepping techniques is developed. In order to illustrate the efficacy of
the control approach, numerical simulations for a practical WMR have been performed.

2 WMR dynamics

The typical WMR can be described in Fig.1. It is assumed that the mobile robot is driven by
two independent wheels as well as a passive auxiliary wheel is adopted to support the workbench.
To begin with, some notations is introduced to help the controlling system design, as follows: l is
the distance between the driving wheels and the symmetry axis; d is the distance between point
C(x, y) and the mass center of the robot P (xc, yc), which is assumed to be on the symmetry axis;
r is the radius of the driving wheels; mp and mw are the masses of vehicle body and wheel; Ic
is the inertia moment of vehicle body w.r.t. vertical axis through C; Iw and Im are the inertia
moments for the wheel w.r.t. wheel axis and diameter, respectively. According to the parallel axis
theorem, the equivalent mass m = mp +2mw and rotation inertia I = 2Im +2mwl

2 +mcd
2 + Ic

can be introduced for simply.
The robot position can be described by the coordinates (x, y), which is the midpoint C

of the axis of two robot wheels, and the orientation angle ϕ, which is heading angle of body
coordinate with respect to fixed frame (see Fig.1). With the hypothesis of pure rolling and non
slipping condition, the nonholonomic constraint, i.e., ẋ sinϕ − ẏ cosϕ = 0, hold throughout the
movements.

Let v and w be represent the linear and angular velocities of the mobile robot, and τr and τl
express the driving torque of the right and left wheels, respectively. Through the analysis of the
forces acting on the mobile robot, we can obtain that

Iϕ̈ =
τr
r
l − τl

r
l (1)

mv̇ =
τr
r
+

τl
r

(2)
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Figure 1: A wheeled mobile robot
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Figure 2: Rolling resistance generation

While rolling on the ground, especially operating on the soft soil or sandy terrain, the robot
will suffer unavoidable rolling resistance, as shown in Fig.2. Let the notation τ̃d represent this
rolling resistance, and the dynamic behaviors of the wheel can be governed by

Iwθ̈i + cθ̇i = kui − τi − τ̃di (3)

where τi is the driving input of the wheel (i expresses r or l for left or right wheels, the same
hereinafter); c is the viscous friction coefficient and θ is the rolling angle of the wheel; k is driving
gain between the motor’s voltage and its output torque; ui is the excited voltage signals for the
motor installed in the relative wheel.

Let vr, vl denote the right and left linear velocity of the wheel center, and we can further have
vr = rθ̇r = v + lϕ̇ and vl = rθ̇l = v − lϕ̇. Then, the relationship between linear velocity of the
robot’s platform and angular velocity of the robot wheels can be formulated by r(θ̇r + θ̇l) = 2v
and r(θ̇r − θ̇l) = 2lϕ̇.

With the analysis, we can ultimately obtain the dynamics described by the linear velocity v
and orientation angle ϕ as follows:

v̇ = − 2cv

mr2 + 2Iw
+

kr

mr2 + 2Iw
(ur + ul)−

r

mr2 + 2Iw
(τ̃dr + τ̃dl) (4)

ϕ̈ = − 2cl2

Ir2 + 2Iwl2
ϕ̇+

krl

Ir2 + 2Iwl2
(τ̃dr − τ̃dl) (5)

If the system state variables are chosen as x = [v ϕ ϕ̇]T , the driving input is selected as
u = [ur ul]

T , the disturbance vector is defined as τ̃d = [τ̃dr τ̃dl]
T , and the output variables are

y = [v ϕ]T , a new dynamic model for control system design can be rewritten by:{
ẋ = Ax+Bu+Dτ̃d

y = Cx
(6)

with

A =

a1 0 0

0 0 1

0 0 a2

 , B =

b1 b1

0 0

b2 −b2

 , D =

d1 d1

0 0

d2 −d2

 , C =

[
1 0 0

0 1 0

]
,

where a1 = − 2c

mr2 + 2Iw
, a2 = − 2cl2

Ir2 + 2Iwl2
, b1 =

kr

mr2 + 2Iw
, b2 =

krl

Ir2 + 2Iwl2
, d1 =

− r

mr2 + 2Iw
, d2 = − rl

Ir2 + 2Iwl2
.
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3 Control system design

3.1 System decoupling

Noticing that the system (6) is a coupled system, for the convenience of designing the system
controller, the proposed dynamic model should be decoupled in the first place. To achieve this
objective, a new control input vector should be introduced as follow:[

ur

ul

]
=

[
1 −1

0 1

][
u1

u2

]
(7)

With these modified inputs u1 and u2, the system (6) is transformed into two independent
subsystems:

v̇ = a1v + b1u1 + τ̃dv (8)
ẇ = a2w + b2u1 − 2b2u2 + τ̃dw (9)

where τ̃dv = d1(τ̃dr + τ̃dl) and τ̃dw = d2(τ̃dr + τ̃dl), which represent disturbances for the two
independent subsystems.

Supposing the robot moves on a special terrain ground, although the rolling resistance is in
a changeable state, the maximum amplitude for τ̃dr and τ̃dl could be estimated in advance from
the terrain property. Let the notation τ̄dr and τ̄dl represent the upper bound values of τ̃dr and
τ̃dl respectively, and then it can be achieved that

τ̄dv = max |d1(τ̃dr + τ̃dl)| (10)
τ̄dw = max |d2(τ̃dr + τ̃dl)| (11)

3.2 Control scheme design

Considering the decoupled form of the system (8) and (9), a backstepping technique can be
applied to derive the robot controller due to the high dimension feature of the system. The
process of control design procedures may be divided into two steps which is given as bellows.

Step 1. Linear velocity control
After the trajectory tracking system has been decoupled, the control algorithms for linear

and angular velocities can be derived stage by stage. Here, the control input u1 is used to
control the linear velocity, such that the robot can track an desired trajectory from an arbitrary
original point with the required performances. Suppose that the desired linear velocity vd, and
the tracking error may be expressed by ve = vd − v. Then, a theorem can be given as follow:

Theorem 1. For the linear velocity system (4) with the bounded linear velocity, the tracking
error ve will globally converge to zero, i.e., lim

t→∞
ve(t) = 0, if the control law is given by

u1 =
1

b1
[v̇d − a1v + c1ve + sgn(ve)τ̄dv] (12)

where c1 is a positive constant and sgn(·) is a signum function.

Proof: Consider a candidate Lyapunov function as

V1 =
1

2
v2e (13)
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Differentiating V1 with respect to time yields

V̇1 = vev̇e = ve(v̇d − a1v − b1u1 − τ̃dv) (14)

Substituting (12) into (14), it can be ultimately obtained V̇1 = −c1v
2
e ≤ 0. Obviously, by

Lyapunov stability theorem, the propose Theorem 1 is proved. 2

Step 2. Angular velocity control
Let ϕd represents the desired orientation angle of the robot to be tracked. Then, the tracking

error of the orientation angle can be defined as ϕe = ϕd−ϕ and ϕ̇e = ϕ̇d− ϕ̇. In terms of angular
velocity tracking control, it is to design the control input u2 such that the ϕe and ϕ̇e converge to
zero as t → ∞. In order to realize this purpose, two virtual control inputs are introduced, which
are defined as z1 = ϕe and z2 = ϕ̇e + c2ϕe where c2 is an arbitrary positive constant. Similar to
the linear velocity control, based on the above definitions, a Theorem could be given as

Theorem 2. For the angular velocity system (5) with the bounded angular velocity, the tracking
error ϕe and ϕ̇e will both globally converge to zero simultaneously , i.e., lim

t→∞
||ϕe ϕ̇e|| = 0, if the

control law is given by

u2 =
1

2b2
[a2w + b2u1 − ϕ̈d − c2z1 + c3z2 + sgn(z2)τ̄dw] (15)

where c3 is a positive constant and sgn(·) is a signum function.

Proof: Consider a candidate Lyapunov function as

V2 =
1

2
z21 (16)

Differentiating V2 with respect to time achieves

V̇2 = z1ż1 = z1(ϕ̇− ϕ̇d) = z1z2 − c2z
2
1 (17)

Notice that only Lyapunov function V2 can not guarantee the global stability of the system.
In order to stabilize the system, another virtual input z2 is designed such that the entire track-
ing errors converge to zero. Hence, another candidate Lyapunov function constructed by z2 is
established for this purpose. The new candidate Lyapunov function is put forward as

V =
1

2
z21 +

1

2
z22 (18)

Differentiating V with respect to time obtains

V̇ = V̇2 + z2ż2 = z1z2 − c2z
2
1 + z2(a2w + b2u1 − 2b2u2 + c2ż1 − ϕ̈d) (19)

Substituting (12) and (15) into (19), one can obtain that V̇ = −c2z
2
1 − c3z

2
2 ≤ 0. Obviously,

according to Lyapunov stability theorem, the Theorem is proved. 2

Since the systems (8) and (9) are decoupled, the proposed controller (12) and (15) may
guarantee the stabilization of the linear and angular velocity subsystems overall. To sum up, we
can summarize the investigation results and ultimately give a theorem as follow:

Theorem 3. For the trajectory tracking system (4) and (5), the tracking errors ve, ϕe and ϕ̇e

will all globally converge to zero, i.e., lim
t→∞

||ve ϕe ϕ̇e|| = 0, with the controller (12) and (15).
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The proof can be easily achieved according to the above analysis.
From the controller designing process, it can be observed that the candidate Lyapunov func-

tions are established step by step, which make the control design process be simple and con-
venience. This is a backstepping approach which is usually applied for controller design of a
sophisticated nonlinear systems. Meanwhile, it should be emphasized that there are inherent
chattering caused by signum function in the proposed controllers. To overcome this drawback,
one can replace signum function sgn(·) by saturation functions sat(·) to suppress this behaviors,
one of which can be given by:

sat(χ) =
χ

|χ|+ ϵ
(20)

where ϵ is a positive constant and χ represents arbitrary variable.

4 Simulation results

In this section we perform numerical simulations to verify the effectiveness of the proposed
controllers. The simulated parameters of the mechanical structure of the WMR are supposed
to be mc = 14kg, mw = 3kg, Ic = 0.9kgm2, Im = 0.05kgm2, Iw = 0.015kPgm2, l = 0.3m,
d = 0.05m, r = 0.1m, k = 0.95, and c = 0.01. From the required performance of the trajectory
tracking, the control parameters as selected as follows: c1 = c2 = c3 = 10 and ϵ = 0.002. Suppose
the mobile robot starts from initial point [x y ϕ]T = [0 0 0]T ; meanwhile, the desired trajectory
of linear and angular velocity are hypothesized to be vd = 1m/s, wd = sin t with the initial state
vector x0 = [v0 ϕ0 w0]

T = [0.5 0.2 0]T . Moreover, the rolling resistance acting on the left and
right wheels are supposed to be a worse situation in simulation than that in practice to verify
the effectiveness of the control algorithms. So a synthesis signal consisted of two sinusoid signals
with different frequency is introduced to imitate the rolling resistance. Here, assume that the
rolling resistances are same on the left and right wheels, i.e., τ̃dr = τ̃dl = sinwdt+sin 2wdt where
wd denotes the resistance frequency. According to practical experiment, the τ̄dv and τ̄dw can be
set as the value of 0.75Nm and 3Nm respectively in this simulation circumstance. In addition,
the saturation should be considered for actual driving motor, so a maximum value 10Nm is
introduced to restrict the control outputs, i.e., |τr| ≤ 10Nm and |τl| ≤ 10Nm.
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Figure 3: Actual trajectory on the plane

υ
e
 /

 m
/s

 

With resistant consideration 

without resistant estimation

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18 20

t /s

Figure 4: Tracking error for υe

Under the proposed simulation circumstance, the actual tracking process for the desired
trajectory is plotted in Fig.3. It indicates the proposed control method can make the mobile robot
to track the desired trajectory with satisfactory tracking performances. Besides, we simulate two
cases, that is, with and without estimation, to illustrate the signification of control with and
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without upper bound information. As shown in Fig.4, the tracking error relative to the linear
velocity without boundary is described as the dashed line, as well as the case with boundary is
plotted by the dashed line. The results state the tracking errors become much smaller (reduced
to 20% of the amplitude) when τ̄dv and τ̄dw are adopted. Particularly, owing to the sat(·), the
inherent chattering is also suppressed. Lower chattering may be achieved with smaller ϵ, but it
will cause more violent changes for the control inputs.

Furthermore, to exhibit the better tracking performance with the upper bound, the tracking
errors of ϕ̇e and ϕe are also addressed in Fig.5 and Fig.6, respectively. It is observed that the
amplitudes of ϕe and we are reduced to 21% and 18% nearly compared with the case without
upper bound estimation, which yields that the derived controller can provide better performances
for tracking system and the robustness is enhanced in the following.
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Figure 5: Tracking errors for ϕe
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Figure 6: Tracking errors for ωe

5 Conclusions

The trajectory tracking issues were discussed in this study, and the main contribution can
be summarized as follows: 1) a decoupled dynamic model was used to describe the complicated
nonlinear behaviors of WMR where the rolling resistances are concerned. The decoupled model
consisted of two parts: a first-order model for linear velocity and a second-order model for
orientation angle of the robot, which not only kinematic postures but also dynamics behaviors
were all included; 2) based on the fact that the upper bound of rolling resistance which can be
achieved in prior, a robust controller was developed to obtain the better tracking performances.
The backstepping methodology was employed to derive the system controller considering the
higher dimensional property of the tracking system; and 3) a saturation function was introduced
to alleviate the inherent chattering caused by signum function. Such treatment was simply but
effective for a practical WMR system.
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