
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 10(5):732-745, October, 2015.

A Modified Membrane-Inspired Algorithm Based on
Particle Swarm Optimization for Mobile Robot Path Planning

X.Y. Wang, G.X. Zhang, J.B. Zhao, H.N. Rong, F. Ipate, R. Lefticaru

Xueyuan Wang
1. School of Electrical Engineering
Southwest Jiaotong University
Chengdu 610031, P.R. China
2. School of Information Engineering
Southwest University of Science and Technology
MianYang 621010, P.R.China
121053406@qq.com

Gexiang Zhang*, Junbo Zhao, Haina Rong
School of Electrical Engineering
Southwest Jiaotong University
Chengdu 610031, P.R. China
gexiangzhang@gmail.com, junbozhao55589@gmail.com, ronghaina@126.com
*Corresponding author: gexiangzhang@gmail.com

Florentin Ipate, Raluca Lefticaru
Faculty of Mathematics and Computer Science
University of Bucharest
Academiei 14, Bucharest, Romania
florentin.ipate@ifsoft.ro, raluca.lefticaru@fmi.unibuc.ro

Abstract: To solve the multi-objective mobile robot path planning in a danger-
ous environment with dynamic obstacles, this paper proposes a modified membrane-
inspired algorithm based on particle swarm optimization (mMPSO), which combines
membrane systems with particle swarm optimization. In mMPSO, a dynamic double
one-level membrane structure is introduced to arrange the particles with various di-
mensions and perform the communications between particles in different membranes;
a point repair algorithm is presented to change an infeasible path into a feasible path;
a smoothness algorithm is proposed to remove the redundant information of a feasible
path; inspired by the idea of tightening the fishing line, a moving direction adjust-
ment for each node of a path is introduced to enhance the algorithm performance.
Extensive experiments conducted in different environments with three kinds of grid
models and five kinds of obstacles show the effectiveness and practicality of mMPSO.
Keywords: Membrane computing, evolutionary membrane computing, particle
swarm optimization, variable dimensions, mobile robot path planning, membrane
systems.

1 Introduction

As a branch of natural computing, membrane computing(MC), initiated by Păun in 1998,
aims to abstract distributed and parallel computing models, also called P systems or membrane
systems, from the compartmentalized structure and interactions of living cells [1, 2]. There are
three main research directions in this area [3]: theoretical study including computing models
and their computing power and efficiency; applications such as modeling biological processes and
approximately solving engineering optimization problems [4]; software and hardware realization.
In the past seventeen years, much attention has been paid to the theoretical aspects, but the
applications are worth further discussing, especially for solving real-world engineering problems.

Copyright © 2006-2015 by CCC Publications

A Modified Membrane-Inspired Algorithm Based on
Particle Swarm Optimization for Mobile Robot Path Planning 733

Evolutionary algorithms (EAs) are a class of probabilistic search methods with many advan-
tages such as flexibility, convenient application and robustness. While MC can provide flexible
evolution rules and parallel-distributed framework [5], which is very beneficial to produce the
membrane-inspired evolutionary algorithms (MIEAs). Until now, different kinds of MIEAs have
been proposed. In [6], a certain number of nested membrane structures in the skin membrane
were combined with EAs for multi-objective optimization problems. A novel MIEA, called QEPS,
combining quantum-inspired evolutionary algorithms with P systems to solve image processing
problems and knapsack problems were proposed in [7,8]. Particle swarm optimization (PSO) [9]
with one-level membrane structure (OLMS) was used to solve broadcasting problems of P systems
and radio spectrum allocation, respectively [10, 13]. In [11], Xiao et al. applied the bio-inspired
algorithm based on membrane computing for engineering design problems.

The investigations verify the usefulness of the introduction of P systems into EAs to solve
various real-world applications. To the best of our knowledge, there is not any work focusing on
the use of a MIEA to solve mobile robot path planning problems (MR3P), which is one of very
important real-world applications.

In this paper, a modified membrane-inspired algorithm based on particle swarm optimization
(mMPSO) is proposed to solve MR3P. The main contributions of this paper can be summarized
as follows: (1) In this study, the solving process of MR3P is considered as a dimension-reducing
optimization procedure and therefore a PSO with variable dimensions (vPSO) is introduced into
mMPSO, and further a dynamic double OLMS (D-OLMS) with membrane division and dissolu-
tion is presented to combine with vPSO to arrange the particles and execute the communications
between regions delimited by membranes. (2) Mobile robot path planning is a multi-objective
optimization problem. This study considers three objectives, distance, safety and smoothness,
instead of a single objective (path length) [15–17] or bi-objectives (path length and risk degree)
as previously considered in the literature [18, 21]. A point repair algorithm and a smoothness
approach are presented to effectively trade-off multiple objectives and speed-up the mMPSO
convergence. (3) Inspired by the idea of tightening the fishing line, a moving direction adjust-
ment for each node of a path is introduced to enhance the algorithm performance, together with
the point repair algorithm. (4) Extensive experiments are carried out by considering various
environments with different grid models and different obstacles to verify the effectiveness and
practicality of mMPSO.

The rest of this paper is organized as follows. Section 2 describes MR3P. In Section 3, we
present mMPSO for solving MR3P. Section 4 discusses parameter setting and provides experi-
mental results. Conclusions are drawn in Section 5.

2 Mobile Robot Path Planning Problems

This section gives a brief description of MR3P and then summarizes the related works.

2.1 Problem Statement

MR3P aims to find a reasonable collision-free path for a mobile robot from the starting
position to the target position through an environment containing static or dynamic obstacles.
It is proved that MR3P is an NP-complete problem [19]. Mobile robots are very useful for the
dangerous or hostile environments that humans are not able to reach. So, in recent years, mobile
robotics field is a very hot and also challenging research area. As one of important research
themes in the mobile robotics field, MR3P, launched at the 1960s, has become an attractive
area.

734 X.Y. Wang, G.X. Zhang, J.B. Zhao, H.N. Rong, F. Ipate, R. Lefticaru

Generally, the criterion for planning a mobile path has to consider many factors, such as the
shortest distance, safety degree, smoothness, the lowest energy cost and minimum time, based
on the characteristics of a special robot with the minimal turning radius, acceleration and the
limited velocity and the features of the environment, such as the distances between obstacles, the
shapes of obstacles, the occurrence probabilities of dynamic obstacles. Thus, the optimization
of a mobile robot path in a static or dynamic environment is very complicated. To realize
the real time robot path planning in a dynamic environment or the consideration that a robot
can dynamically track the motion target, at least three aspects should be carefully considered
together due to their interactions among each other.

(I) An efficient and effective optimization approach is very important for planning a good
mobile robot path. Aiming to solve MR3P in a dynamic environment, this study proposes
mMPSO.

(II) A simple and good objective function is very important for planning a good mobile robot
path. In this study, the objective function aims to minimize the path length, to maximize the
smoothness and the distances between a robot and the obstacles or dangerous sources, and can
be expressed as

f = Kd ·Dis+Kf · S +Ks · SD (1)

where Kd, Kf , Ks are the weighing factors of path length, smoothness and safety degree, re-
spectively. The detailed description of path length, smoothness and safety degree are as follows:

1. Path length : Path length Dis is the sum of distances between n nodes from the starting
point to the end point and can be described as

Dis =

n−1∑
i=0

L (i, i+ 1) (2)

where L(i, i+1) =
√

(xi+1 − xi)2 + (yi+1 − yi)2 is the distance between nodes i and i+1,
where xi and xi+1 are the x-axis values of nodes i and i + 1; yi and yi+1 are the y-axis
values of nodes i and i+ 1, respectively.

2. Smoothness: Smoothness refers to the sum of the reflection angles formed by any three
neighboring nodes of a path. As usually calculating directly the smoothness is a time-
consuming process, this study uses an indirect approach, i.e., it uses the ratio Sc of the
number of deflection angles less than the given expected value to the total number of
deflection angles and the ratio Sp of the number of path segments more than the number
of the segments in the path with the smallest number of path segments in a group to the
total number of path segments to evaluate the smoothness of a path. Smoothness can be
calculated by using the following formula:

S = α · Sc + β · Sp (3)

where Sc = 1− DAl
Nf−1 ; Sp = 1− Smin

Nf
, where Nf is the total number of path segments; DAl

is the number of deflection angles greater than the expected value; Smin is the number of
the segments in the path with the smallest number of path segments in a group; α and β
are two weighting coefficients.

3. Safety degree : Safety degree (SD) is the sum of deviation degrees Ci (i = 1, 2, . . . , N)
between any segment in a path and its nearest obstacle. SD is defined as

SD =

n−1∑
i=1

Ci =

{
0, di ≥ λ∑n−1

i=1 e
λ−di , di < λ

(4)

A Modified Membrane-Inspired Algorithm Based on
Particle Swarm Optimization for Mobile Robot Path Planning 735

where di is the minimal distance between the ith segment and its nearest obstacle; λ is the
threshold of safty degree.

(III) The establishment of an environment model is the foundation of MR3P and decides the
environment feature (static or dynamic), and how to choose an evaluation method and an op-
timization approach to implement the path planning for a mobile robot. There are three main
environment models: vector (obstacles represented by polygons), grid (occupancy cell) and graph
(Voronoi diagram or visibility graph). As compared with vector and graph, grid has the ad-
vantages of simple and flexible. This study uses a grid environment. There are two ways of
representing a grid-based environment. One is a X-Y coordinates plane [15] and the other is an
orderly numbered grid, which has been widely used. We adopt the latter approach, in which a
square environment is evenly divided into a certain number of squares, i.e., the x-axis and y-axis
are divided equally into m parts, thus, we get m×m grids, where one or more grids are used to
represent the obstacles. An example of the 7× 7 grids is shown in Fig. 1(a), where the grid map
is encoded by using Matlab and the grey shadow grids represent obstacles.

The mapping relations between coordinates (x, y) and the serial number p beginning from
one can be identified by the following formula:

p = fix(y/SoG) ·NoC + fix(x/SoG) (5)

where NoC is the number of columns; SoG is the size of a grid; the function fix(t) rounds t to
its nearest integer towards zero.

2.2 Related work

Since the pioneering work of Lozano-Pérez [12], a number of algorithms for solving the path
planning problems have been reported in the past thirty years. These algorithms can be generally
divided into two main classes: classical [14] and heuristic [19]. Although the classic approaches
can be used to solve this problem, they may suffer from some drawbacks, such as easily falling
into local minima, high complexity in high dimensions. In order to overcome these problems of
classic methods, heuristic algorithms have been developed.

The representative heuristic approaches for solving MR3P are neural networks, genetic al-
gorithms [15], ant colony optimization, fuzzy logic [16], simulated annealing [17], PSO [21],
probabilistic road maps, rapidly exploring random trees, etc. Although heuristic methods do
not guarantee to find an optimal solution, they may be faster and may have higher efficiency
than classical methods [19]. The studies in [20, 21] have shown that the interest in PSO-based
meta heuristics algorithms is growing in mobile robotics. Particularly interesting is the work
in [20,21] for solving the static or dynamic MR3P. According to the reports in the literature, the
dimensions of the search space are set to a fixed value and remain constant throughout the entire
optimization process in almost all of PSO-based algorithms for solving MR3P; consequently, the
solving ability of the algorithms is limited to a single individual’s dimension and the algorithm
cannot find the optimal solutions. In MR3P, the dimensions of the search space decide the num-
ber of nodes of the optimal path. High dimensions may result in the decrease of the searching
efficiency, while low dimensions may cause the case in which it is impossible to get barrier-free
paths. In order to find a proper dimension for a path and improve the search efficiency to self-
adapt the dynamic environment with randomly appearing or disappearing obstacles, mMPSO
with variable dimensions is introduced to solve MR3P and will be presented in the next section.

736 X.Y. Wang, G.X. Zhang, J.B. Zhao, H.N. Rong, F. Ipate, R. Lefticaru

3 mMPSO for MR3P

This study considers a grid-based environment, in which moving obstacles or dangerous
sources may appear or disappear. To adapt the hostile environment, mMPSO uses a variable
dimension PSO and a dynamic membrane structure with membrane division and dissolution. To
improve the mMPSO performance such as effectiveness, efficiency and extensibility, we introduce
a point repair algorithm, a smoothness approach and a moving direction adjustment technique.
In what follows, we first present the variable dimensions and then describe the point repair
algorithm and the smoothness approach. Finally, we summarize the mMPSO algorithm.

3.1 Variable Dimensions

In mMPSO, each particle represents a feasible path, instead of an infeasible path in other
heuristic approaches such as genetic algorithms. If the dimension of each particle is fixed, the
search efficiency is often low due to the following reasons: (1) Population initialization, i.e.,
obtaining a population of initially feasible paths through randomly searching each node row
by row, is time-consuming, especially for large grids or complex environments with circuitous
route phenomenon. (2) The search process of the algorithm with fixed dimensions is also time-
consuming, as compared with the dimension-reducing methods, because the variable dimensions
in this study consider the removal of redundant information at each iteration. (3) Due to the
complex or hostile environment, the optimization algorithms with fixed dimensions have low
efficiency and poor adaptability.

To overcome these shortcomings, a set of high-dimension particles are needed at the begin-
ning and the dimension of the best solution, i.e., the optimal path, is usually quite low. Thus,
the dimensions of each particle in mMPSO are considered to be variable. In mMPSO for solving
MR3P, the initial population P of particles (feasible paths) is classified into several subpopula-
tions Pmin,. . . ,Pmax, where Pmin is the subpopulation with lower dimensions, which represent
shorter paths, that pass around fewer obstacles, and Pmax is the subpopulation with higher
dimensions, which denote longer paths, passing around more obstacles. At the beginning, the
population size Smin of Pmin may be similar to the one Smax of Pmax, and the particles in Pmax
may search a feasible path through passing around external obstacles, while the particles in Pmin
may go to the contrary case. As the algorithm goes forward, Smin will increase and Smax will
decrease. In general, a particle with low dimensions produces a shorter path, while a particle
with high dimensions corresponds to a longer path. However, there are still some exceptions.
But in mMPSO, the point repair algorithm, the smoothness approach and the moving direction
adjustment technique can rectify the exceptions. The implementation of variable dimensions
motivates the dynamic membrane structure of mMPSO.

3.2 Point Repair Algorithm

In the process of searching the optimal path, some nodes may move into obstacles and some
path segments may cross obstacles, which results in infeasible paths and it is necessary to repair
them. This study introduces a point repair algorithm to change the infeasible paths into feasible
paths. We first define some special grids in the environment model. In Fig. 1(a), p1, which is
surrounded by the three peripheral grids, 8, 9 and 15, and p2, which is surrounded by the three
peripheral grids, 29, 36 and 37, are the vertexes of obstacle O. All the peripheral grids have two
kinds of coefficients, γ1 and γ2, which are randomly selected and are controlled by the weighing
factors, Kd,Ks and Kf in (1). The coefficient γ1 related to lateral grids {9, 15, 29, 37} is mainly
controlled by Kd. The coefficient γ2 related to the diagonal grids {8, 36} is mainly controlled by
Ks and Kf , where Kd +Ks +Kf = 1, 0.6 ≤ Kd ≤ 1, 0 ≤ γ1 ≤ 1, 0 ≤ γ2 ≤ 1, γ1+γ2 = 1. The

A Modified Membrane-Inspired Algorithm Based on
Particle Swarm Optimization for Mobile Robot Path Planning 737

relationship between γ1 and γ2 is shown in Fig. 1(b). For example, if Kd = 0.8, Ks = Kf = 0.1,
we obtain γ1 = 0.5 and γ2 = 0.5. If Kd = 1, Ks = Kf = 0, we get γ1 = 1 and γ2 = 0.

(a)

1
g2

g

d
K

(b)

Figure 1: Definition of grids

O

1

3

4

 !

2

"!

"#

 #

(a)

O

1

3

4

 !

 "

#$

#%

L

(b)

O

2

3

2

!"

!#

4

1

(c)

O

4

3

2

 1

 !

 "

(d) (e)

Figure 2: An example for point repair and smoothness algorithms

Two types of infeasible paths are shown in Fig. 2(a)-(b), where d1 is the point to point
distance between node 2 and p1; d2 is the point to point distance between node 2 and p2; d3
is the point to line distance between p1 and L; d4 is the point to line distance between p2 and
L; d1, d2, d3 and d4 decide which peripheral grids will be selected. In Fig. 2(a), the node 2 in
the path {1, 2, 3, 4} (Type 1) must be repaired. In Fig. 2(b), the path segment L crossing the
obstacle (Type 2) must be broken. The point repair process is as follows.

Step 1 : Evaluate a path found. If it is feasible, we skip the repair process, otherwise, we
perform the repair process.

Step 2 : Judge the type of an infeasible path, Types 1 or 2.
Step 3 : If the infeasible path is Type 2, go to Step 4, otherwise, conduct the following steps:
(a) Calculate the distance between the infeasible point p0 and the vertex pi of the obstacle,

then get the value(s) of di, i = 1 (the obstacle is in the corner) or i = 1, 2 (the obstacle is located
at the edge of the map) or i = 1, 2, 3, 4 (the obstacle is located in the middle of the map). Next,
sort di in an increasing order.

(b) Select unused pi by using the corresponding smallest value in di and get the peripheral
grids pjg_i, j = 1, 2, 3, and randomly select unused pjg_i by using γ1 and γ2.

(c) Replace the value of the infeasible node with selected pjg_i.
(d) Judge the path again. If it is feasible, this process terminates, otherwise, go to step 2.
Step 4 : Type 2 is repaired according to the following steps:
(a) Calculate the distance between the infeasible path segment L and the vertex pi of the

obstacle, get the value(s) of d′i, i = 1 (the obstacle is in the corner) or i = 1, 2 (the obstacle is
located at the edge of the map) or i = 1, 2, 3, 4 (the obstacle is located in the middle of the map).
Next, sort d′i in an increasing order.

(b) Select unused pi by using the corresponding smallest value in d′i and get the peripheral
grids pjg_i, j = 1, 2, 3, and randomly select unused pjg_i by using γ1 and γ2.

738 X.Y. Wang, G.X. Zhang, J.B. Zhao, H.N. Rong, F. Ipate, R. Lefticaru

(c) Insert the selected pjg_i between the two nodes of the infeasible path segment and get two
new path segments paths_1 and paths_2.

(d) Judge each of the two paths paths_1 and paths_2. If one of them is not feasible, go to
step 4, otherwise, the repair process terminates.

There are three cases of infeasible paths shown in Fig. 2(e) (dash line) and Fig. 2(a)-(b). We
use the introduced point repair algorithm to process the three cases and obtain the corresponding
results shown in Fig. 2(e) (solid line) and Fig. 2(c)-(d), respectively. E.g., the path segment
{3, 4} across the obstacle O in the infeasible path represented by the nodes {1, 2, 3, 4, 5, 6} in Fig.
2(e) should be modified. If γ1 ≫ γ2, the path segment {3, 4} is replaced by two path segments
{3, 8} and {8, 4} in the first modification, but the modified path segment {3, 8} is still infeasible
and must be modified further. In the second modification, the segment {3, 8} is replaced by the
path segments {3, 7} and {7, 8}. Thus, all the path segments are feasible and the new path is
{1, 2, 3, 7, 8, 4, 5, 6}. In Fig. 2(c)-(d), the new feasible path is {1, 2′, 2′′, 3, 4} or {1, 2′, 3, 4} under
the condition γ1= 0,γ2 = 1 or γ1= 1,γ2 = 0.

3.3 Smoothness Algorithm

The smoothness algorithm is used to get rid of those redundant nodes of a feasible path. The
smoothness process is described as follows:

Step 1 : Sort the nodes in a path from the starting node to the goal node and get a sequence
ni, i = 1, 2, . . . ,m, where m is the dimension of a particle; n1 and nm are the starting and goal
nodes, respectively.

Step 2 : Judge the path segment Lij between ni and nj (at the beginning, i = 1, j = 3), if
Lij is infeasible, insert the nodes i and j − 1 into the node set Pf of the smoothed path, i.e.,
Pf={i, j − 1} and let i = j − 1 and j increase 1, the algorithm continues to judge the path
segment Lij , otherwise, let j increase 1, continue to judge the feasibility of the path segment Lij
till it is infeasible, insert the nodes i and j − 1 into the node set Pf of the smoothed path and
let i = j − 1. Repeat this step till j = m.

As shown in Fig. 2(e), we use the introduced smoothness algorithm to remove the redundant
nodes in the path {1, 2, 3, 7, 8, 4, 5, 6} and obtain the smoothed path {1, 8, 6}. Similarly, the
smoothed paths {1, 2′, 2′′, 4} and {1, 2′, 4} come from the paths {1, 2′, 2′′, 3, 4} and {1, 2′, 3, 4},
respectively, as shown in Fig. 2(c)-(d).

3.4 mMPSO

In mMPSO, a dynamic membrane structure (specifically, OLMS alternates with D-OLMS
shown in Fig. 3(a)) is introduced to arrange a population of particles, each of which is a feasible
path for a mobile robot, and specify various rules, such as membrane division, transformation
and communication-like rules, and membrane dissolution. The dimension of each particle is
variable in the process of evolution. The point repair algorithm described above is used to
change infeasible paths into feasible ones. The repair process may increase the dimensions of each
particle. The smoothness algorithm presented in this section is applied to remove the redundant
nodes of a path and the process may decrease the dimensions of each particle. In addition, a
moving direction adjustment technique is presented to accelerate the algorithm convergence. The
pseudocode algorithm of mMPSO is shown in Fig. 3(b), where each step is described in detail
as follows:

Step 1 : An OLMS [[]1, . . . , []m]0 composed of a skin membrane denoted by 0 and m + 1
regions inside the skin membrane is constructed. The way in which the parameter m is chosen
will be discussed in Section 4.

A Modified Membrane-Inspired Algorithm Based on
Particle Swarm Optimization for Mobile Robot Path Planning 739

OLMS

D-OLMS

(a)

(1) Initialize membrane structure

(2) Initialize populations

(3) Produce new particles in each elementary membrane

(4) While (not termination condition) do

(5) Divide each elementary membrane

(6) Evaluate every particle

(7) Find

(8) Find local best particle

(9) Execute communication rules (a)

(10) Find global best particle

(11) Execute communication rules (b)

(12) Update particle’s velocity V(t)

(13) Update particle’s position X(t)

(14) Execute point repair algorithm

(15) Execute smoothness algorithm

(16) Adjust each particle’s moving direction

(17) Dissolve elementary membrane

End

End

+1t t¬

Begin:

1t¬

()b

dG t

()id

bestP t

()b

ijG t

(b)

Figure 3: Membrane structures and the pseudocode algorithm for mMPSO

Step 2 : A particle swarm X with m particles in a D-dimensional search space is randomly
generated and each particle is put inside an elementary membrane in OLMS, where D represents
the number of nodes in a feasible path; X = {x1, x2, . . . , xm}, where xi is an arbitrary individual
in X and denotes a feasible path, xi = (xi1, xi2, . . . , xiD).

Step 3 : In this step, a moving direction adjustment technique is introduced to produce n
particles inside each elementary membrane. To be specific, we modify the velocity of the particle
inside each elementary membrane to generate a new particle by using (6) and (7),

V (g + 1) = ρ1 · Vr(g) + ρ2 · Vf (g) (6)

X(g + 1) = X(g) + V (g + 1) (7)

where ρ1 and ρ2 are the inertia weighting factors and usually are set to larger values for exploring
the global solutions; Vr(g) is the randomly produced velocity of the gth particle (at the beginning
for each elementary membrane, g=0); Vf (g) is the adjusted velocity of the gth particle by using
the idea of tightening fishing line and the moving directions of each node in the gth particle is
shown in Fig. 4(a); V (g + 1) is the velocity of the (g + 1)th particle; X(g) and X(g + 1) are
positions of the gth and (g + 1)th particles. Inspired by the idea of tightening fishing line, we
consider a feasible path as a fishing line and tighten the line from the target node, thus, each
node except for the target one in the path will show a moving direction toward the next node
(the target node is the first one). The moving directions of all the nodes in the path construct the
velocity Vf (g). This step is repeated for n times to produce n new particles for each elementary
membrane and used together with the point repair algorithm and smoothness algorithm. The
dimensions of new particles may be greater than or less than D. Thus, the swarm will have
m × n particles in total. Fig. 4(b) shows an example that one particle with 20 dimensions (in
thick line) inside a certain elementary membrane produces 10 particles with 6–10 dimensions (in
thin line). Compared to the random approach, the production of the new particles can remove
redundant nodes of a path and has better adaptability in hostile environment, especially in the
circuitous route environment.

Step 4 : The maximal number of iterations is used as the termination condition.

740 X.Y. Wang, G.X. Zhang, J.B. Zhao, H.N. Rong, F. Ipate, R. Lefticaru

S

T

(a) (b)

Figure 4: An example of the generation of new particles and direction of each dimension of the
individual

Step 5 : This step first classifies the n particles inside the ith elementary membrane into
ki clusters according to the dimension of each particle and then divides the ith elementary
membrane into ki membranes, each of which contains the particles with the same dimension,
i = 1, 2, . . . ,m. Thus, OLMS becomes D-OLMS.

Step 6 : Each particle is evaluated by using (1) and assigned a fitness value.
Step 7 : Find P idbest(t), which is the best solution of each particle in its history with respect

to the fitness values.
Step 8 : Find the locally best solution Gbij(t) in the jth elementary membrane inside the ith

membrane, i = 1, 2, . . . ,m, j = 1, 2 . . . , ki, in terms of fitness values.
Step 9 : Perform communication rules (a), which first send all the locally best solutions Gbij(t)

(j = 1, 2 . . . , ki) out into the ith submembrane, i = 1, 2, . . . ,m, and further send out into the
skin membrane.

Step 10 : Find the globally best solution Gbd(t) by comparing Gbij(t) with the same dimension
d, d ∈ {1, 2, . . . , D}, i = 1, 2, . . . ,m, j = 1, 2 . . . , ki.

Step 11 : Perform communication rules (b), which send Gbd(t) back into the elementary mem-
brane containing d-dimension particles across certain submembrane.

Step 12 : Update the velocities of the d-dimension particles using (8).

Vid(t+ 1) = δ1 ·
(
ρ · Vid(t) + c1 · r1 ·

(
P idbest(t)−Xid(t)

)
+ c2 · r2 ·

(
Gbij(t)−Xid(t)

)
+c3 · r3 ·

(
Gbd(t)−Xid(t)

))
+ δ2 · V f

id(t)
(8)

where Vid(t) and Vid(t+ 1) are the velocities of the particle at generation t and t+1, respectively;
P idbest(t) is the best solution of the particle at generation t; Xid(t) is the position the particle at
generation t; Gbij(t) is the locally best solution with the same dimension d at generation t; Gbd(t) is
the globally best solution with the same dimension d at generation t; V f

id(t) is the adjusted velocity
of the particle at generation t; δ1 and δ2 are proportion coefficients; ρ is an inertia weighting
factor; r1 , r2 and r3 represent the functions that generate independently random numbers, which
are uniformly distributed between 0 and 1; c1, c2 and c3 are acceleration coefficients.

Step 13 : Update the positions of the d-dimension particles using (9).

Xid(t+ 1) = Xid(t) + Vid(t+ 1) (9)

whereXid(t) andXid(t+ 1) are the positions of the particle at generation t and t+1, respectively;
Vid(t+ 1) is the velocity of the particle at generation t+ 1.

Step 14 : Execute point repair algorithm for each particle.
Step 15 : Execute smoothness algorithm for each particle.

A Modified Membrane-Inspired Algorithm Based on
Particle Swarm Optimization for Mobile Robot Path Planning 741

Step 16 : Adjust the moving direction of each particle by using the moving direction adjust-
ment technique.

Step 17 : This step dissolves all the elementary membranes and releases their particles into
their corresponding submembranes. Thus, D-OLMS becomes the original OLMS.

4 Experimental Results

The mMPSO performance is tested by using MR3P. We first discuss how to set the number
m of elementary membranes in OLMS by using 20 × 20 grid model environment with 6, 8 and
10 obstacles, respectively. Then, 16 × 16 grid model environment with 9 static obstacles are
applied to compare mMPSO with its counterpart vPSO and GA [15]. Subsequently, the complex
environments, 32×32 and 64×64 grid model environments with 20 static obstacles, are applied to
further test the mMPSO performance. In these experiments, one dynamic obstacle representing
a moving obstacle or a dangerous source occurring suddenly is employed to analyze the mMPSO
behavior.

(a) 6 obstacles (b) 8 obstacles (c) 10 obstacles

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Number of elementary membranes
E

la
p

s
e
d

 t
im

e

Obstacle 6

Obstacle 8

Obstacle 10

(d) Results

Figure 5: The near shortest paths in three environments (20 × 20 grid with obstacles 6, 8 and
10, respectively) and experiment results

4.1 Parameter setting

In this subsection, we use 20 × 20 grid model environment with three kinds of obstacles
shown in Fig. 5 to discuss how to choose m. Fig. 5(a)-(c) have 6, 8, 10 static obstacles (shaded
areas), respectively. In the following experiments, the population size is set to 100; In (8),
c1 = c2 = c3 = Gsize/Vmax, where Gsize = 0.08 is the size of a grid and Vmax is the maximal
distance allowing a node to move in a step; the proportion coefficients δ1 = 0.65, δ2 = 0.35; ρ is
defined as a variable, which varies from 0.246 to 0.157 along the logarithm function log10(y). In
(6), ρ1 and ρ2 are set to random values between 0.4 and 0.6. In (3), α = 0.6, β = 0.4. In (4), λ
is set to the robot radius.

S

T r1=0,r2=1

r1=1,r2=0

(a)

!

(b)

S

T r1=0,r2=1

r1=1,r2=0

(c)

Figure 6: Experimental results of mMPSO in the environments 16×16 grids, Os = 9 and Od = 1.

742 X.Y. Wang, G.X. Zhang, J.B. Zhao, H.N. Rong, F. Ipate, R. Lefticaru

S

T r1=0,r2=1

r1=1,r2=0

(a) 32× 32

S

r1=0,r2=1

r1=1,r2=0

(b) 32× 32

S

T

(c) 32× 32

S

T
r1=0,r2=1

r1=1,r2=0

(d) 64× 64

Figure 7: Experimental results of mMPSO in the environments 32× 32, 64× 64 grids, Os = 20
and Od = 1.

In what follows, m varies from 2 to 20 by the interval 2, thus, we first generate m particles
in Step 2 and in Step 3 for the first m − 1 elementary membranes, we produce round(100/m)
particles and 100− (m− 1) ∗ round(100/m) particles for the mth elementary membrane, where
round(.) is a function for rounding its element towards nearest integer. In the experiments, if a
given near-optimal solution is reached, mMPSO stops. Because the optimal solution to MR3P
is usually unknown, we set Kd = 1,Ks = Kf = 0 in (1) and independently perform mMPSO for
30 times, where the terminal condition is such that the maximal number of iterations is set to
2000, in order to find the near-optimal solution. Fig. 5(a)-(c) show the near shortest paths of the
model environment with different obstacles, 6, 8 and 10, respectively. The mMPSO performance
for each of the 19 cases is evaluated by using the mean of the elapsed time in 30 independent runs.
The experimental results are shown in Fig. 5(d), where the elapsed time for three environments
first decreases and then increases as the value of m goes up. These experimental results indicate
that m could be assigned as 13 by considering the three environments.

4.2 MR3P Experimental Results

To investigate the mMPSO performance, this subsection uses three grid models, 16 × 16,
32 × 32 and 64 × 64, to carry out the experiments and considers five environments: 16 × 16
with 9 static obstacles (Os = 9), 16 × 16 with Os = 9 and one dynamic obstacle (Od = 1),
32 × 32 with Os = 20, 32 × 32 with Os = 20 and Od = 1, 64 × 64 with Os = 20. The place
for the possible occurrence of the dynamic obstacle is set to the near center, which is very likely
to block the feasible paths. The model with 16 × 16 grids is applied to compare mMPSO with
its counterpart PSO (vPSO) and GA in [15]. The models with 32 × 32 and 64 × 64 grids are
used to further discuss the mMPSO performance in different complex environments. The setting
of the parameters in mMPSO except for Kd,Ks,Kf is the same as in Subsection 4.1. m=13.
The termination condition is designated as the maximal number 2000 of iterations. All the
experiments are run on the PC with CPU 1.7GHz, 512MB RAM, and the software platform
MATLAB7.4 and Windows XP OS.

We first use the model with 16 × 16 grids to compare mMPSO with vPSO (when m = 1,
mMPSO becomes vPSO) and GA in [15]. We consider three cases for Kd,Ks,Kf as follows:

(1) Case 1: Kd = 1,Ks = Kf = 0, γ1 = 1, γ2 = 0;
(2) Case 2: Kd = 0.6,Ks = Kf = 0.2, γ1 = 0, γ2 = 1;
(3) Case 3: Kd = 0.8,Ks +Kf = 0.2, γ1 + γ2 = 1.
The experimental results of mMPSO are shown in Fig. 6. In Fig. 6(a), the blue line is the

best path in Case 1 considering only one objective, path length, and the red line is the best
result in Case 2 by trading-off safety and smoothness. Fig. 6(b) illustrates 8 near optimal paths
(8 colors) through balancing the path length, safety and smoothness. The paths in Fig. 6(c)

A Modified Membrane-Inspired Algorithm Based on
Particle Swarm Optimization for Mobile Robot Path Planning 743

Table 1: Comparisons of three methods in the environment(Fig. 6 (a))

Method NoO NoNO NoI Fv Gn St
GA[15] 9 78 13 24.68 16 1.68
vPSO 83 108 0 24.95 65 2.97

mMPSO 94 239 0 24.26 27 0.84

Table 2: Comparisons of three methods in the environment(Fig. 6 (c))

Method NoO NoNO NoI Fv Gn St
GA[15] 32 68 0 24.71 12 0.69
vPSO 81 103 0 28.56 73 3.12

mMPSO 92 235 0 27.43 34 0.97

are obtained by considering one dynamic obstacle and the blue line is the best path in Case
1 considering only one objective, path length, and the red line is the best result in Case 2 by
trading-off safety and smoothness.

To draw a comparison with GA in [15] and vPSO, let Kd=1 and the experiment is executed
for 100 independent runs. Tables 1 and 2 show the experimental results of GA, vPSO and
mMPSO for the environments with static obstacles and the environments with static and dynamic
obstacles. In Tables 1-3 , NoO, NoNO, NoI, Fv, Gn, St represents the number of optimal
solutions, the number of near optimal solutions, the number of infeasible solutions and the
fitness value in 100 trials, the average generations for finding the optimal solution and the mean
of the elapsed time (s) in each trial, respectively.

As it can be clearly seen from Table 1 and Fig. 6, mMPSO finds much more optimal paths and
near optimal paths, while it spends smaller computing time than GA. There are some infeasible
solutions in GA, while there is not any infeasible solution in vPSO and mMPSO because the
point repair algorithm have repaired the infeasible path. On the other hand, vPSO also finds
more optimal paths and near optimal solutions than GA, but the elapsed time is far larger than
GA. mMPSO is better than vPSO with respect to optimal and near optimal solutions and the
elapsed time, which indicates the advantage of the combination of a membrane system with PSO.
Tables 2 shows similar conclusions to those in Tables 1.

To further analyze the mMPSO performance in more complex environments, more experi-
ments are conducted in the environments with 32 × 32 and 64 × 64 grids containing 20 or 21
obstacles, as shown in Fig. 7 (a-d). The environment with 32× 32 grids and 20 static obstacles
are shown in Fig. 7 (a). Fig. 7(b)-(c) show the environment with 20 static obstacles and one
dynamic obstacle. In Fig. 7 (c), the three objectives, path length, smoothness and safety, are
considered. The parameters of mMPSO are the same as above except for the population size

Table 3: Experimental results of mMPSO in different environments in Fig. 7

Environment NoO NoNo Fv Gn St
32× 32, Os = 20, Od = 0 86 242 28.79 36 1.72
32× 32, Os = 20, Od = 1 82 225 31.53 45 1.93
64× 64,Os = 20, Od = 0 83 247 28.14 59 2.68

744 X.Y. Wang, G.X. Zhang, J.B. Zhao, H.N. Rong, F. Ipate, R. Lefticaru

150 and m = 15. All the tests are executed for 100 independent runs. Table 3 shows the results.
It can be seen from Tables 1-3 that the optimal solutions of mMPSO drop from 94 to 83,

the elapsed time rises from 0.84 to 2.68 and the average generations vary from 27 to 59 as the
number of grids increases from 16×16 to 64×64 and the static obstacles go up from 9 to 20. The
elapsed time and average generations increase a little with the dynamic obstacle. To sum up, as
the number of model grids increases by 4n (n = 1, 2, 3 . . .) and the static obstacles double, the
increase of the elapsed time is quite small, instead of an exponential increase. mMPSO maintains
good search capability to find the optimal solution in both static and dynamic environments,
which indicates mMPSO has good adaptability to MR3P under complex environments.

5 Conclusions

This paper discusses a feasible combination of membrane systems and PSO to solve MR3P.
The outstanding novelty is to justify the introduced dynamic membrane structure, which proves
to be suitable for solving MR3P with variable dimensions. mMPSO uses the alternation of OLMS
and D-OLMS to integrate a PSO with variable dimensions, point repair algorithm, smoothness
algorithm and moving direction adjustment. A large number of experiments are carried out on
several MR3P with various environments and the results show that mMPSO can achieve much
better solutions than its counterparts PSO and GA, as reported in the literature.

This paper considers only the planar (two dimensions) environments. Following this work,
some issues need to be further investigated, such as how to extend mMPSO to three dimensional
spaces, how to use mMPSO to solve more difficult path planning problems (mobile robots follow
the tracks of moving targets in a hostile environments), how to combine mMPSO with numerical
P systems to control mobile robots and how to apply the idea of variable dimension PSO to solve
more engineer application problems.

Acknowledgment

The work of XW, GZ, JZ and HR was supported by the National Natural Science Foundation
of China (61170016, 61373047), the Program for New Century Excellent Talents in University
(NCET-11-0715) and SWJTU supported project (SWJTU12CX008); The work of FI and RL
was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-
UEFISCDI, project number PN-II-ID-PCE- 2011-3-0688.

Bibliography

[1] G. Păun, G. Rozenberg, A. Salomaa (eds.) (2010); The Oxford handbook of membrane
computing, Oxford University Press.

[2] G. Păun (2007); Tracing some open problems in membrane computing, Rom J Inform Sci
Tech, ISSN 1453-8245, 10(4): 303–314.

[3] G. Zhang, J. Cheng, M. Gheorghe, Q. Meng (2013); A hybrid approach based on differential
evolution and tissue membrane systems for solving constrained manufacturing parameter
optimization problems, Appl Soft Comput, ISSN 1568-4946, 13(3):1528-1542.

[4] T.Y. Nishida (2004); An application of P system: a new algorithm for NP-complete opti-
mization problems. Proc 8th WMCSCI, 109–112.

A Modified Membrane-Inspired Algorithm Based on
Particle Swarm Optimization for Mobile Robot Path Planning 745

[5] G.X. Zhang, M. Gheorghe, L.Q. Pan,; M.J. Pérez-Jiménez (2014); Evolutionary membrane
computing: a comprehensive survey and new results, Inform Sci, ISSN: 0020-0255, 279: 528-
551.

[6] L. Huang, X. He, N. Wang, Y. Xie (2007); P systems based multi-objective optimization
algorithm, Prog Nat Sci, ISSN 1002-0071, 17(4): 458-465.

[7] G.X. Zhang, M. Gheorghe, Y. Li (2012); A membrane algorithm with quantum-inspired
subalgorithms and its application to image processing, Nat Comput, ISSN 1567-7818, 11(3):
701-717.

[8] G.X. Zhang, J.X. Cheng, M. Gheorghe (2014); Dynamic behavior analysis of membrane-
inspired evolutionary algorithms, International Journal of Computers Communications &
Control, ISSN 1841-9836, 9(2): 227-242.

[9] J. Kennedy, R. Eberhart (1995); Particle swarm optimization, Proc ICNN, 4: 1942-1948.

[10] G.X. Zhang, F. Zhou, X.L. Huang, J.X. Cheng, M. Gheorghe, F. Ipate, R. Lefticaru (2012);
A novel membrane algorithm based on particle swarm optimization for solving broadcasting
problems, J Univers Comput Sci, ISSN 0948-6968 18(13): 1821-1841.

[11] J. Xiao, Y. Huang, Z. Cheng, J. He, Y. Niu (2014); A hybrid membrane evolutionary
algorithm for solving constrained optimization problems, Optik, ISSN 0030-4026, 125(2):
897-902.

[12] T. Lozano-Pérez,M.A. Wesley (1979); An algorithm for planning collision-free paths among
polyhedral obstacles, Commun ACM, ISSN 0001-0782, (22)10: 560–570.

[13] H. Gao, J. Cao (2012); Membrane quantum particle swarm optimisation for cognitive radio
spectrum allocation, Int J Comput Appl Tech, ISSN 0952-8091, 43(4): 359-365.

[14] Y.K. Hwang, N. Ahuja (1992); Gross motion planning-A survey, ACM Comp Surv, 24:
219-291.

[15] A. Tuncer, M. Yildirim (2012); Dynamic path planning of mobile robots with improved
genetic algorithm, Comput Electr Eng, ISSN 0045-7906, 38: 1564-1572.

[16] M.A. Garcia, O. Montiel (2009); Path planning for autonomous mobile robot navigation
with ant colony optimization and fuzzy cost function evaluation, Appl Soft Comput, ISSN
1568-4946, 9(3): 1102-1110.

[17] Z. Qidan, Y.J. Yang, Z.Y. Xing (2006); Robot path planning sased on artificial potential
field approach with simulated annealing, Proc ISDA, 622-627.

[18] Y. Zhang, D.W. Gong (2013); Robot path planning in uncertain environment using multi-
objective particle swarm optimization, Neurocomputing, ISSN 0925-2312, 103: 172-185.

[19] E. Masehian, D. Sedighizadeh (2007); Classic and heuristic approaches in robot motion
planning-a chronological review, Proc. WASET, 101-106.

[20] W.F. Xu, C. Li, B. Liang (2008); The cartesian path planning of free-floating space robot
using particle swarm optimization, Int J Adv Rob Syst, ISSN 1729-8806, 5: 301-310.

[21] D.W. Gong, J.H. Zhang (2011); Multi-objective particle swarm optimization for robot path
planning in environment with danger sources, J Comput, 6(8): 1554-1561.

