
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. VI (2011), No. 4 (December), pp. 701-712

Application Plugins for Distributed Simulations on the Grid

I.L. Muntean, A.I. Badiu

Ioan Lucian Muntean
Technical University of Cluj-Napoca
Department of Computer Science
Romania, 400027 Cluj-Napoca, 28 G. Baritiu
E-mail: ioan.lucian.muntean@cs.utcluj.ro

Alexandra Ioana Badiu
Technical University of Cluj-Napoca
Data Communication Center “Pusztai Kalman”
Romania, 400027 Cluj-Napoca, 28 G. Baritiu
E-mail: badiu@net.utcluj.ro

Abstract: Computing grids are today still underexploited by scientific com-
puting communities. The main reasons for this are, on the one hand, the
complexity and variety of tools and services existent in the grid middleware
ecosystem, and, on the other hand, the complexity of the development of ap-
plications capable to exploit the grids. We address in this work the challenge
of developing grid applications that keep pace with the rapid evolution of grid
middleware. For that, we propose an approach based on plugins for grid ap-
plications that encapsulate a set of commonly used type of grid operations.
We further propose more complex high-level functionalities, such as the plu-
gins for remote exploration of simulation scenarios and for monitoring of the
behavior of end-user applications in grids. We provide an example of a grid
application constructed with these software components and evaluate based on
it the performance of our approach in the context of the simulation of biolog-
ical neurons. The results obtained on test and production grids demonstrate
the usefulness of the proposed plugins, with a small performance overhead
compared to traditional grid tools.
Keywords: Grid computing, application plugins, simulation services, GridS-
FEA.

1 Introduction

Simulation is acknowledged today as the third pillar of modern sciences, in addition to the-
ory and experiments. Computational sciences are driven by simulation and provide the widest
majority of applications for high-performance computing resources available in grid environ-
ments. Today, user communities of grid computing, having scientific computing background, are
bounded to a large extent to a middleware traditionally employed within the respective commu-
nity. Such examples are the communities formed around the projects: TeraGrid, supported by
the Globus Toolkit [12], Enabling Grids for e-Science (EGEE/EGEE2) supported by the g-Lite
middleware [8], or NorduGrid, where the Advanced Resource Connector [3] has emerged from. A
special place in this sense is taken by the user community formed around the project Distributed
European Infrastructure for Supercomputing Applications (DEISA/DEISA-2). In DEISA, the
user has typically the choice between the Globus Toolkit and UNICORE [5].

The co-existence of these middleware imposes big challenges to the end-users of grids. Ba-
sically, these middleware are rather incompatible in many aspects (security, job and resource

Copyright c⃝ 2006-2011 by CCC Publications



702 I.L. Muntean, A.I. Badiu

management, etc). Therefore, users have to accommodate with different tools, languages, and
operating procedures. This makes the adoption of a middleware other than the one used within
his community a challenging task for the computational scientist. A great effort, supervised
by the group Grid Interoperability Now of the Open Grid Forum (OGF-GIN) [20] is currently
invested by the international grid community in the interoperability of these various middleware.
Such examples in Europe are international consortia such as the European Grid Infrastructure
(EGI) [11] or the Initiative for Globus in Europe (IGE) [12] aim at providing grid middleware
components that are capable of operating in an unified grid middleware (UMD [9]). In this
context, the development of grid applications that keep pace with the continuous evolution of
the different middleware still remains a big challenge that complements the approach to the
integration of the middleware.

In this paper, we address this latter challenge: the development of grid applications. For
that, we employ the Grid Simulation Framework for Engineering Applications (GridSFEA) [15],
a software package for the gridification of numerical simulation programs. Our approach is to
offer out-of-the-box high-level functionalities, packed as plugins, commonly needed in such appli-
cations. The plugin mechanism available with the Eclipse Platform has been successfully used in
our work. GridSFEA plugins cover for example job submission, job monitoring, file transfer, sim-
ulation explorer etc. Interactions with different middleware are possible due to low-level plugins
that pack client-side functionality of these middleware. The major benefit of our work is that new
applications requiring grid interactions or extensions to existing software packages can rapidly
be developed without any grid-knowledge, by solely incorporating these plugins. Furthermore,
end-users get a unified way of working with the grid, regardless the underlying middleware in
place. In [16] we proposed a first version of the plugin-based architecture of client-side tools of
GridSFEA. The evaluated prototype included only one high-level plugin, the parameter genera-
tor functionality. In the current work, we further refine the proposed architecture with additional
low- and high-level plugins. The evaluation is carried out on development and production grids.

The remaining of this paper is organized as follows: next section outlines the related work.
In Sec. 3, the GridSFEA framework is introduced. Eclipse plugins are briefly introduced in
Sec.4. Section 5 presents the plugins for grid applications available with GridSFEA. New high-
level plugins are discussed in Sec. 6. The results of this work in the context of a scenario from
computational neuroscience are the topic of Sec. 7, whereas Sec. 8 outlines our conclusions.

2 Related Work

For the development of grid applications, middleware specific client-side libraries and toolkits
are available in the grid community. Such examples are CoG Kit [23] for Globus Toolkit [2],
GLUE [4] and CREAM [1] for g-Lite. The use of these libraries requires a thorough understanding
of many technical and architectural details of each middleware stack. A great simplification in
this sense is brought by the Grid Application Toolkit (GAT) [2] and its successor Simple API for
Grid Application (SAGA) [14]. They provide a common programming interface to different grid
operations, hiding the implementation details of each middleware. The grid know-how required
for the application developer is rather low. Thus, for low-level grid operations, GAT and SAGA
are a very good option. Nevertheless, they are not meant to provide high-level functionalities.
Low level plugins of GridSFEA are based on community libraries such as GAT or CoG Kit. In
addition to these, the framework comes with ready-to-use out-of-the-box application components
providing high-level functionalities. Thus, both the application developer and the end-user of
the grid need almost no knowledge about the grid.

More evolved tools for the development of grid applications are the grid frameworks such
as g-Eclipse [14], Gridbus [22] , WS-GAF [19] or GFac [13]. These programs come with their



Application Plugins for Distributed Simulations on the Grid 703

own strengths and weaknesses. Gridbus has evolved more in the direction of grid resource
broker and cloud, having a rich support for parameter sweep use cases. Composition of scientific
applications from Web services is the main feature of WS-GAF and GFac, being more a server-
side development. A tool that focuses on the end-users is g-Eclipse. It allows operations on more
than one middleware (e.g. g-Lite, GRIA [21]), and, to some extent, the development of new
grid applications. The enabling technology of g-Eclipse is the plugin mechanism of the Eclipse
Platform. GridSFEA considers both server-side and client-side developments. In the approach
proposed in this paper, the plugins of GridSFEA are designed to be interoperable with the ones
of g-Eclipse and to complement them with high-level functionalities such as remote exploration
of simulation scenarios. Furthermore, the GridSFEA framework comes with its own support for
simulation migration on grid computing environments.

The adoption of the grid standards is essential in the realization of grid developments. With
this respect, we mention here the JSDL [18] specification of the Open Grid Forum. The end-user
requests for jobs and resources can be specified independently of the grid middleware on which
the jobs will run. Client tools become, to a large extent, responsible for translating the requests
to the specifics of the target middleware. At the moment of writing, only a part of the JSDL
specification is implemented by GridSFEA. The JSDL support complements the existing full
support to GT4 resource specification language available with GridSFEA.

3 An Overview of the GridSFEA Framework

GridSFEA is a framework that enables computational scientists and engineers to gridify
numerical simulation programs and to run them comfortably on the grid. The framework handles
simulation scenarios on the grid and assists the user with typical tasks such as formulation
of a computing job, submission of the job to the grid, retrieval of resulted simulation data,
investigation of simulation results remotely and locally. Two major types of simulation jobs are
especially supported by GridSFEA on the grid: parameter sweep and long running jobs.

The framework is modular and distributed, having components located on the end-user side
(client-side applications), on grid nodes (simulation services), and on the grid systems where the
user jobs run (the checkpoint migration tool). In Fig. 1 is depicted the architecture of GridSFEA.
Simulation scenarios are annotated by the framework; at the beginning of the job execution,
computation metadata of the scenario is collected by the application wrappers and provided
to the simulation services. The services organize the metadata and provide it to consumer
applications. Grid data exploration tools or the migration tool are examples of such applications.
Based on information recorded in the metadata, the consumers can interact with the simulation
data located on the grid.

Figure 1: Modules of GridSFEA located in the user space (left) and in the grid environment
(right) [15].

We briefly introduce below the role of each of the major elements of the framework. More



704 I.L. Muntean, A.I. Badiu

details about GridSFEA can be found in [15]. The simulation services are the core of GridSFEA.
Their role is to store, organize, and provide scenario metadata to all modules of the framework.
The Client Application Library (CAL) acts on the one hand as a client to the simulation ser-
vices. On the other hand, it handles all the specific grid interactions typically required by client
applications such as authentication in grid, file transfer etc. Thus, this module acts as the glue
that binds the framework components and integrates the third-party grid libraries. On top of
CAL client-side applications are built, such as shell or GUI-based user tools for interacting with
the simulations on the grid. Such examples are portal applications, data browser programs, and
command-line tool when shell interactions are required by the scientist. Gathering the metadata
of the scenarios and handling of simulation checkpoints (checkpoint transfer, simulation resume,
and registration of new checkpoints) are the main responsibilities of the Checkpoint Migration
Tool. State-of-the-art grid libraries available in the scientific community such as CoG Kit, GAT
(Globus Toolkit), DESHL (UNICORE), and CREAM (g-Lite) are employed by the framework
for the implementation of grid interactions. This way, our framework allows for client-side inter-
operability between grids based on these middleware.

Features such as the migration of simulation scenarios or the preview of results in grid make
our framework very valuable to computational scientists and engineers and give it a uniqueness
touch in the field of grid applications.

4 Eclipse Plugins

In the field of software development, the Eclipse platform is widely employed, on the one
hand due to its rich set of supportive tools such as compilers, debuggers, editors, and, on the
other hand, due to the large number of contributions from the software community that bring
many additional features to the platform. The big success of the Eclipse platform was possible
mainly because of the powerful plugin mechanism it employs, which is a good example of state-
of-the-art software engineering [5]. Basically, the way that the Eclipse IDE can be extended by
its contributors is specified in terms of extension points. The plugins contribute with appropriate
extensions to these points, without that the source code of the development environment gets
changed. At runtime, these plugins are located, identified, and loaded mostly only when their
functionality is required.

In [16] we have presented a detailed list of features that are important to our approach. We
summarize below the most relevant ones:

• By means of extension points and extensions, plugins interact, without being familiar with
each others implementation.

• The extension points define the public interface the plugin publishes and that can be
implemented by further applications.

• Any number of extensions can be used for contributing with functionality to an application.

• The software life-cycle of these plugins is defined in such a way, that a plugin can be
installed, updated, debugged, removed independently of the rest of the platform/hosting
application.

A further advantage of the Eclipse plugin model and mechanisms is that plugins can be easily
grouped together, packed and deployed as extensions of the Eclipse platform, of an existing
plugin, or of a plugin-based application. The last two deployment targets are especially of
interest in the context of our work on the GridSFEA framework.



Application Plugins for Distributed Simulations on the Grid 705

5 GridSFEA Plugins for Grid Computing Applications

The mechanisms of GridSFEA are applicable to a wide range of simulation scenarios and can
also be used with relatively small customization effort by further grid applications not necessarily
related to computational sciences and engineering. To foster the reuse of the know-how we
gathered with GridSFEA, we proposed in [16] a new plugin-based organization of the client-side
modules of our framework. As enabling technology have been used the Eclipse plugins. The
plugin mechanism allows for modular organization of software, for clean and rapid integration of
new functionalities, for the extension of existing implementations, for the reuse of framework’s
features by other applications, all these without altering the existing source code of the software.

The plugins available so far in our framework provide functionalities such as:

• low-level interactions with the grid (such as authentication, job submission, file transfer);

• high-level end-user operations (such as parameter sweep, exploration of results).

Figure 2: GridSFEA plugins for the development of grid applications [16]

Figure 2 depicts the components of GridSFEA realized with plugins, the arrows representing
extension point-extension relationship between components. Several client-side functionalities
of GridSFEA such as job submission, job monitoring and exploration of results have been re-
factored as plugins. In this paper, we further extend this architecture with two groups of plugins:
First, we have designed plugins for checking the behavior of applications and services deployed
on various grids. Secondly, we provide a plugin for the remote exploration of simulation results
located on the grid. These new components of our framework allow the user to tackle various
cases studies, such as benchmarking a grid site from an application perspective or deciding on
the early stage of a long simulation weather to continue or not the respective grid computation.

Based on the proposed plugins, an application with basic grid capabilities can be rapidly
created. In Fig. 3 we show the architecture of such an application. GridSFEA plugins can make
contributions to all layers of classical three-layer software architectures, as long as the integration
of the grid components is done using the plugin mechanism discussed in the previous section. This
way, the developer can focus entirely on the functionality required by the application domain.
In the upcoming sections, we give two usage scenarios for the plugins of GridSFEA: The first
one is the client-side monitoring of applications and services deployed on grid sites of potential
interest for a given end-user and the second one is the exploration of simulation results located
on grid.

6 Novel High-level Plugins

This section introduces two novel high-level plugins of GridSFEA. Both are focused on the
end-user, the computational scientist: With the first plugin, the user can formulate job requests



706 I.L. Muntean, A.I. Badiu

Figure 3: Enhancing a custom application (right) with grid computing capabilities by means
of GridSFEA plugins (left): formulation of computation tasks, their submission to GT4-based
grids, investigation and download of computation results (gray boxes)

trimmed to the needs of its favorite simulation applications and submit them to different grid
sites. The simulation results are accessed with the second plugin, the Simulation Explorer,
without that the user knows the actual location of the data in grid.

6.1 Plugins for monitoring grid applications

The goal of these plugins is to provide a simple yet effective mean to check to what extent
jobs involving specific applications can run properly one or more grid sites. Such functionality
is very useful to users that have access to several grid sites and have one or more applications
to run on those sites. A set of pre-defined grid jobs is made available to the application hosting
the monitoring plugins. These jobs exercise the targeted application, can use grid services such
as data transfer, job submission, or information services, and are submitted to the known grid
sites. The plugin collects the execution results for each test job and updates the status of the
respective application and services of the grid sites.

The computational scientist, as an end-user of these plugins, can create test jobs by providing
job scripts in the JSDL format. The plugins implement a subset of the JSDL specification that
allows for most common operations with jobs on grids. In addition to that, the framework
accepts also native WS-GRAM job scripts. By offering support for the JSDL specification of
the Open Grid Forum, the framework is not bound a single grid middleware or user community.
Furthermore, in order to employ these plugins, the end-users and client application of different
grid middleware only need to be able to phrase JSDL requests.

The incoming JSLD requests are transformed into middleware specific job requests by means
of adapter plugins, as depicted in Fig. 4. The submission of the adapted jobs to the targeted
grid sites is carried out by middleware-specific libraries (e.g. CREAM for gLite, CoG Kit for
Globus Toolkit 4), that become available to the framework in the form of contributing plugins.
The adaptor plugins contribute to the Template Job Plugin by providing implementations of the
extension point of the latter one. Community libraries such as GAT, CoG Kit are packed as
plugins that export high level packages.

Our approach is lightweight and flexible for several reasons. First, the contributor plugin
corresponding to a grid middleware, such as the GRAM 4, encapsulates properly the client-side
specifics of that middleware, here Globus Toolkit 4. The sole interaction between the plugins is
done by means of the defined extension points. Second, the monitoring plugin may be used for
one or more grid sites without any changes. Furthermore, the customized test jobs can be used
to benchmark the grid sites from an application perspective. The end-user of the grid can write



Application Plugins for Distributed Simulations on the Grid 707

Figure 4: JSDL incoming job requests are adapted on-the-fly to middleware-specific outgoing
job requests by means of plugins.

test jobs that reflect the way she uses a given application for her scenarios, the response of the
monitoring plugins being thus trimmed to the user needs.

By providing access to different types of grid middleware, our plugin bundle provides client-
side interoperability of grids. In a seamless way, files can be transferred between heterogeneous
sites (such as from GT4 to UNICORE) and jobs can be submitted to grid sites running any of
the supported grid middleware. The beneficiaries of our approach are, on the one hand, the end-
users with access to multiple grid sites (for operations such as checking the existence of installed
programs, running application trimmed test jobs, benchmarking sites from an application per-
spective). On the other hand, these plugins can be easily integrated in any Eclipse-based plugin
or RCP (Rich Client Platform) application with the purpose of interacting with grid installations
(such as monitoring tools).

6.2 Plugin-based exploration of simulation scenarios

A second example of usage scenario of the GridSFEA plugins contributes to the interaction of
end-users with remote data located in grids. For that, a plugin for data exploration was designed
based on components of GridSFEA. All data belonging to a simulation run i.e. input files, input
parameters, result files, post processing results, and checkpoint files are grouped logically in a
simulation scenario. Scenarios can be downloaded to the end-user space, transferred between
grid sites, or used to reset/continue a simulation at the same location or at a different one.

The access to the simulation scenarios is made in a way transparent to the end user. He needs
not to know the exact location of the remote data nor the way (protocol and service) to access it.
With our plugin running on the user system, metadata of scenarios is retrieved from simulation
services. The plugin lists all instances of a scenario, instances created during its migration for
several times.

All the movements and changes of a scenario are recorded with the Simulation Services and
can be displayed by tools such as the Simulation Explorer plugin (Eclipse-based plugin), the
GridSFEA browser (standalone desktop application), or a thin client for mobile devices. A
common feature of these tools is that the scenario data can be explored on the client side in a
preview-like mode. Excerpts from scenario files can be displayed in the end-user application, as
well as results of the post processing steps (images generated by VisIt, MATLAB, GNU Plot
etc.).

Thus, the preview of scenarios enables the user to comfortably investigate/explore the results
of the simulation without downloading the files to the end-user system. This feature gives the
user the needed instrument to assist her in deciding if the results worth further investigations



708 I.L. Muntean, A.I. Badiu

or the simulation needs to be recalculated, even with changes in the input configuration of the
simulation. Complete result files can also be downloaded to the end-user’s machine and further
explored locally with scientific visualization tools, e.g.

7 Results

The results discussed in this section have been obtained on three grid sites: one operated
with GT4 (labacal.utcluj.ro, 48 cores), one with GT5 (acalgrid01t.utcluj.ro, 48 cores),
and one again with GT4 (a01.hlrb2.lrz-muenchen.de, +8000 cores) as well. The first two sites
are for the development and testing of grid applications, the third one is a production site from
the DEISA infrastructure. The aim of the experiments was to show how the plugins introduced
in Sec. 6 were employed to build a custom application. This evaluation was done with respect
to the requirements of a simulator based on the Neocortex program [17] for investigating the
dynamic properties of microcircuits of spiking neurons.

7.1 Scenario: simulation of neural microcircuits

Understanding the behavior of biological neurons, in particular of the human one, is a chal-
lenging task for the entire neuroscience community. This is an interdisciplinary area, with major
contributions from biology, physics, chemistry, psychology. Since the experimental and observa-
tional means are in this particular area rather limited, the simulation becomes a very valuable
instrument for gathering knowledge, along with theory and experiments. Neurosim is a spiking
neural simulator based on the Neocortex tool, at the moment of writing still under development,
having the goal to compute on HPC systems realistic models of neural microcircuits based on
biological neuron models. The general aim of the investigations where Neurosim will be used
is the evaluation of the impact the different parallelization strategies on the dynamics of neural
microcircuits. In-depth descriptions of this simulation program and of the mathematical models
it employs in simulations are beyond the scope of this paper. Nevertheless, we outline a few
typical computational requirements of Neurosim: batch mode (headless operation), support for
input/output files and program arguments; post-processing operations with Gnuplot; parameter-
based investigations; parallel runs using hybrid parallelization techniques (MPI combined with
OpenMP). The list above comprises requirements common to typical applications running on
HPC systems. The execution of such applications on computing grids with HPC resources is
widely supported by GridSFEA.

7.2 Custom application based on high-level plugins: GridSFEA Trotter

From the pool of plugins available with GridSFEA we have built a rich client application
named here GridSFEA Trotter, having the kern functionalities: incoming requests for simulation
jobs are formulated in JSDL, these requests are transformed into GRAM4 or GRAM5 specific job
descriptions, jobs are submitted to any grid site running the middleware GT4 or GT5, results
of the jobs are monitored and measured, computation results are presented to users in terms
of simulation scenarios, results and post-processing files are pre-viewed remotely and further
processed locally. The application comes with a set of pre-defined job templates that can be used
to benchmark an application/service hosted by a grid site. These templates have been customized
to the needs of Neurosim and have been used for describing simulations of neural microcircuits.
The template jobs for Neurosim address different ways of working with this program such as
performing sequential and parallel runs, staging in input files (network descriptions, initial values
etc), staging out results, trigger post-processing operations. GridSFEA Trotter comprises the



Application Plugins for Distributed Simulations on the Grid 709

high-level plugins for benchmarking grid applications and for remote exploration of simulation
scenarios, and a suite of low-level plugins, such as the Template Job Plugin, GRAM 4 and GRAM
5 adaptors, File Transfer, plugins packing community libraries (CoG Kit, GT4 client, and GT5
client). By means of extension points, further adaptors can be loaded automatically at runtime
by the Trotter.

7.3 Results and measurements

The goal of our experiments was to quantify the overhead introduced by our tool in compar-
ison to the local execution of the simulation programs and to corresponding tools from the grid
middleware. The job scripts perform the operations: submission of jobs without file staging,
submission of jobs with file staging (in and out), and submission of jobs that require a check-
point file handled by GridSFEA. The computation tasks are described in the JSDL format. The
implementations of the JSDL specification and of its POSIX extension are partial. The suite
of templates was executed on different grid sites using both our plugin-based application and
the client tools of Globus Toolkit. In Table 1 is displayed the execution time of job scripts
for different Linux commands contained by the templates. These commands have very small
execution times, of the order of mili-seconds.

Table 1: Execution time for the JSDL job templates with GridSFEA Trotter. The size of the
input and of the output file is approximately the same for one measurement.

Template labacal[s] acalgrid01t[s] hlrb2[s]
/bin/ls, /bin/date, /bin/hostname 3.8 3.7 3.9
Neurosim (no processing) 6.7 6.9 7.1
Batch job 2.5 2.6 2.8

Considering the small duration of the execution of the commands employed in these tests,
the results indicated in Table 1 show actually the overhead introduced by the grid middleware
deployed on any of the three sites. This overhead has the order of seconds and clearly dominates
the execution time of the grid job. Each site has a slightly different response time, depending on
its setup. When comparing time results obtained on any of these sites, one should fairly consider
the response time characteristic to the respective site. The job scripts for executing Neurosim
require file staging operations. Table 2 shows the results related to such file operations (upload
of input and checkpoint files, download of result, standard output/error, and checkpoint files).
These experiments have been conducted with the GridSFEA Trotter application on the grid
site labacal. The file dimensions employed here are typical for different scenarios of Neurosim,
corresponding to neural microcircuits with different physical connections (ranging from O(1)
to O (104) synapses for one neuron). The execution time of the simulation program has been
subtracted from these time results to allow a fair comparison of the scenarios.

The time results listed in the second column of Table 2 correspond to Neurosim jobs where
input and output files have been staged in and staged out, resp. The third column contains
execution time of simulations that need to be restarted from a checkpoint and include the transfer
time of that file. These values represent the total transfer time, including the contribution of
GridSFEA Trotter and of the grid middleware. Results in the last column represent the time
needed for the Trotter to find the actual location of a checkpoint file, information provided by
the simulation services of GridSFEA. This information is extracted from the metadata about the
scenario collected by the framework. The localization time must be added to the values in the
third column to get the entire duration of such a job from the user perspective. The time needed



710 I.L. Muntean, A.I. Badiu

Table 2: Time measurement for executing Neurosim jobs with GridSFEA Trotter. The size of
the input, output and checkpoint file is approximately the same for one measurement.

Scenario Size[MB] Stage In/Out Time [s] Checkpoint Time[s] Localization Time[s]
0.01 6.9 5.5 9.92
0.10 5.9 5.4 9.89
1.0 5.3 5.4 9.90
10 10.2 14.1 8.72
100 53.5 98.1 9.93

to get the localization of the checkpoint does not depend on the size of the scenario (given in
the first column) and is a characteristic of the framework. The job files in the GRAM 4 format
corresponding to the JSDL jobs used for these measurements have been submitted to the grid
with the client tool of the Globus Toolkit middleware (see Table 3).

Table 3: Time measurement for the execution of Neurosim jobs with client tools of GT. The size
of the input, output and checkpoint file is approximately the same for one measurement.

Scenario Size[MB] Stage In/Out Job Time [s] Checkpoint Job Time[s]
0.01 4.4 5.5
0.10 3.9 4.6
1.0 4.2 4.8
10 6.1 9.2
100 31.3 63.8

The localization of the checkpoint has been carried out by the user, as well as the altering
of the job file. Thus, these have not been considered in the measurements. We can see that the
duration of the jobs is shorter than the execution of the same scenarios with GridSFEA Trotter.
This is mainly due to the parallel file transfers implemented in the client tools of the Globus
Toolkit. This feature is currently missing from the CoG Kit library that is employed by our
application. Nevertheless, the advantages of our approach are threefold: automatic localization
of checkpoint files, automatic generation of the job script that relied on checkpoints, and the use
of the middleware independent job description language JSDL. The evaluation of the Simulation
Explorer plugin, hosted by GridSFEA Trotter, was carried out against the tools of the GT
middleware. The results were similar to the ones above.

Our conclusion reads that for small data size, below 10 MB, the overhead of our approach
was small. For larger files, the download with the plugin took longer. The preview data is
typically much smaller than the raw data produced by the simulation. Thus, it is expected that
in real-word usage, GridSFEA Trotter will have almost the same response time as the middleware
specific tools. An advantage of our approach is the integration of the simulation explorer with
the rest of the plugins being capable, thus, to automatically obtain form the simulation services
localization information about the scenario data, regardless where the jobs have been computed.
Therefore, the investigation of the scenarios was carried out with the Trotter in a seamless way.

The performance of this approach was to some extent better than in [15], without plugins.
Nevertheless, the localization time was higher here due to generally longer responses from the
grid servers. The experiments conducted here showed that the plugins we provide are useful
to users from the scientific computing area. We have created a sample application, GridSFEA



Application Plugins for Distributed Simulations on the Grid 711

Trotter, which demonstrates the way our plugins are integrated and are employed for high-
level operations on the grid. A strong limitation of our approach occurs when large files are
involved in the operations of the end-user, the time overhead introduced by our approach being
significantly high. This could be reduced by exploiting parallel file transfers, for example. A
further drawback is that applications need to support the Eclipse plugin mechanism in order
to host our plugins. Nevertheless, our plugin-based approach brings out-of-the-box high-level
functionalities very useful to the development of grid applications.

8 Conclusions and lessons learnt

We have presented in our work on a plugin-based approach for the development of grid ap-
plications. With our approach, the realization of both high-level (focused on the grid user) and
low level (oriented towards the grid) operations is possible, leading to out-of-the-box function-
alities reusable in further applications. This was demonstrated here with GridSFEA Trotter.
Comfortable for the grid user, the operations on grid introduce an overhead in some cases, when
large data files are involved. In other cases, the performance of our approach is similar to the
one of the native grid client tools, such as the ones of the Globus Toolkit, but enriches their
usage within more complex scenarios such as the exploration of simulation data located on grid.
Specifics of the grid middleware are packed as contributing plugins, thus, making the adoption
of a further middleware a straightforward task. Moreover, the use of JSDL for formulating job
requests opens the use of applications based on our plugins to scientific communities relying
of different grid middleware than the Globus Toolkit. In the global context of the unification
of the grid middleware, our work makes a step forward from the grid application development
perspective.

Acknowledgements

This work was partly supported by National Council of Scientific Research in High Education
within the PNII Human Resources program, project number 10/2009, and by the POSDRU
program, financing contract POSDRU/89/1.5/S/62557.

Bibliography

[1] C. Aiftimiei, P. Andreetto, S. Bertocco S. Dalla Fina, A. Dorigo, E. Frizziero A. Gianelle,
M. Marzolla, M. Mazzucato, M. Sgaravatto, S. Traldi, and L. Zangrando. Design and
implementation of the gLite CREAM job. Elsevier, 26, 2010.

[2] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser, T. Kielmann, A. Merzky, R. van
Nieuwpoort, A. Reinefeld, F. Schintke, T. Schott, E. Seidel, and B. Ullmer. The grid
application toolkit: Toward generic and easy application programming interfaces for the
grid. Proceedings of the IEEE, 93:534–550, March 2005.

[3] ARC. Advanced resource connector resources. http://www.nordugrid.org/arc, 2010.

[4] S. Burke, S. Andreozzi, and L. Field. Experiences with the GLUE information schema in
the LCG/EGEE production grid. Journal of Physics: Conference Series, 119, 2008.

[5] E. Clayberg and R. Dan. Eclipse: Building Commercial- Quality Plug-ins (2nd Edition).
Addison-Wesley Professional, 2006.

[6] L. Clementi, M. Rambadt, R. Menday, and J. Reetz. UNICORE deployment within the
DEISA supercomputing grid infrastructure. In W. Lehner, N. Meyer, A. Streit, and C. Stew-
art, editors, Euro-Par Workshops, volume 4375 of LNCS, pages 264–273. Springer, 2006.



712 I.L. Muntean, A.I. Badiu

[7] EGI. Unified middleware distribution. Technical report, EGI, 2009.

[8] EGI. European Grid Infrastructure resources. http://ww.egi.eu, 2010.

[9] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl J.
Supercomputer Applications, 11(2):115–128, 1997.

[10] gLite. Lightweight middleware for grid computing. http://glite.web.cern.ch/glite, 2010.

[11] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. von Laszewski, C. Lee, A. Merzky,
H. Rajic, and J. Shalf. SAGA: A simple api for grid applications. high-level application
programming on the grid. Computational Methods in Science and Technology, 12(1):7–20,
2006.

[12] IGE. Initiative for Globus in Europe. http://www.ige-project.eu, 2010.

[13] G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S. Marru, and D. Gannon. Building web
services for scientific grid applications. IBM J. Res. Dev., 50(2/3):249–260, 2006.

[14] H. Kornmayer, M. Stümpert, H. Gjermundrød, and P. Wolniewicz. g-Eclipse – a contextu-
alised framework for grid users, grid resource providers and grid application developers. In
M. Bubak et al., editors, Computational Science – ICCS 2008, volume 5103 of LNCS, pages
399–408. Springer, 2008.

[15] I.L. Muntean. Efficient Distributed Numerical Simulation on the Grid. PhD thesis, Institut
für Informatik, Technische Universität München, 2008.

[16] I.L. Muntean. Plugins for numerical simulation with GridSFEA on computing grid. In
Procs. of the 8th Intl. RoEduNet Conference Galati, pages 51–56, 2009.

[17] R.C. Muresan and I. Ignat. The Neocortex neural simulator, a modern design. In Interna-
tional Conference on Intelligent Engeneering Systems, 2004.

[18] Open Grid Forum. Job submission description language resources.
http://www.gridforum.org/documents/GFD.56.pdf, 2010.

[19] S. Parastatidis, J. Webber, P. Watson, and T. Rischbeck. WS-GAF: a framework for build-
ing grid applications using web services: Research articles. Concurrency Computat.:Pract.
Exper., 17(2-4):391–417, 2005.

[20] M. Riedel and et al. Interoperation of world-wide production e-science infrastructures.
Concurr. Comput.: Pract. Exper., 21:961–990, 2009.

[21] M. Surridge, S. Taylor, D. De Roure, and E. Zaluska. Experiences with GRIA — industrial
applications on a web services grid. In E-SCIENCE ’05: Proceedings of the First Interna-
tional Conference on e-Science and Grid Computing, pages 98–105, Washington, DC, USA,
2005. IEEE Computer Society.

[22] S. Venugopal, R. Buyya, and L. Winton. A grid service broker for scheduling distributed
data-oriented applications on global grids. In MGC ’04: Proceedings of the 2nd workshop
on Middleware for grid computing, pages 75–80, New York, NY, USA, 2004. ACM.

[23] G. von Laszewski and M. Hategan. Workflow concepts of the Java CoG Kit. J. Grid
Computing, 3(3-4):239–258, 2005.


