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Abstract: The idea of sensitivity in ant colony systems has been exploited in
hybrid ant-based models with promising results for many combinatorial opti-
mization problems. Heterogeneity is induced in the ant population by endow-
ing individual ants with a certain level of sensitivity to the pheromone trail.
The variable pheromone sensitivity within the same population of ants can
potentially intensify the search while in the same time inducing diversity for
the exploration of the environment. The performance of sensitive ant models
is investigated for solving the generalized vehicle routing problem. Numerical
results and comparisons are discussed and analysed with a focus on emphasiz-
ing any particular aspects and potential benefits related to hybrid ant-based
models.
Keywords: ant-based models, optimization, sensitivity, complex problems

1 Introduction

The potential of ant-based models [2,3,9] in solving difficult optimization problems has been
well emphasized by successful results obtained in many and varied fields including transportation
optimization, quadratic assignment, scheduling, vehicle routing and protein folding. Inspired by
the real-world collective behaviour of social insects, Ant Colony System (ACS) algorithms [2]
rely on the stigmergic interactions between many identical artificial ants to find solutions to
a given problem. Each ant generates a complete tour (associated to a problem solution) by
probabilistically choosing the next node at each path intersection based on the cost and the
amount of pheromone on the connecting edge. Stronger pheromone trails are preferred and the
most promising tours build up higher amounts of pheromone in time.

Inducing heterogeneity in the population by enabling each artificial ant to react in a different
way to the same environment [10] represents a promising approach to the application of ant-
based models for solving complex real-world problems possibly with a dynamic character. Each
individual ant can be endowed with a certain level of sensitivity to the pheromone trail triggering
various types of reactions to a changing environment. The variable pheromone sensitivity within
the same population of ants can potentially intensify the search (normally through high sensitivity
levels) while in the same time inducing diversity for the exploration of the environment. The
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decision of a low-level sensitive ant regarding the action to be performed crucially contributes to
the quality of the search process and solutions.

The Generalized Vehicle Routing Problem (GVRP) is an extension of the Vehicle Routing
Problem (VRP) and was introduced by Ghiani and Improta [6]. The GVRP is the problem
of designing optimal delivery or collection routes, subject to capacity restrictions, from a given
depot to a number of predefined, mutually exclusive and exhaustive node-sets (clusters).

The GVRP belongs to the class of generalized combinatorial optimization problems, which
are natural extensions of combinatorial optimization problems by considering a related problem
relative to a given partition of the nodes of the graph into node sets, while the feasibility con-
straints are expressed in terms of the clusters. In the literature we can find several generalized
problems such as the generalized minimum spanning tree problem (see [13]), the generalized
traveling salesman problem, the generalized vehicle routing problem, the generalized (subset) as-
signment problem, etc. These generalized problems belong to the class of NP-complete problems,
are harder than the classical ones and nowadays are intensively studied due to the interesting
properties and applications in the real world, even though many practitioners are reluctant to
use them for practical modeling problems because of the complexity of finding optimal or near-
optimal solutions.

Ghiani and Improta [6] showed that the problem can be transformed into a capacitated arc
routing problem (CARP) and Baldacci et al. [1] proved that the reverse transformation is valid.
Recently, Pop [12] provided a new efficient transformation of the GVRP into the classical vehicle
routing problem (VRP). As far as we know, the only specific algorithm for solving the GVRP
was developed by Pop et al. [11] and was based on ant colony optimization.

The aim of this paper is to investigate the performance of the Sensitive Ant Model (SAM) [10]
in solving the Generalized Vehicle Routing Problem (GVRP) [6]. We report numerical results of
the SAM model for several GVRP benchmark problems and discuss the performance of SAM
compared to the standard ACS technique.

2 Definition and Complexity of the GVRP

Let G = (V,A) be a directed graph with V = {0, 1, 2, ...., n} as the set of vertices and the set
of arcs A = {(i, j) | i, j ∈ V, i ̸= j}. A nonnegative cost cij associated with each arc (i, j) ∈ A.
The set of vertices (nodes) is partitioned into k+1 mutually exclusive nonempty subsets, called
clusters, V0, V1, ..., Vk (i.e. V = V0 ∪ V1 ∪ ... ∪ Vk and Vl ∩ Vp = ∅ for all l, p ∈ {0, 1, ..., k} and
l ̸= p). The cluster V0 has only one vertex 0, which represents the depot, and remaining n
nodes belonging to the remaining k clusters represent geographically dispersed customers. Each
customer has a certain amount of demand and the total demand of each cluster can be satisfied
via any of its nodes. There exist m identical vehicles, each with a capacity Q.

The generalized vehicle routing problem (GVRP) consists in finding the minimum total cost
tours of starting and ending at the depot, such that each cluster should be visited exactly once,
the entering and leaving nodes of each cluster is the same and the sum of all the demands of any
tour (route) does not exceed the capacity of the vehicle Q. An illustrative scheme of the GVRP
and a feasible tour is shown in the Figure 1.

The GVRP reduces to the classical Vehicle Routing Problem (VRP) when all the clusters
are singletons and to the Generalized Traveling Salesman Problem (GTSP) when m = 1 and
Q = ∞.

The GVRP is NP -hard because it includes the generalized traveling salesman problem as a
special case when m = 1 and Q = ∞.

Several real-world situations can be modeled as a GVRP. The post-box collection problem
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Figure 1: An example of a feasible solution of the GVRP

described in Laporte et al. [7] becomes an asymmetric GVRP if more than one vehicle is required.
Furthermore, the GVRP is able to model the distribution of goods by sea to a number of
customers situated in an archipelago as in Philippines, New Zeeland, Indonesia, Italy, Greece
and Croatia. In this application, a number of potential harbours is selected for every island and
a fleet of ships is required to visit exactly one harbour for every island.

Several applications of the GTSP (Laporte et al. [8]) may be extended naturally to GVRP.
In addition, several other situations can be modeled as a GVRP, these include:

• the Traveling Salesman Problem (TSP) with profits (Feillet et al. [4]);

• a number of Vehicle Routing Problem (VRP) extensions: the VRP with selective backhauls,
the covering VRP, the periodic VRP, the capacitated general windy routing problem, etc.;

• the design of tandem configurations for automated guided vehicles (Baldacci et al. [1]).

3 The ACS algorithm for solving GVRP

The ACS-based algorithm for GVRP [11] uses artificial ants in order to construct vehicle
routes by successively choosing exactly one node from each cluster. This task continues until
each cluster has been visited. Whenever the choice of another node from a cluster would lead to
an infeasible solution because of vehicles capacity, the depot is chosen and a new route is started.

Initially, the Nearest Neighbor (NN) algorithm - with the rule always go to the nearest as-
yet-unvisited location - is considered. The best solution of Nearest Neighbor (NN) algorithm
(L+) is used for ACS-based algorithm start.

The number of ants corresponds to the number of GVRP customers m. At the beginning of
an iteration, an ant is placed at each node (customer). After initializing the basic ant system
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algorithm, the two steps: (i) construction of vehicle routes and (ii) trail update are repeated for
a given number of iterations.

To favor the selection of an edge with a high pheromone level and high visibility, a probability
function pijk is defined as follows:

pijk (t) =
τkij(t)[η

k
ij(t)]

β∑
o∈Jk

i
τkio(t)[η

k
io(t)]

β
(1)

where Jk
i is the set of unvisited neighbors of node i by ant k, j ∈ Jk

i and β is a parameter used
for tuning the relative importance of visibility. After an artificial ant has constructed a feasible
solution, the pheromone trails are laid depending on the objective value Lk. For each edge that
was used by ant k, the pheromone trail is updated according to the following rule:

τij(t+ 1) = (1− ρ)τij(t) + ρ
1

Lk
(2)

where ρ ∈ (0, 1) is an evaporation rate parameter.
A tabu list prevents ants visiting clusters they have previously visited. The ant tabu list is

cleared after each completed tour.
The global update rule, applied by the elitist ants, as in ACS [3] is:

τij(t+ 1) = (1− ρ)τij(t) + ρ
1

L+
, (3)

where L+ is the so far best solution.

4 Sensitive Ant-based Model for GVRP

The Sensitive Ant Model (SAM) technique proposed in [10] is engaged for solving the GVRP.
The general approach to solving GVRP using SAM is the same with the ACS approach presented
in the previous section except that the transition probabilities defined by SAM are used. The
initialization of the algorithm, the update rules and the maintainance of a tabu list are kept the
same in SAM for GVRP.

The SAM algorithm involves several ants able to communicate in a stigmergic manner (influ-
enced by pheromone trails) for solving complex search problems. Within the SAM model, each
ant is characterized by a pheromone sensitivity level (PSL). The PSL value is expressed by a
real number in the unit interval [0, 1]. When PSL is null the ant completely ignores stigmergic
information and when PSL is one the agent has maximum pheromone sensitivity. The ants with
a low PSL value are more independent and are considered environment explorers. They have
the potential to autonomously discover new promising regions of the solution space. The ants
with high PSL values are very sensitive to pheromone traces. They are influenced by stigmergic
information and therefore intensively exploit the promising search regions already identified.

SAM introduces a measure of randomness proportional to the level of individual PSL in the
decisions of ants regarding the path to follow. This is achieved by modifying the transition
probabilities using the PSL values in a renormalization process [10]. The SAM renormalized
transition probability for ant k (influenced by PSL) is denoted by spijk (t) and is given by the
following equation:

spijk (t) = pijk (t) · PSLk(t), (4)

where pijk (t) is the probability for ant k to choose the next node j from current node i (as
given in ACS - see Equation 1) and PSLk(t) represents the PSL value of ant k at time t.



Table 1: Problem characteristics for the ant-based algorithms for GVRP

Problem VR Q Q’ No.vehicles No.Routes
11eil51 2 160 320 6 3

16eil76A 2 140 280 10 5
16eil76B 3 100 300 15 5
16eil76C 2 180 360 8 4
16eil76D 2 220 440 6 3
21eil101A 2 200 400 8 4
21eil101B 2 112 224 14 7

It can be noticed that the SAM probability of selecting the next node is the same with the
ACS one when PSL value is one. In order to associate a standard probability distribution to the
system, the SAM virtual state corresponding to the ’lost’ probability of (1 − PSLk(t)) has to
be defined. The associated virtual state decision rule specifies the action to be taken when the
virtual state is selected using the renormalized transition mechanism. The following rule is used
in the current paper: the ant randomly chooses an available node with uniform probability if
the virtual state is selected. This approach favors the increasing of randomness in the selection
process with the decreasing of sensitivity level to pheromone.

5 Computational results

The performance of the SAM and ACS for solving GVRP is investigated. Numerical ex-
periments focus on seven benchmark problems from the TSPLIB library [14]. These problems
contain between 51 and 101 customers (nodes), which are partitioned into a given number of
clusters, and in addition the depot.

Originally the set of nodes in these problems is not divided into clusters. The CLUSTERING
procedure proposed by Fischetti et al. [5] is used to divide data into node-sets. This procedure
sets the number of clusters m = [n5 ], identifies the m farthest nodes from each other and assigns
each remaining node to its nearest center.

Table 1 contains the description of the GVRP instances addressed in this paper.
The meaning associated with the columns in Table 1 is as follows:

• Problem: The name of the test problem contains the number of clusters (first digits in the
problem name) and the number of nodes (last digits in the problem name).

• VR: The minimal number of vehicles needed for a route in order to cover even the largest
capacity of a cluster (VR=Vehicles/Route)

• Q’: the capacity Q · V R, where Q is the capacity of a vehicle available at the depot.

The same parameter setting was used in both SAM and ACS algorithms in order to allow a
meaningful direct comparison: τ0 = 0.1 (the initial value of all pheromone trails), α = 1, β = 5,
ρ = 0.0001 and q0 = 0.5. In the SAM algorithm, the PSL value is randomly generated between
0 and 1 for each ant.

Numerical results indicate a competitive performance of the SAM algorithm. Figure 2
presents SAM results from 20 succesive runs for the considered problem instances.
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Figure 2: SAM results from 20 runs for the considered problem instances [14]

Table 2: Best Values and Times - ACS and SAM algorithms for solving GVRP

Problem ACS Time ACS SAM Time SAM
11eil51 418.85 212 418.21 297

16eil76A 668.78 18 651.98 25
16eil76B 625.83 64 599.23 166
16eil76C 553.21 215.00 577.49 88
16eil76D 508.81 177.00 515.64 120
21eil101A 634.74 72 634.74 111
21eil101B 875.58 8.00 966.17 52

Tables 2 and 3 present comparative numerical results obtained in 20 runs. The performance
of SAM in solving GVRP is compared to that of ACS [11].

The following information is contained in Tables 2 and 3:

• Best length: the minimal length of collection routes;

• Best time: the time of the minimal collection routes;

• Avg. length: the average length for 20 runs;

• Avg. time: the average time (in seconds) for 20 runs.

The computational values are the result of the average of 20 successively runs of both algo-
rithms. Termination criterion is either the maximum number of iterations, Niter = 250000 or
the maximum running time (five minutes) on a AMD 2600, 1.9Ghz and 1024 MB.

When comparing the best solution reported in 20 runs, the performance of the ACS and SAM
algorithms are similar. SAM reports better values for three out seven problems while ACS does
better for other three problems. It should be noticed that whenever a method is able to obtain
a better solution, it also reports a longer running time compared to the other one.

The average solutions obtained by SAM are clearly improved compared to ACS although
the running time has slightly increased for some of the GVRP instances. SAM detects a better
average solution (calculated based on the 25 runs) for six out of the seven benchmark problems.



Table 3: Average Values and Times - ACS and SAM algorithms for solving GVRP

Problem ACS Time ACS SAM Time SAM
11eil51 429.85 210.20 424.05 96.40

16eil76A 706.09 109.20 677.85 187.60
16eil76B 684.04 50.7 608.62 173.7
16eil76C 625.87 73.00 602.06 42.25
16eil76D 566.56 93.20 533.12 223.45
21eil101A 699.46 29.00 690.39 124.30
21eil101B 996.41 25.95 998.71 27.90

Overall better average SAM results are facilitated by a better exploration of the search space
and exploitation of new solutions. This is due to the variable sensitivity induced in SAM via
random individual PSL values.

6 Conclusions

Sensitive heterogeneous ant-based models facilitate a balanced search process by endowing
ants with different pheromone senitivity levels translated into different search strategies. An
effective exploration of the search space is performed particularly by ants having low pheromone
sensitivity while the exploitation of intermediary solutions is facilitated by highly-sensitive ants.

The performance of hybrid ant-based models is investigated with succesful results for solving
the NP-hard Generalized Vehicle Routing Problem. Variable pheromone sensitivity in ant-based
models proves to be benefic to the search process leading to better results compared to the ant
colony system algorithm. Numerical results encourage the exploration of new ways to induce
heterogeneity in ant-based models.
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