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Abstract: To reduce computational cost in fuzzy systems in communication
networks, distance based triggering and sampling rate adaptation probabilities
are proposed based on the concept of probability via expectation. The trigger-
ing probability, which is calculated by using the square of distance between
subsequent input vectors, governs the rate at which the fuzzy system is trig-
gered. The dynamic sampling rate probability, which governs the adaptation
of the sampling rate, is computed by using the exponentially weighted moving
average (EWMA) of the triggering probability. A stopping criterion, based on
convergence tests, is also proposed to ensure that the mechanism switches off
when the sampling period has converged. The triggering mechanism reduces
the number of computations in the Fuzzy Logic Congestion Detection (FLCD)
in wireless Local Area Networks (WLANs) by more than 45%. Performance,
in terms of packet loss rate, delay, jitter, and throughput, however, remains
virtually the same. On the other hand, the dynamic sampling rate mechanism
leads to more than 150% improvement in sampling rate and more than 70%
reduction in fuzzy computations while performance in the other key metrics
remains virtually the same. As part of future work, the proposed mechanism
will be tested in fuzzy systems in wireless sensor/actuator networks.
Keywords: communication networks, fuzzy systems, sampling rate.

1 Introduction

The number of fuzzy logic based applications in communication networks is increasing rapidly.
This development is motivated [1] by the difficulties experienced when modeling communication
networks by using conventional analytical methods. Some of the fuzzy applications include
power control [2] in cellular systems; congestion control in IP netwoks [3], [4]; routing [5] and
data fusion [6] in wireless sensor networks; and Quality of Service management in wireless sensor
and actuator networks [7]. Input parameters are, generally, sampled at a fixed rate and the
fuzzy system is triggered accordingly. In some cases, an external signal is used in order to trigger
the systems. The fuzzy computations are invoked even when there are no significant differences
between the subsequent input parameters, at the expense of precious CPU and memory resources.
Furthermore, for systems that employ a sampling rate, the rate is chosen by trial and error such
that it is difficult to tell if it is optimal.

This work proposes a distance based triggering mechanism for fuzzy systems in commu-
nication networks. This generic framework can be applied to any fuzzy system with minor
customization. A preliminary version of this work was presented in [8]. In this work, the concept
of probability via expectation [9] is used to calculate the triggering probability by using the square
of the distance between two subsequent input vectors. If the new input parameter vector is very
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far from the previous one, the triggering probability is 1. If subsequent input vector parameters
are deemed to be very close to each other, the triggering probability is 0.

A sampling rate adaptation probability, which is based on the transformed Lorentzian func-
tion [10] of the exponentially weighted moving average (EWMA) of the triggering probability,
is also proposed. When the EWMA is very high, it implies that the system’s input vector is
under-sampled. As a result, the sampling rate is increased. On the other hand, when the EWMA
is low, it implies that the system’s input vector is oversampled. The sampling rate is, therefore,
decreased. A stopping criterion, based on convergence tests [11], [12] of subsequences of the se-
quence of the sampling period, is also proposed in order to ensure that the mechanism switches
off when the sampling period has converged.

These mechanisms are tested on the Fuzzy Logic Congestion Detection (FLCD) mechanism
[13] in the wireless Local Area Network (WLAN) environment using simulations on the NS2
platform [14] running on the Ubuntu 9.10 OS. The computing hardware is composed of a 4GB
RAM and an Intel Core i7 860 2.80GHz CPU. The impact of the reduction in fuzzy system
evaluations on packet loss rate, delay, jitter and throughput is also evaluated.

The rest of the paper is organized as follows. The proposed distance based triggering and
the dynamic sampling rate mechanisms are presented in 2. An overview of the FLCD approach
in WLANs is presented in 3. The evaluation of the proposed mechanisms is presented in 4.

2 The Distance Based Triggering and Dynamic Sampling Rate
Mechanisms

The distance based triggering and the dynamic sampling rate mechanisms are incorporated
in the input mechanism of the generic fuzzy logic control framework. Every τ seconds, the
new crisp inputs x1(t), ..., xN (t) are normalized to the range [0, 1]. The triggering probability
P (Tr), which governs the system’s triggering rate, is calculated by using the distance between
the new normalized crisp input vector (x∗1(t), ..., x

∗
N (t)) and the previous normalized crisp input

vector (x∗1(t − τ), ..., x∗N (t − τ)). If the system is not triggered, the previous crisp outputs
are used for decision making or control action. When the system has been triggered, fuzzy
computations [15] [16] are carried out to generate new output(s).

The dynamic sampling rate mechanism uses P (Tr) to compute the sampling rate adaptation
probability P (Ra), based on which the value of τ is adapted to an optimal level. Both P (Tr)
and P (Ra) are developed by using the concept of probability via expectation [9]. According to
this concept, an event A, which, in a given case, either occurs or does not, corresponds to a set
of realizations ω. This set, also denoted by A, is a subset of Ω, which denotes the sample space
of all possible realizations. The probability of A, the expected proportion of cases in which event
A actually occurs, is defined as P (A) = E(I(A,ω)), where I(A,ω) is the indicator function of
A, defined by

I(A,ω) =


1 (ω ∈ A)

0 (ω /∈ A).

(1)

2.1 Distance Based Triggering Probability

The event of interest is the triggering of the fuzzy system, denoted by Tr. A realization
for which the event Tr takes place is denoted by ω1, while Ω1 denotes the sample space of all
possible realizations for which triggering is considered.



464 C.N. Nyirenda, F. Dong, K. Hirota

To reduce computational overhead when calculating the distance based triggering probability
P (Tr), the square of distance d2(t) between (x∗1(t), ..., x

∗
N (t)) and (x∗1(t−τ), ..., x∗N (t−τ)) is used,

where d2(t) = (x∗1(t)− x∗1(t− τ))2 + ...+ (x∗N (t)− x∗N (t− τ))2. Let v1 : [0, 1]N −→ [0, 1] denote
the distance parameter that defines the variation of ω1 with respect to Ω1. This parameter is
defined by using

v1 =


d2(t)
Φ if d2(t) < Φ

1.0 otherwise.
(2)

where Φ is a normalizing constant. The triggering probability P (Tr) is defined as P (Tr) =
E(I(Tr, ω1)); the indicator function I(Tr, ω1) is defined by using

I(Tr, ω1) =


1 (v1 > R1)

0 otherwise.
(3)

where R1 ∈ [0, 1] is a random number.
A high P (Tr) implies that the distance between the new input vector and the previous one

is large. Therefore, there is sufficient new information such that the fuzzy system has to be
triggered. On the other hand, a low P (Tr) implies that the change in the input vector is not
significant. Therefore, the system should use the previous crisp outputs thereby preserving CPU
and memory resources.

2.2 Sampling Rate Adaptation Mechanism

Apart from governing the triggering rate, P (Tr) also gives information on whether the sam-
pling period τ is optimal or not. If P (Tr) is very high for long periods, it implies that the
system is predominantly under-sampled such that there is a need to increase the sampling rate.
Conversely, if P (Tr) is very low for long periods, it implies that the inputs are more or less static.
The sampling rate must be reduced because the frequent processing of the inputs is just a waste
of computing resources. An inverted bell shaped function must, therefore, be employed in order
to ensure that there are little or no changes to τ when P (Tr) is close to 0.5, which signifies an
optimal sampling rate. On the other hand, in extreme regions, τ must either be decreased or
increased by an adaptation factor α. A transformed Lorentzian function is employed to gener-
ate a bell shaped function depicting this behavior. The traditional three-parameter Lorentzian
function [10], from which it is derived, is defined by

L(z) = Ap

[
γ2

(z − z0)2 + γ2

]
, (4)

where z0 is the centre; γ is the width parameter; and Ap determines the peak.

Sampling Rate Adaptation Probability

To track the variations of P (Tr) at time t, the exponentially weighted moving average (EWMA)
of P (Tr, t), denoted by P (Tr, t), is determined by using

P (Tr, t) = w ∗ P (Tr, (t− τ)) + (1− w) ∗ P (Tr, t), (5)

where w ∈ [0, 1] is a weighting factor. To ensure that previous values of P (Tr, t) are discounted
at a medium rate, w = 0.5 is used in this study.
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The event depicting the adaptation of the sampling rate of the fuzzy system is denoted by
Ra. A realization for which this event takes place is denoted by ω2, while Ω2 denotes the sample
space of all possible realizations for which the adaptation of the sampling rate is considered. In
a similar approach to 2.1, let v2 : [0, 1] −→ [0, 1] denote the rate adaptation parameter that
defines the variation of ω2 with respect to Ω2 by using the transformed Lorentzian function. The
relationship between v2 and P (Tr, t) is, therefore, defined by

v2 = L∗(P (Tr, t)) =

[
(P (Tr, t)− 0.5)2

(P (Tr, t)− 0.5)2 + γ2

]
. (6)

where γ is defined by

γ = f(P (Tr, t)) =


P (Tr, t) if P (Tr, t) ≤ 0.5

1− P (Tr, t) if P (Tr, t) > 0.5

(7)

The sampling rate adaptation probability is defined as P (Ra) = E(I(Ra, ω2)); the indicator
function I(Ra, ω2) is defined by

I(Ra, ω2) =


1 (v2 > R2)

0 otherwise,
(8)

where R2 ∈ [0, 1] is a random number. If P (Ra) = 1, τ is adjusted by using

τ =


(1− α)τ if P (Tr, t) ≥ 0.5

(1 + α)τ otherwise.
(9)

This mechanism will help to ensure that P (Tr, t) → 0.5. The sampling period can be ini-
tialized randomly within a particular range. This mechanism will optimize it on-line based on
the variations in the inputs. This characteristic is essential for new links and in situations where
new nodes or traffic patterns have been introduced on the already existing links.

Stopping Criterion for Sampling Rate Adaptation

Once the dynamic sampling rate mechanism starts running, there is a need for a stopping
criterion; otherwise, this mechanism will end up consuming precious CPU and memory resources
even when the sampling period has converged. The evolution of the sampling rate τ can be
presented as a sequence (τk) based on the concept of sequences of real numbers discussed in [11],
[12]. When convergence tests show that the sequence has converged, it implies that an optimal
sampling period has been realized. Therefore, the sampling rate estimation mechanism must be
stopped.

Definition 1. A sequence (τk) converges to τ if for every ϵ > 0, there exists a K ∈ N such that
|τk − τ | < ϵ for all k ≥ K. The point τ is called the limit of (τk).

If the terms of the sequence get arbitrarily close together, a sequence is said to be Cauchy.

Definition 2. A sequence (τk) is said to be a Cauchy sequence if for every ϵ > 0, there exists a
K ∈ N such that |τk − τm| < ϵ for all k,m ≥ K.
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Every convergent sequence is a Cauchy sequence. For real numbers, the converse is also true;
every Cauchy sequence is convergent. In addition, a sequence is convergent if and only if all of its
subsequences converge toward the same limit. A subsequence of the sequence (τk) is a sequence
of the form (τkj ), where for each j ∈ N, there is kj ∈ N, and kj < kj+1 for all j. From these
observations, we have the following theorem

Theorem 3. If the first term of a convergent subsequence, τk1 = τK , then for the first p terms,

1

p− 1

p−1∑
j=1

∣∣τkj+1
− τkj

∣∣ < ϵ. (10)

Proof: This follows from Definition 1 and Definition 2. Because the subsequence (τkj ) is
convergent, it is also a Cauchy sequence. Therefore for every ϵ > 0, there exists a K ∈ N such
that

∣∣τkj − τkn
∣∣ < ϵ for all kj , kn ≥ K. This implies that the average of the absolute values of

the differences of subsequent p terms is also less than ϵ. �

By comparing the average of the absolute values of the differences of subsequent terms in
a subsequence (τkj ) with ϵ, it is possible to determine whether the original sequence (τk) has
converged or not. The terms of the subsequence are extracted from (τk) every L ∗ τ(t) seconds,
where L ∈ N. To reduce computational overhead and memory requirements, p is set to 4; on
the other hand, ϵ = 1 × 10−5. While the focus is on detecting convergence of (τk), it must be
pointed out that cases where this sequence does not converge should also be anticipated. In such
cases, the sampling rate estimation mechanism, once activated, will remain on until the system
administrator decides to stop it.

The proposed mechanisms are tested on the zero-order Takagi-Sugeno [16] inference based
FLCD approach [13] in WLANs. Next, an overview of the FLCD algorithm is described.

3 An Overview of the FLCD Approach in WLANs

The FLCD mechanism is a 2-input 1-output system. It is composed of the Fuzzy Logic
Control Unit (FLCU), the Congestion Notification Unit (CNU), and the CHOKe [17] Activator
(CA) as shown in Figure 1. The FLCU uses the backlog (queue size) factor x1 and the packet
arrival factor x2 to generate the packet marking probability pb. The queue on the outgoing link
is sampled at a period τ = 2 msec in order to obtain the two inputs. The CNU either marks (if
ECN is enabled) or drops packets with a probability pb. Responsive flows such as TCP react to
these events by reducing their sending rates thereby reducing congestion at the bottleneck link.

pb

CA

CNUx1

x2

pb

φ

FLCU

Figure 1: The FLCD Mechanism.

For purposes of fairness, in light of non-responsive flows and network anomalies such as Denial
of Service (DoS) attacks and routing loops, which may flood the network as the responsive
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flows back off, the CA uses pb to generate a parameter ϕ ∈ [0, 1], where ϕ = p3b . The CA
probabilistically picks an arriving packet picked based on the value of ϕ. This packet is compared
with a randomly chosen packet from the buffer. If they have the same flow ID, they are both
dropped. Otherwise the randomly chosen packet is left unchanged and the arriving packet is
queued if the buffer is not full; otherwise it is dropped. As a result, more packets from non-
responsive and TCP-unfriendly flows are dropped at the bottleneck link.

4 Evaluation of the Distance Based Triggering and the Dynamic
Sampling Mechanisms

The distance based triggering and the dynamic sampling rate mechanisms are implemented
at the input of the FLCD mechanism which is used for congestion control in the access point
(AP) of the WLAN topology shown in Figure 2. The objective is to reduce congestion for traffic
flowing from the servers on the high-speed wired/cabled network to the nodes in the bandwidth
constrained wireless network. Simulations are implemented on the NS2 simulation platform [14].
In Figure 2, servers S1, S2 are connected to the Gateway which is connected to AP. BW1 and

Figure 2: The used WLAN topology.

Prop1 denote the bandwidth and propagation delay between the servers and the Gateway and
between the Gateway and the AP while BW2 denotes the wireless channel capacity. The wireless
nodes are equidistant from the AP. For brevity, only 5 nodes are shown in Figure 2 but more
than 5 nodes are used in the simulations. Half of the nodes in the wireless network are fixed
while the other half consists of mobile nodes. To depict a high-speed topology, BW1 and Prop1
are set to 10Gbps and 1ms respectively while the capacity, BW2, is set to 144 Mbps.

Two sets of experiments are conducted. The first one evaluates the impact of the distance
based triggering mechanism on the FLCD algorithm. It is aimed at comparing the number of
fuzzy system evaluations in a FLCD algorithm with and without the distance based triggering
mechanism. The other objective is to find out the impact of the distance based triggering
mechanism on system performance. Metrics for system performance include packet loss rate,
link utilization, packet delay, and jitter. The second experiment evaluates the efficiency of the
dynamic sampling rate mechanism. The objective is to find out if it really manages to guide the
system toward the optimal sampling rate. Convergence times are also captured.

Simulations are configured as follows. Each simulation run takes 100 seconds. In all runs,
one FTP flow and one web traffic flow are configured to flow from Server 1 to each of the nodes
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in the WLAN between 5 seconds and 95 seconds leaving enough time for the simulation to start
up and also to shut down gracefully. The standard web traffic generator included in the NS2
platform is used with the following parameter settings: an average of 30 web pages per session,
an inter-page parameter of 0.8, an average page size of 10 objects, an average object size of 400
packets and a ParetoII shape parameter of 1.002. Each web traffic flow has 4 sessions. UDP
traffic is also configured to flow from Server 2 to 10 nodes in the intervals [25s-30s] and [80s-90s].
Parameters of UDP traffic are as follows: Packet Size of 1500bytes, packet interval of 12.5ms and
a flow rate of 120kbytes/sec. TCP type is New Reno with a data packet size of 1000 bytes and
ACK packet size of 40 bytes. The buffer size is set to 200 bytes.

4.1 Experiment 1 - Testing the impact of the distance based triggering mech-
anism

Only the distance based triggering mechanism is activated. The number of WLAN nodes
is varied by using 10, 20, 30 up to 100 nodes. The value of the normalizing constant Φ in (2)
is set to 2 × 10−2 based on several trial runs. After that, simulations are carried out. The
overall results are average values over 20 independent runs, which are conducted at each and
every testing point. These values are plotted in the graphs along with the error bars representing
the 99% confidence intervals of the averages. The FLCD mechanism that employs the proposed
triggering mechanism is labeled FLCD+D while the normal one is labeled FLCD. Figure 3 -
Figure 7 show the results.
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Figure 3: Number of fuzzy computations as
congestion level increases
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Figure 4: Packet loss rate as congestion level
increases

In Figure 3, the distance based triggering mechanism reduces the number of fuzzy com-
putations by more than 45% while in Figure 4 - Figure 7, packet loss rate, delay, jitter, and
throughput remain virtually the same when the distance based triggering mechanism is employed.
These results confirm the fact that a great deal of computing power is lost due to redundant
computations in fuzzy systems in communication networks.
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creases
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creases
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4.2 Experiment 2 - Efficiency of the dynamic sampling rate mechanism

Both the distance based triggering and the dynamic sampling rate mechanisms are activated.
The FLCD mechanism that employs the proposed distance based triggering mechanism is labeled
FLCD+DS while the normal one is labeled FLCD. The following parameter values are used:
L = 10, α = 1 × 10−3. These values are determined after several trial runs. Simulations
are carried out with 50 nodes on the wireless network on every run. The overall results are
average values over 20 independent runs, which are conducted at each and every testing point.
In FLCD+DS, the sampling period τ is initialized randomly within (0,1] seconds. Based on the
existing congestion control literature [3], τ = 2 msec in FLCD.

Apart from the performance metrics used in Experiment 1, the averages of the converged
sampling periods τ and the convergence times are also presented. To statistically establish if two
corresponding averages are significantly different from each other, the one-way ANOVA test, at
a significance level of 1%, is applied. Table 1 shows the results. Columns 2 and 3 denote the
corresponding average and standard deviation values for FLCD+DS and the FLCD respectively.
Column 4 denotes the percentage improvement that FLCD+DS exhibits over FLCD. Statistically
significant percentage improvements are shown in bold.

Table 1: Dynamic Sampling Rate Mechanism vs the Conventional approach for 50 nodes.

Metric FLCD+DS FLCD Improv.
Loss rate (%) 0.055± 0.0047 0.057± 0.0051 3.5%

Delay (sec) 54.59± 4.26 52.91± 5.54 −3.01%

Jitter (sec) 1.576± 0.136 1.59± 0.123 0.88%

Throughput (Mbps) 11.47± 0.372 11.49± 0.415 0.17%

Evaluations 12687± 1149 50000 74%

τ (msec) 5.05± 1.634 2 152.5%

Conv. time (msec) 15.69± 5.37 − −

The proposed mechanisms reduce the number of evaluations by more than 70%. The con-
verged sampling period in FLCD+DS is also increased by more than 150%. Again, there is no
significant difference between the two approaches in terms of the other key performance metrics;
the sampling period converges within the first 20 msec. The dynamic sampling rate mechanism
in FLCD+DS performs on-line optimization of τ from random values in (0,1] sec to 5.05± 1.634
msec. This leads to drastic reductions in fuzzy system evaluations while overall system perfor-
mance remains virtually the same as in FLCD.

5 Conclusions and Future Works

To reduce computational cost in fuzzy systems in communication networks, a distance based
triggering probability, which governs the triggering rate of the fuzzy system, is proposed. When
the system has not been triggered, the previous output(s) are used. A dynamic sampling rate
probability, based on the transformed Lorentzian function of the exponentially weighted moving
average (EWMA) of the triggering probability, is also proposed. When the EWMA is tending
to the extremes, the sampling period is updated in two ways. If the EWMA is higher than
0.5, it implies that the system is under-sampled such that the sampling period is decreased
probabilistically. Conversely, if the EWMA is lower than 0.5, it implies that the system is over-
sampled such that the sampling period is increased probabilistically. A stopping criterion is also
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proposed to ensure that this mechanism is switched off when the sampling period has converged.
The triggering probability reduces the number of fuzzy computations in the Fuzzy Logic

Congestion Detection (FLCD) in WLANs by more than 45%. Performance, in terms of packet
loss rate, delay, jitter, and throughput, however, remains virtually the same. On the other hand,
the dynamic sampling rate mechanism leads to more than 150% improvement in sampling rate
while the number of fuzzy computations in the FLCD mechanisn in WLANs is reduced by more
than 70%. Again, performance in the other key metrics remains virtually the same.

This work shows that the triggering probability can help to alleviate redundant computations
in fuzzy systems in communication networks while preserving the performance levels. It also
shows that the system can optimize the sampling period just by using the distance information.
As part of future work, the proposed mechanism will be implemented in fuzzy systems in wireless
sensor/actuator networks.
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