
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. VI (2011), No. 4 (December), pp. 647-655

Spiking Neural P Systems with Several Types of Spikes

M. Ionescu, G. Păun, M. J. Pérez-Jiménez, A. Rodríguez-Patón

Mihai Ionescu
University of Piteşti
Str. Târgu din Vale, nr. 1, 110040 Piteşti, Romania
E-mail: armandmihai.ionescu@gmail.com

Gheorghe Păun
Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania, and
Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: george.paun@imar.ro, gpaun@us.es

Mario J. Pérez-Jiménez
Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: marper@us.es

Alfonso Rodríguez-Patón
Department of Artificial Intelligence, Faculty of Computer Science
Polytechnical University of Madrid, Campus de Montegancedo
Boadilla del Monte 28660, Madrid, Spain
E-mail: arpaton@fi.upm.es

Abstract: With a motivation related to gene expression, where enzymes act
in series, somewhat similar to the train spikes traveling along the axons of neu-
rons, we consider an extension of spiking neural P systems, where several types
of “spikes" are allowed. The power of the obtained spiking neural P systems
is investigated. Some further extensions are mentioned, such as considering a
process of decay in time of the spikes.
Keywords: Natural computing, Membrane computing, P system, Turing
computability

1 Introduction

The present note lies at the intersection of two active research branches of bio-
informatics/natural computing, namely, gene expression and membrane computing. Specifically,
an extension of so-called spiking neural P systems (in short, SN P systems) is considered, with
motivations related to gene expression processes.

For the reader’s convenience, we shortly recall that an SN P system consists of a set of neurons
placed in the nodes of a graph and sending signals (spikes) along synapses (edges of the graph),
under the control of firing rules. Such a rule has the general form E/ac → ap; d, where E is a
regular expression (equivalently, we can consider it a regular language) and a denotes the spike;
if the contents of the neuron is described by an element of the regular language (identified by)
E, then the rule is enabled, c spikes are consumed and p are produced, and sent, after a time

Copyright c⃝ 2006-2011 by CCC Publications

648 M. Ionescu, G. Păun, M. J. Pérez-Jiménez, A. Rodríguez-Patón

delay of d steps, along the synapses leaving the neuron. There also are forgetting rules of the
form ac → λ, with the meaning that, if the neuron contains exactly c spikes, then they can be
removed (forgotten). One neuron is designated as the output neuron of the system and its spikes
can exit into the environment, thus producing a spike train. Two main kinds of outputs can be
associated with a computation in an SN P system: a set of numbers, obtained by considering
the number of steps elapsed between consecutive spikes which exit the output neuron, and the
string corresponding to the sequence of spikes which exit the output neuron.

These computing devices were introduced in [7] and then investigated in a large number
of papers; we refer to the corresponding chapter from [13] and to the membrane computing
website [16] for details.

In turn, gene expression is an important research area where various transcription factors
appears and, important for their activity, their frequency matters – see, for instance, [1], [10], [12].
This means that a spiking like process is encountered, but with several “spikes", the regulator
proteins which bind to a promotor depending on their concentration. In some sense we have
here a communication process in which a signal encoded in a concentration (the transcription
factor) is transduced to a frequency signal (the bursts of mRNA associated to the bindings of the
transcription factor with the promotor) and again transduced back to a concentration (the level
of protein produced). Thus, conceptually, we can approach this process in terms of theoretical
machineries developed for spiking neurons – with the necessity of considering a variety of spikes,
not only one as in the neural case. This is also suggested in [1]: "...we anticipate that frequency-
modulated regulation may represent a general principle by which cells coordinate their response
to signals."

Starting from these observations, we relate here the two research areas, introducing SN P
systems with several types of spikes. Such a possibility was somehow forecasted already from
the way the definition in [7] is given, with an alphabet, O, for the set of spikes, but with only
one symbol in O; up to now, only a second type of spikes was considered, in [11], namely anti-
spikes, which, when introduced, are immediately annihilated, in pairs with usual spikes. This
extension to several types of spikes is natural also in view of the fact that all classes of P systems
investigated in membrane computing work with arbitrary alphabets of objects.

As expected, having several types of spikes helps in proofs; in particular, we obtain the
universality of the SN P systems with several types of spikes for systems with a very reduced
number of neurons – remember that for systems with only one type of spikes the proofs do not
bound the number of neurons (but such a bound can be found due to the existence of universal
SN P systems, hence with a fixed number of neurons, but used in the computing mode, having
both an input and an output). Three ways to define the result of a computation are considered:
as the number of objects inside a specified neuron, as the number of objects sent out by the
output neuron, and as the distance in time between the first two spikes sent out during the
computation.

What is not investigated is the case of generating strings, in the sense of [3], [4], or even in
the distributed case of [8]. Other open problems are mentioned in the rest of the paper and in
the final section of it.

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory, e.g., from [14]
and [15], so that we introduce here only some notations and notions used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ; the empty
string is denoted by λ, and the set of all nonempty strings over V is denoted by V +. When

Spiking Neural P Systems with Several Types of Spikes 649

V = {a} is a singleton, then we write simply a∗ and a+ instead of {a}∗, {a}+. For a language
L, we denote by sub(L) the set of all substrings of strings in L.

As usual in membrane computing, the multisets over a finite universe set U are represented by
strings in U∗ (two strings equal modulo a permutation represent the same multiset). If u, v ∈ U∗,
we write the fact that u is a submultiset of v in the form u ⊆ v, with the understanding that
there is a permutation of v having u as a substring (this can be formally formulated also in
terms of Parikh mapping, but we do not enter into details). Similarly, we write u ∈ sub(L) for
a multiset u and a set L of multisets, meaning that u is a submultiset of a multiset in L.

A register machine (in the non-deterministic version) is a construct M = (m,H, l0, lh, I),
where m is the number of registers, H is the set of instruction labels, l0 is the start label
(labeling an ADD instruction), lh is the halt label (assigned to instruction HALT), and I is the set
of instructions; each label from H labels only one instruction from I, thus precisely identifying
it. The instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions with labels
lj , lk non-deterministically chosen),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to the instruc-
tion with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way: we start with
all registers empty (i.e., storing the number zero), we apply the instruction with label l0 and we
continue to apply instructions as indicated by the labels (and made possible by the contents of
registers); if we reach the halt instruction, then the number n present in register 1 at that time
is said to be generated by M . Without loss of generality we may assume that in the halting
configuration all other registers are empty. It is known that register machines generate all sets
of numbers which are Turing computable – we denote this family with NRE (RE stands for
“recursively enumerable"). By NFIN we denote the family of finite sets of natural numbers.

In the following sections, when comparing the power of two computing devices, number 0 is
ignored (this corresponds to the fact that when comparing the power of language generating or
accepting devices, the empty string λ is ignored).

3 Spiking Neural P Systems with Several Types of Spikes

We directly introduce the type of SN P systems we investigate in this paper; although some-
what far from the idea of a spike from the neural area, we still call the objects processed in our
devices spikes.

A spiking neural P system with several types of spikes (abbreviated as SN+ P system, of
degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0), where:

1. O is the alphabet of spikes (we also say objects);

2. σ1, . . . , σm are neurons, of the form σi = (wi, Ri), 1 ≤ i ≤ m, where:

a) wi ∈ O∗ is the initial multiset of spikes contained in σi;

b) Ri is a finite set of rules of the forms

650 M. Ionescu, G. Păun, M. J. Pérez-Jiménez, A. Rodríguez-Patón

(i) E/u → a, where E is a regular language over O, u ∈ O+, and a ∈ O (spiking
rules);

(ii) v → λ, with v ∈ O+ (forgetting rules) such that there is no rule E/u → a of
type (i) with v ∈ E;

3. syn ⊆ {1, 2, . . . ,m}× {1, 2, . . . ,m} with i ̸= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses
between neurons);

4. i0 ∈ {1, 2, . . . ,m} indicates the output neuron (σi0) of the system.

A rule E/u → a is applied as follows. If the neuron σi contains a multiset w of spikes such
that w ∈ L(E) and u ∈ sub(w), then the rule can fire, and its application means consuming
(removing) the spikes identified by u and producing the spike a, which will exit immediately the
neuron. In turn, a rule v → λ is used if the neuron contains exactly the spikes identified by
v, which are removed (“forgotten"). A global clock is assumed, marking the time for the whole
system, hence the functioning of the system is synchronized.

If a rule E/u → a has E = {u}, then we will write it in the simplified form u → a.
The spike emitted by a neuron σi go to all neurons σj such that (i, j) ∈ syn.
If several rules can be used at the same time in a neuron, then the one to be applied is chosen

non-deterministically.
Using the rules as described above, one can define transitions among configurations. Any

sequence of transitions starting in the initial configuration is called a computation. A computation
halts if it reaches a configuration where no rule can be used.

There are many possibilities to associate a result with a computation, in the form of a
number. Three possibilities are considered here: the number of objects in the output neuron in
the halting configuration, the number of spikes sent to the environment by the output neuron,
and the number of steps elapsed between the first two steps when the output neuron spikes. In
the first two cases only halting computations provide an output, in the last case we can define
the output also for ever going computations – but in what follows we only work with halting
computations also for this case.

We denote by Nα(Π) the set of numbers generated as above by an SN+ P system Π with the
result defined in the mode α ∈ {i, o, d}, where i indicate the internal output, o the external one
(as the number of spikes), and d the fact that we count the distance between the first two spikes
which exit the system. Then, NαSN

+Pm is the family of sets of numbers Nα(Π), for SN+ P
systems with at most m ≥ 1 neurons. As usual, the subscript m is replaced by ∗ if the number
of neurons does not matter.

Before passing to investigate the power of the previously defined systems, let us mention
that we have introduced here SN P systems of the standard type in what concerns the rules, i.e.,
producing only one spike, and without delay; extended rules are natural (E/u → v, with both u
and v multisets), but this is a too general case from a computability point of view, corresponding
to cooperating P systems. It is important also to note that the rules we use have both additional
powerful features – context sensitivity induced by the existence of the control regular language
E, and strong restrictions – the produced spike (only one) should leave immediately the neuron,
it cannot be further used in the same place without being sent back by the neighboring neurons.
These features are essentially present in the proofs from the next section.

4 The Power of SN+ P Systems

We start by considering the case when the result is counted inside the system (like in general
P systems, hence somewhat far from the style of SN P systems).

Spiking Neural P Systems with Several Types of Spikes 651

Lemma 1. NRE ⊆ NiSN
+P3.

Proof: Let us consider a register machine M = (n,H, l0, lh, I). We construct the following SN+

P system

Π = (O, σ1, σ2, σ3, syn, 1), with:
O = {ai | 1 ≤ i ≤ n} ∪ {l, l′, l′′ | l ∈ H},
σ1 = (l0, R1),

R1 = {O∗/li → l′i | (li : ADD(r), lj , lk) ∈ I}
∪ {O∗arO∗/liar → l′′j , (O∗ −O∗arO∗)/li → l′′k | (li : SUB(r), lj , lk) ∈ I}
∪ {lh → λ},

σ2 = (λ,R2),

R2 = {l′i → lj , l′i → lk | (li : ADD(r), lj , lk) ∈ I} ∪ {l′′ → l | l ∈ H},
σ3 = (λ,R3),

R3 = {l′i → ar | (li : ADD(r), lj , lk) ∈ I} ∪ {l′′ → λ | l ∈ H},
syn = {(1, 2), (1, 3), (2, 1), (3, 1)}.

The functioning of this system can be easily followed. The contents of register r is represented
by the number of copies of object ar present in the system. There are also objects associated
with the labels of M .

Initially, we have only the object l0 in neuron σ1. In general, in the presence of a label li of
an instruction in I, the instruction is simulated by the system Π. For the ADD instructions, the
change of labels is done with the help of neuron σ2 and the addition of a further object ar is done
in neuron σ3. For the SUB instructions, the check for zero is performed by means of the regular
language associated with the rules in R1. The computation continues as long as the work of the
machine M continues. When the label lh is introduced – by the neuron σ2 – the computation
stops after one further step, when this object is removed from the output neuron, σ1. Thus, in
the end, this neuron only contains copies of object a1, hence their number represents the value
present in the first register of M in the end of the computation. Thus, N(M) = Li(Π). 2

Theorem 2. NFIN = NiSN
+P1 = NiSN

+P2 ⊂ NiSN
+P3 = NRE.

Proof: The inclusions NiSN
+P1 ⊆ NiSN

+P2 ⊆ NiSN
+P3 are obvious from the definitions.

The inclusion NiSN
+P3 ⊆ NRE is straightforward (we can also invoke for it the Turing-Church

thesis).
In an SN+ P system with two components, the number of spikes present inside the two

neurons cannot be increased (each spiking rule consumes at least one spike and produces only
one spike, while there is no duplication of spikes because of multiple synapses which exit a
neuron), hence we have NiSN

+P2 ⊆ NFIN .
On the other hand, NFIN ⊆ NiSN

+P1. Indeed, consider a finite set of numbers, F =
{n1, n2, . . . , nk}; assume that 1 ≤ n1 < n2 < · · · < nk (remember that we ignore the number 0).
We construct the system

Π = ({a}, (ank+1, {ank+1/ank+1−ni → a | 1 ≤ i ≤ k}), ∅, 1).

We have Li(Π) = F : each computation has only one step, which non-deterministically uses one
of the rules in R1. Each such rule just consumes a number of spikes, passing from the initial
nk + 1 spikes to any number ni ∈ F , which cannot be further processed.

Together with Lemma 1, this concludes the proof of the theorem. 2

652 M. Ionescu, G. Păun, M. J. Pérez-Jiménez, A. Rodríguez-Patón

Let us note in the construction from the proof of Lemma 1 that all neurons spike a large
number of times (related to the length of the computation), not directly related to the number
computed in the first register of M . This makes difficult to imagine a system with only three
neurons which is universal when the result is defined as the number of spikes sent out. However,
one additional neuron suffices in such a case.

Theorem 3. NFIN = NoSN
+P1 ⊂ NoSN

+P2 ⊆ NoSN
+P3 ⊆ NoSN

+P4 = NRE.

Proof: Again, the inclusions NoSN
+P1 ⊆ NoSN

+P2 ⊆ NoSN
+P3 ⊆ NoSN

+P4 ⊆ NRE are
obvious from the definitions.

The inclusion NRE ⊆ NoSN
+P4 can be obtained by a slight extension of the construction

in the proof of Lemma 1: we replace the rule lh → λ from R1 with the rule

a+1 lh/lha1 → lh.

We also add a neuron σ4, considered as output neuron, linked by synapses (1, 4), (4, 1) to the
neuron σ1 and containing the unique rule

lh → lh.

When the computation of M stops, hence lh is introduced in σ1, this object removes one by
one the objects a1 and moves to the output neuron. This neuron both sends lh out and back to
σ1, hence the number of copies of lh sent out is equal with the number stored in the first register
of M .

This time, an SN+ P system with two components can compute an arbitrarily large number,
by sending out an arbitrarily large number of spikes. For instance,

Π = ({a}, (a, {a → a}), (aa, {aa/a → a, aa → a}), {(1, 2), (2, 1)}, 2),

has Lo(Π) = {1, 2, . . . } (neuron σ2 spikes step by step, until using the rule aa → a, when only
one spike remains in the system and the computation halts).

If we have only one neuron, the computation can last as may steps as many spikes are initially
inside, hence NoSN

+P1 ⊆ NFIN .
On the other hand, NFIN ⊆ NiSN

+P1. Indeed, consider again a finite set of numbers,
F = {n1, n2, . . . , nk} such that 1 ≤ n1 < n2 < · · · < nk and construct the system

Π = ({a}, σ1, ∅, 1), with
σ1 = (ank+1, R1),

R1 = {ank+1/ank+1−ni+1 → a | 1 ≤ i ≤ k}
∪ {ar/a → a | 1 ≤ r ≤ nk − 1}.

We have Li(Π) = F : each computation starts with a step which uses non-deterministically a
rule ank+1/ank+1−ni+1 → a, which decreases the number of spikes from the initial nk+1 to some
ni − 1; at this time, one spike was sent out. From now on, we use deterministically rules of the
form ar/a → a, for all r = 1, 2, . . . , ni − 1, hence for ni − 1 steps, always sending out one spike.
Thus, in total, we send out ni spikes, for each ni ∈ F .

Combining all these remarks, we have the theorem. 2

It is an open problem whether or not the inclusions NoSN
+P2 ⊆ NoSN

+P3 ⊆ NoSN
+P4 are

proper.

Theorem 4. NFIN = NdSN
+P1 = NdSN

+P2 ⊂ NdSN
+P3 ⊆ NdSN

+P4 = NRE.

Spiking Neural P Systems with Several Types of Spikes 653

Proof: As above, the inclusions NdSN
+P1 ⊆ NdSN

+P2 ⊆ NdSN
+P3 ⊆ NdSN

+P4 ⊆ NRE
are obvious from the definitions.

The inclusion NFIN ⊆ NdSN
+P1 is already proved for SN P systems with only one type of

spikes. Like in that case, we also obtain the inclusion NdSN
+P2 ⊆ NFIN : in order to generate

an arbitrarily large number, the output neuron should not spike for an arbitrarily large number
of steps, but this is not possible in a system with only two neurons, because if only one neuron is
working, it can perform only a number of steps bounded by the number of spikes initially present
in it.

The fact that NdSN
+P3 contains infinite sets of numbers is also known for standard SN P

systems.
What remains to prove is the inclusion NRE ⊆ NdSN

+P4 and this can again be obtained
by an extension of the construction in the proof of Lemma 1; because this extension is not
immediate, we give the construction in full details.

We consider a register machine M = (n,H, l0, lh, I) and construct the SN+ P system Π
as indicated in Figure 1 – this time we do not give the system formally, but we represent it
graphically, in the way usual in the SN P systems area.

-

6

?

6

?

6
� 6

-

1

l0

O∗/li → l′i,

for (li : ADD(r), lj , lk) ∈ I

O∗arO∗/liar → l′′j ,

(O∗ −O∗arO∗)/li → l′′k,

for (li : SUB(r), lj , lk) ∈ I)

a+1 lh/a1lh → lh

2

l′i → lj ,

l′i → lk,

for (li : ADD(r), lj , lk) ∈ I

l′′ → l, for l ∈ H
3

l′i → ar,

for (li : ADD(r), lj , lk) ∈ I)

l′′ → λ, for l ∈ H

lh → lh

4

c

cl3h → lh

l2h → λ

lh → lh

Figure 1: The SN+ P system from the proof of Theorem 4

The work of this system is identical to that in the proof of Lemma 1, until producing the
object lh (the objects which arrive in the output neuron σ4 from all other neurons remain here
unused).

When σ2 introduces the object lh, it is sent to all other neurons. It waits unused in σ4, but in

654 M. Ionescu, G. Păun, M. J. Pérez-Jiménez, A. Rodríguez-Patón

σ1 and σ3 it is reproduced in each step, hence these two neurons feed repeatedly each other with
one copy of lh. In σ1, each use of the rule a+1 lh/a1lh → lh removes one copy of a1. In the end of
step 1 (we count here only the steps after having lh in the system, hence for the phase when the
output is produced), neuron σ4 contains three copies of lh. Thus, in step 2, this neuron spikes.

From now on, neurons σ1, σ3 spike repeatedly, exchanging copies of lh, σ4 always forgets the
two copies of lh received from σ1, σ3 (while σ2 just accumulates copies of lh, which cannot be
processed here). When the last copy of a1 is removed from σ1 (if m copies of a1 were present
here when lh was introduced, then this happens in step m, after having lh in the system), this
is the last step when σ4 receives two spikes. In the next step (m + 1) it receives only the spike
produced by σ3, which is used (in step m+2) by the rule lh → lh in σ4. The computation stops.
The number of steps between the two spikes sent out by the output neuron is (m+ 2)− 2 = m,
hence the number computed by the register machine in its first register.

The proof of the theorem is now complete. 2

It is an open problem whether or not the inclusion NgSN
+P3 ⊆ NgSN

+P4 is proper.

5 Final Remarks

In gene expression it is also the case that the enzymes have a time dependency of their
reactivity, which can be captured in terms of SN P systems by considering decaying spikes, in
the sense of [6]. For instance, we can associate an age with each produced spike, by using rules of
the form E/u → (a, t), where t ≥ 1 is the “duration of life" of this spike. If the spike is not used in
a step, then its life is decreased by one unit (this is like having rewriting rules (a, s) → (a, s− 1),
used in parallel for all spikes not used in spiking or forgetting rules), until reaching the state
(a, 0), when a rule (a, 0) → λ is assumed to be applied. This feature remains to be further
investigated.

Let us close by recalling the fact that besides the synchronized (sequential in each neuron)
mode of evolution, there were also introduced other modes, such as the exhaustive one, [9], and
the non-synchronized one, [2], which also deserve to be considered for SN P systems with several
types of spikes.

Acknowledgements

The work of M. Ionescu was possible due to CNCSIS grant RP-4 12/01.07.2009. The work
of Gh. Păun was supported by Proyecto de Excelencia con Investigador de Reconocida Valía,
de la Junta de Andalucía, grant P08 – TIC 04200. The work of A. Rodriguez-Paton has been
supported by Spanish Ministry of Science and Innovation under project TIN2009 - 14421. The
careful reading of the paper by two anonymous referees is gratefully acknowledged.

Bibliography

[1] L. Cai, C.K. Dalal, M.B. Elowitz: Frequency-modulated nuclear localization bursts coordi-
nate gene regulation. Nature, 455 (25 September 2008).

[2] M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth: Asyn-
chronous spiking neural P systems. Theoretical Computer Science, 410, 24-25 (2009), 2352–
2364.

[3] H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4 (2007), 141–162.

Spiking Neural P Systems with Several Types of Spikes 655

[4] H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems with
extended rules. In Proc. Fourth Brainstorming Week on Membrane Computing, Sevilla, 2006,
RGNC Report 02/2006, 241–265.

[5] H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Handling languages with spiking
neural P systems with extended rules. Romanian J. Information Sci. and Technology, 9, 3
(2006), 151–162.

[6] R. Freund, M. Ionescu, M. Oswald: Extended spiking neural P systems with decaying spikes
and/or total spiking. Intern. J. Found. Computer Sci., 19 (2008), 1223–1234.

[7] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Informaticae,
71, 2-3 (2006), 279–308.

[8] M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: T. Yokomori: Spiking neural dP systems. Proc.
Ninth Brainstorming Week on Membrane Computing, Sevilla, 2011, RGNC Report 01/2011.

[9] M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with exhaustive use of rules.
Intern. J. Unconventional Computing, 3, 2 (2007), 135–154.

[10] E.M. Ozbudak, M. Thattai, I. Kurtser, A.D. Grossman, A. van Oudenaarden: Regulation
of noise in the expression of a single gene. Nature Genetics, 31 (May 2002).

[11] L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes. Intern. J. Computers, Comm.
Control, 4, 3 (2009), 273–282.

[12] J. Paulsson: Models of stochastic gene expression. Physics of Life Reviews, 2 (2005), 157–
175.

[13] Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Oxford
University Press, 2010.

[14] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

[15] A. Salomaa: Formal Languages. Academic Press, New York, 1973.

[16] The P Systems Website: http://ppage.psystems.eu.

