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Abstract: Intelligent agent based system can be used to identify high-level
concepts matching sets of keywords provided by users. A new human-inspired
approach to concept identification in documents is introduced here. The pro-
posed method takes keywords and builds concept structures based on them.
These concept structures are represented as hierarchies of concepts (HofC). The
ontology is used to enrich HofCs with terms and other concepts (sub-concepts)
based on concept definitions, as well as with related concepts. Additionally, the
approach uses levels of importance of terms defining the concepts. The levels
of importance of terms are continuously updated based on a flow of documents
using an Adaptive Assignment of Term Importance (AATI) schema. The lev-
els of activation of concepts identified in a document that match these in the
HofC are estimated using ordered weighted averaging (OWA) operators with
linguistic quantifiers. A simple case study presented in the paper is designed
to illustrate the approach.
Keywords: concept identification, text documents, ontology, hierarchy of con-
cepts, ordered weighted averaging operator, importance of concepts.

1 Introduction

Keyword-matching is the most popular approach used in current search engines for finding
useful texts [1]. However, the meaning of words used as keywords is context-dependent. In
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addition, users tend to use very few keywords (three or less) what created difficulties in identifying
their proper meaning [2, 3].

In this paper we focus on human-like analysis of text, i.e., processes of identification of
concepts based on terms/words from a document. The proposed approach reflects a real life
scenario where a person links the information in a document to a specific topic by recognizing
multiple terms that describe concepts associated with this topic. The terms that appear in a
document “activate” terms known to the person that are related to the topic’s concepts. In such
a way, a net of relevant words is activated. The more words related to a specific concept are
activated, the more confidence the person has that the document contains this specific concept.
In other words, in concept-based models, we try to “understand” the meaning of a set of keywords
and attempt to determine presence of concepts defined by these keywords in documents.

The proposed approach starts with a simple set of keywords provided by the user and rep-
resenting an entity/item the user is interested in. This set is transformed into a Hierarchy of
Concepts (HofC). The HofC is further enhanced with pieces of relevant knowledge obtained
from ontology-based knowledge base. This ontology-based knowledge base is created based on
ontology domains. Its elements are equipped with values representing levels of contribution of
individual keywords towards definitions of concepts. These values are automatically determined
using AATI – a schema proposed in ... for determining importance values of keywords based on
continuous flow of documents.

The proposed approach relies on the following idea: a process of identification of a concept in
a document is equivalent to determining a level of activation of HofC representing this concept.
Once a HofC is built and enhanced using an ontology-based knowledge base, it is “checked
against” a document. The words found in document are matched with terms and concepts from
HofC. Every time a term/concept is found it is activated. The activation levels of terms and
concepts are aggregated using Ordered Weighted Averaging (OWA) operator. The weights of
OWA are determined based on activation levels and linguistic quantifiers, such as MOST, AT
LEAST HALF, ALL and ABOUT ONE THIRD. The activation and aggregation propagate in
a bottom-up fashion. A final activation level – level of activation of the HofC – is treated as an
indicator of how well the concept is present in the document.

The paper is organized in the following way. Section 2 contains a brief description of work
done so far in the area of concept-based analysis of text with emphasis on applications of ontology
to support definition and identification of concepts. The background is presented in Section 3.
Section 4 contains an overview of the proposed approach. The next three section are dedicated
to specific elements of that approach: the construction of ontology-based knowledge base is
discussed in Section 5, Section 6 contains description of the process of building and enhancing
HofCs, while the process of determining activation level of HofC for a document is described in
Section 7. A case study with two different linguistic quantifiers is included in Section 8. The
papers finishes with conclusions.

2 Related work

There are two most popular approached for concept-based analysis of documents: classifier-
based approach, and concept structure-based approach. Because our work is focused on a
concept-identification method that involved ontology we do not describe the classifier-based
techniques for identification of concepts. Some example of the work related to this topic can be
found in [4], [5], [6], and [7].
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2.1 Concept Knowledge Bases

It can be noted that classifier-based techniques requires human-labor to set categories, build
training sets, update models, etc. Therefore, constructing a background concept structure as a
knowledge base to define concepts is a more suitable approach. Some example of such structures
are:

• Synonym thesauri are treated as repositories of terms“related” to keywords provided
by users. For example, Anick [8] has proposed a system that automatically generates an
extended condition: “a boolean expression is composed by ORing each query term with
any stored synonyms and then ANDing these clusters together.” That is, the whole query
is ORed together. Each OR term is composed of synonyms from an online thesaurus.

• Conceptual taxonomy is seen as a hierarchical organization of concepts. Each concept
in a conceptual taxonomy connects to both its superconcepts and its subconcepts. There-
fore, it provides a topological structure for efficient conceptual search and retrieval. In the
project by Sun Microsystems, a conceptual indexing technique was proposed to automati-
cally generate conceptual taxonomies [9].

• Ontology is a model of a domain or a problem. Ontologies can be used to provide for-
mal semantics (meanings, concept-based information) to any sort of information, such as
databases, Web documents, etc. A commonly accepted definition states that “an ontology
is an explicit and formal specification of a conceptualization of a domain of interest” [10].
In general, an ontology is a representation of a set of concepts and relations between those
concepts in a domain.

Ontologies are gaining popularity because of their applications to text analysis. Some of the
popular ontologies are: WordNet, SENSUS, and Gene Ontology.

WordNet is an English lexical ontology built at Princeton University, which includes expla-
nations of the terms and relations between terms (synonyms, antonyms, etc.) [11]. As the most
popular linguistic ontology, WordNet is used by many researchers for expanded queries [12] [13].
However, the systems applying WordNet suffered from word sense disambiguation (WSD) be-
cause of polysemy1. This problem has been addressed in [14], [15], and [16]. Additionally,
researchers report difficulties in applying linguistic-based ontologies to non-linguistic applica-
tions [18].

SENSUS is a natural language-based ontology developed by the Natural Language Group
at Information Sciences Institute (ISI) [17]. It is an extension and reorganization of WordNet.
It has been used for concept-based retrieval from online yellow pages and product catalogs [18].

Gene Ontology is composed of three structured controlled vocabularies describing gene
products with their associated biological processes, cellular components and molecular functions
[19]. This ontology is a part of an information retrieval system, KiPar, to facilitate access to the
literature relevant to kinetic modelling of a given metabolic pathway in yeast [20].

2.2 Ontology-based Concept Identification

There are different ways to identify concepts in a text using ontology as a knowledge struc-
ture. We have divided those approaches into four major categories.

1Polysemy means more than one words with the same meanings
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Regular Expressions, Rules, and Ontology

In this type of approaches, regular expressions are used to identify concepts from texts.
Several predefined rules are then used to aggregate the identifications of single concepts.

Embley has proposed the use of information extraction ontologies, which are formalized
over regular expressions [21]. Muller et al. have constructed an ontology-based information
retrieval and extraction system for biological literature, which is called Textpresso [22] where
biological concepts (e.g., gene, allele, cell or cell group, phenotype, etc.) are presented as regular
expressions.

Natural Language Processing (NLP) with Ontology

Informally, NLP aims to solve problems by making computers understand and process human
language. There are two types of approach in NLP: deep approach and shallow approach. As
Styltsvig stated, “Deep approaches presume access to a comprehensive body of world knowledge.
These approaches are not very successful in practice, mainly because access to such a body of
knowledge does not exist, except in very limited domains” [23]. Shallow NLP techniques normally
rely on simple rules to perform analysis.

Cimiano et al. have presented the LexOnto model consisting of a domain ontology and
a corresponding ontology for associating lexical information to entities of the given domain
ontology [24]. Morneau et al. have proposed SeseiOnto using NLP to identify concepts from
texts [25]. Compared with the LexOnto model, this approach involves more shallow NLP. First
of all, SeseiOnto removes articles and prepositions from NLP-based user queries (sentences) by
tagging. The remaining words in the queries are matched to the concepts in the ontology.

Utilizing NLP and an ontology may be the most intuitive application to build concept-
based systems. However, the discussions on how much NLP should be involved never stops. In
LexiOnto [24], NLP exists in the entire process; while in SeseiOnto [25], NLP handles conversion
from texts to concept-based structures. Though the NLP techniques allow computer agents to
recognize concepts from texts, their complexity cannot be ignored.

Vector Space and Ontology

This type of solution is the most popular. In general, the ontology is utilized to expand the
query, and vector space approach is used to evaluate similarity.

Vallet et al. have proposed an ontology based information retrieval system applying a vector-
space model to retrieve relevant documents [26]. After terms and concepts are connected through
ontology-driven weighted annotations on the documents, a classic vector-space model is utilized
to evaluate the relevance between documents and queries. The weights are based on the frequency
of occurrence of the instances in each document. Another ontology-based framework for semantic
information retrieval has been proposed in [27]. With annotations based on GATE [28] as an
information extraction module, metadata for documents are generated. The metadata are ex-
tracted concepts from the document text. Based on the term weighting technique cf ·idf (concept
frequency - inverted document frequency), which is similar to tf · idf , concepts in the documents
are recognized and indexed. Castells et al. [29] have presented a complete concept-based infor-
mation retrieval model. In their model, first a set of root ontology classes is constructed from
three main base classes: DomainConcept, Topic, and Document. Documents are annotated with
concept instances from the ontology. The annotations are weighted based on an adaption of the
tf · idf scheme, and the ranking is then achieved through computing similarity values between
queries and documents through the classic vector-space approach. In [30], Tomassen et al. has
presented an ontology-driven system WebOdIR, where each concept is extended by associating it
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with a vector of key phrases describing the concept. The system starts from ranking concepts in
the ontology according to ontology relevance. It then generates a query for each concept based
on relations with other concepts. After submitting the queries to the underlying search engine,
a set of documents for each concept is retrieved and then clustered.

Latent Semantic Indexing and Ontology

Latent semantic indexing (LSI) is similar to the vector space approach that presents doc-
uments/queries in the manner of vectors. Like vector space approaches, LSI relies on a term-
document matrix in which each column represents a document and each row lists frequencies
of a term in different documents. LSI uses the singular value decomposition (SVD) to reduce
the dimensions of the term-document matrix and approximate the most important part of the
original matrix.

Snasel et al. mapped LSI concepts to Wordnet [31]. Wordnet provides synonyms to expand
queries: this improves recall through sacrificing precision, because it increased the number of
keywords. LSI helps to retrieve the most relevant k terms/concepts from term matrix Tmk. The
authors argued that the expansion of these k terms instead of all keywords balanced the conflicts
between precision and recall.

3 Background

3.1 Semantic Web and Ontology

The Semantic Web [32], as an extension of the World Wide Web (WWW), makes the web
content more machine-processable. Tim Berners-Lee, who invented the WWW in the late 1980s,
introduced this special vision of the Web, in which the meaning of the content in Web documents
would play a much more crucial role than it does today. To accomplish that the Semantic Web
needs a more firmly structured language for machine agents to process. The crucial first step has
been the adaptation of the language RDF (resource description framework) [33] as a standard
for the Semantic Web.

The RDF is more a model than a language; it is designed to present information about Web
resources. RDF presents statement in the form of triples, i.e., subject-predicate-object. RDF is
applied to build information-sharing models. In the triples, the subject denotes the resources,
the object denotes the properties of the subject, and the predicate denotes the relations between
the subject and the object. The RDF provides a foundation for defining the main data structure
of the Semantic Web – ontology.

The most popular definition of an ontology, in the context of the Semantic Web, is “an explicit
and formal specification of a conceptualization of a domain of interest” [10]. Ontologies are more
than just a vocabulary, they are sources of knowledge of a specific domain. Currently, most
of ontologies are implemented in OWL (Web ontology language) which is based on RDF and
designed by W3C.

The most important aspect of ontologies used for Semantic Web applications is related to
identifying two ontology layers: the ontology definition layer, and the ontology instance layer.
The ontology definition layer represents a framework used for establishing an ontology structure
and for defining classes (concepts) existing in a given domain. The structure of an ontology
is primarily based on a relation is-a between classes. This relation represents a subClassOf
connection between a superclass and a subclass. In such a way, a hierarchy of classes is built.

The ontology definition contains descriptions of all classes of the ontology. The classes are
defined using datatype properties and object properties. Both property types provide an accurate
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Soccer Player

HasPlayer

InClub

HasPlayer

InClub

Name:FC Barcelona

Location: Barcelona

Stadium:Camp nou

Soccer Club

Soccer 

Club FC BarcelonaPlayer Drogba Player Terry Club Chelsea

First Name: Didier

Last Name: Drogba

Position:Forward

First Name: John

Last Name: Terry

Position:Midfielder

Name: Chelsea

Location: London

Stadium:Stamford

Figure 1: Ontology Snippet

and complete description of a class, as described below:

• The datatype property focuses on describing features of a class; datatype properties can be
expressed as values of data types such as boolean, float, integer, string, and many more
(for example, byte, date, decimal, time);

• The object property defines other than is-a relations among classes (nodes); these relations
follow the notion of the RDF that is based on the triple subject-predicate-object, where:
subject identifies what object the triple is describing; predicate defines the piece of data in
the object a value is given to; and object is the actual value of the property; for example,
in the triple John likes books, John is the subject, likes is the predicate and books is the
object.

Both types of property are important for defining ontologies. The possibility of defining
class properties and relations between classes creates a versatile framework capable of expressing
complex situations with sophisticated classes and the multiple different kinds of relationships
existing among them.

Once an ontology definition is constructed, its instances, called individuals, can be built. The
properties of classes are filled out: real data values are assigned to datatype properties, and links
to instances of other classes (individuals) are assigned to object properties.

A fragment of an ontology is presented in Fig. 1. It contains three classes: Soccer, Soccer_Club
and Soccer_Club. Both Soccer_Club and Soccer_Player are subClassOf of the class Soccer.
Class Soccer_Club has two individuals: Club_Chelsea and Club_FC_Barcelona; while Class
Soccer_Player has two players as individuals: Player_Drogba and Player_Terry.

Class Soccer_Player is defined by three data properties and one object property, as presented
in Fig. 1. The three data properties are First_Name, Last_Name and Position. The one object
property is InClub. Class Soccer_Club is also defined by three data properties and one object
property. The three data properties are Name, Stadium and Location. The one object property
is HasPlayer.

Two individuals of the class Soccer Player are Player Drogba and Player Terry. Individual
Player Drogba is defined by the term “Didier” as the value of a datatype property First Name, by
the term “Drogba” as the value of datatype property Last Name, by the term “Forward” as the
value of datatype property Position, and by individual Club Chelsea as the value of the object
property InClub. Similarly, individual Player Terry is described by “John” as First Name, “Terry”
as Last Name, “Midfielder” as Position, and individual Club Chelsea as the value of InClub.
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Individuals of the class Soccer Club (Club Chelsea and Club FC Barcelona) are also described
by three datatype properties and an object property. The three datatype properties listed are
Name, Location, and Stadium. The object property is HasPlayer, which is the inverse property2

of the object property InClub. The values of the datatype properties and the object property for
individuals Club Chelsea and Club FC Barcelona are shown in Fig. 1.

3.2 Ordered weighted averaging (OWA) operators

Basic principles of OWA

Aggregation of different pieces of information is a common aspect of any system that has to
infer a single outcome from multiple facts. An interesting class of aggregation, ordered weighted
averaging (OWA) [34] operators, is a weighted sum over ordered pieces of information.

In a formal representation, the OWA operator, defined on the unit interval I and having
dimension n (n arguments), is a mapping Fw : In → I such that

Fw(a1, ..., an) =

n∑
j=1

(wj · bj) (1)

where bj is the jth largest of all arguments a1, a2, ..., an, and wj is a weight such that wj is
in [0,1] and

∑n
j=1wj = 1.

If id(j) is the index of the jth largest of ai then aid(j) = bj and Fw(a1, ..., an) =
∑n

j=1(wj ·
aid(j)). If W is an n-dimensional vector whose jth component is wj , and B is an n-dimensional
vector whose jth component is bj , then Fw(a1, a2, ..., an) = W TB. In this formulation, W is
referred to as the OWA weighing vector and B is called the ordered argument vector.

At the beginning of the 1980s, Zadeh [35] introduced the concept of linguistic quantifiers.
Those quantifiers describe a proportion of objects. According to Zadeh, a person knows a vast
array of terms that are used to express information about proportions. Some examples are
MOST, AT LEAST HALF, ALL and ABOUT ONE THIRD. The important issue is to formally
represent those quantifiers.

In the mid-1990s, Yager [36] showed how we can use a linguistic quantifier to obtain a
weighing vector associated with an OWA aggregation. Yager introduced parameterized families
of regular increasing monotone(RIM) quantifiers. These quantifiers are able to guide aggregation
procedures by verbally expressed concepts in a description independent dimension. A RIM
quantifier is a fuzzy subset Q over I = [0, 1] in which for any proportion r ∈ I, Q(r) indicates
the degree to which r satisfies the concept indicated by the quantifier Q [36]. Assuming a RIM
quantifier, we can associate with Q an OWA weighing vector W such that for j = 1 to n,

wj = Q(
j

n
)−Q(

j − 1

n
) (2)

where n is a number of pieces of information to be aggregated. This expression indicates
that the weighing vector W is a manifestation of the quantifier underlying the aggregation pro-
cess. Using this expression the values of the weighing vector can be obtained directly from the
expression representing the quantifier.

For example, let us take a look at the parameterized family Q(r) = rp, where p ∈ [0,∞).
Here if p = 0, w1 = 1 and wj = 0 for j ̸= 1, and we obtain the existential (max) quantifier,
which makes the OWA operator F closer to an or operator; when p− >∞, wn = 1 and wj = 0
for j ̸= n, and we have the quantifier for all (min), which makes the OWA operator F closer

2If an object property o1 points object A from object B, and another object o2 points B from A, o1 and o2 are
regarded as inverse properties.
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to an and operator; and when p = 1 we have Q(r) = r, wj =
1
n and we deal with the quantifier

SOME.

OWA with Argument Importance

In the previous section we showed how a quantifier Q indicating interaction between pieces of
information can be used to calculate an OWA weighing vector W . However, not all pieces of in-
formation are of the same importance. A user may desire to assign different weights (importance)
to different arguments (pieces of information).

Let mi ∈ [0, 1] be a value associated with an argument a1 indicating its importance. In such
a case, let M be a n-dimensional importance vector [m1,m2, ...mn], and the weighing vector W
has to be calculated based on both Q and M .

The first step is to calculate the ordered argument vector B (Eq. 1), such that bj is the
jth largest of all arguments a1, a2, ..., an. Furthermore, we assume µj denotes the importance
weight associated with the attribute that has the jth largest value. Thus if a3 is the largest
value, then b1 = a3 and µ1 = m3. The next step is to calculate the OWA weighing vector W
using a modified version of Eq.( 2),

wj = Q(
Xj

T
)−Q(

Xj−1

T
) (3)

where Xj =
∑j

k=1 µk and T = Xn =
∑n

k=1 µk .
So, Xj is a sum of the importance of the jth most satisfied arguments, and T is the sum of

all importance. When all arguments have the same importance, Eq. (3) simplifies to Eq. (2).

3.3 Hierarchy of concepts (HofC)

The idea of representing concepts as a hierarchy was introduced by Yager [37], who repre-
sented concepts with atomic attributes, words or other concepts. Using this method, a tree-like
structure is established where each vertex is a concept, and terminal vertices (leaves) are at-
tributes. The edges of the hierarchy of concepts (HofC) represent relationships that help to
define concepts with other concepts and/or attributes. These edges (connections) are of signif-
icant importance to the HofC. If we assume that concept C1 is defined by two other concepts
C2 and C3, then the hierarchy will have two edges connecting C2 with C1, and C3 with C1.
The concept C1 is called a superconcept, and C2 and C3 are subconcepts. This also means that
activation of concepts C2 and C3 leads to activation of C1.

The HofC introduces a very important element, the activation of a superconcept by active
sub-concepts is fully controlled by a user. There are two controlling components: importance
vector M and linguistic quantifier Q. The vector M indicates the significance of each subconcept
in defining a superconcept. In other words, M determines the weight of each participating
subconcepts in identifying an activation level of a superconcept. The linguistic quantifier Q
guides the aggregation of subconcept activations. Both M and Q determine how activation
levels of subconcepts should be combined using the OWA operator.

A simple example of HofC is shown in the Fig. 2. According to the hierarchy, conceptA is
defined as:

conceptA = (conceptB, conceptC,MA, QA)

This means that conceptA is defined by conceptB and conceptC. MA determines the im-
portance of both of conceptB and conceptC in defining conceptA. In this case, it is a two-value
vector MA = [MA−B,MA−C ] that implies the importance of activations of both subconcepts
during calculation of the activation level of the conceptA. The quantifier QA can be of any
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M_E

conceptE

Q_EM_D

conceptD

M_B

conceptB

Q_B

Q_D

M_C

conceptC

Q_C

M_A

conceptA

Q_A

A6

A1

A2

A3

A4

A1

A5

Figure 2: Simple HofC

type, for example, most or some, and identifies a mechanism of combining activation levels of
subconcepts. The rest of the concepts are defined in the following way,

conceptB = (conceptD, conceptE,MB, QB)

conceptD = (A1, A2, A6,MD, QD)

conceptE = (A3, A4,ME , QE)

conceptC = (A1, A5,MC , QC)

As we can see, conceptD, conceptE, and conceptC are defined by attributes only. Activation
levels of these concepts are calculated by aggregating activations of attributes. Activation of
an attribute means that the attribute is present, for example, in a Web page. The aggregation
process for each concept is controlled via the M and Q associated with that concept. For
conceptD, aggregation of activations of attributes A1, A2, and A6 is performed by the OWA
operators with a weighing vector determined by MD and QD.

4 Concept Identification Process: Overview

A concept-based information retrieval finds relevant documents based not on simple keyword
matching but on concepts that are associated with terms from users’ sets of keywords. In order
to accomplish that the process of concept identification is composed of the following stages:

• firstly, a user’s set of keywords – called hereafter Seed Keywords for Concept Identifi-
cation: SeeKCon – is translated into a structure of concepts; this is done by “mapping”
keywords from SeeKCon to definitions of concepts, and constructing an equivalent Hierar-
chy of Concepts – HofC;

• secondly, the constructed HofC is expanded using knowledge extracted from an Ontology-
based Knowledge Base – ObKB; SeeKCons provided by users, who usually are not experts,
contains simple terms; those terms are “linked” to definitions of concepts included in on-
tology; the terms, other concepts, and relations associated with those definitions are used
to enhance the terms that are included in the equivalent HofC; this process leads to the
expended HofC;
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KnUp

HofCPp HofCSp

ObKB

AATI

documents for 

estimation of levels of 

significance

domain

ontologies

HofC

document for 

evaluation

SeeKCon

Figure 3: Overview of the Proposed Approach for Concept Identification

• finally, documents are checked how well they satisfy the extended HofC; for an HofC
concept defined only by terms (no subconcepts), satisfaction of the concept is decided by
the presence of those terms in a document; for an HofC concept defined by a list of terms
and subconcepts, satisfaction of this concept is decided by the presence of those terms and
the satisfactions of its subconcepts; in the end, the satisfaction of the extended HofC – and
indirectly SeekCon – is determined by the satisfactions of concepts defined in this HofC.

An essential part of the proposed approach is a knowledge base containing definitions of
concepts. These definitions are composed of (1) terms that describe these concepts together
with their importance; (2) related concepts and their importance; (3) relations between terms
and concepts. This knowledge base is built around ontology representing domains of interest.
Overall, the concept identification process contains a number of activities: a knowledge updating
process KnUp, a HofC preparation process HofCPp, and a HofC satisfaction process HofCSp.
KnUP works with a knowledge base to provide extra definitions of concepts and updates of single
keywords importance in defining concepts. HofCPp translates users’ sets of keywords into HofCs,
and expands them with knowledge from a domain knowledge base. HofCSp estimated levels of
activation of concepts in documents what leads to identification of concepts.

Fig. 3 presents an overview of the proposed concept identification process. Component KnUp
builds and manages the ObKB, the knowledge base. The importance values for terms or concepts
in the ObKB are obtained by the AATI scheme, as shown in Fig. 3. The document repository
contains “unknown” to the AATI documents. That is, there is no need for human experts to work
on these documents to generate such knowledge as contained concepts, categories they belong to
and so on. Therefore, the process of updating the ObKB does not stop. This is an outstanding
advantage of the approach because no extra human labor is needed to build sample documents
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and the knowledge in the ObKB can be kept up to date.
HofCPp translates users’ SeeKCons into equivalent HofCs. It enriches these HofCs with

knowledge stored in the ObKB. HofCs provide lists of concepts to be identified and their defini-
tions. The definitions of concepts, also known as the knowledge of concepts, include subconcepts,
terms, their importance and their relations. As the output of this process, expanded HofCs are
utilized for evaluation.

HoCSp determines how HofCs are activated by documents. Documents are semantically
annotated first. The annotated terms are pieces of information that satisfy concepts from the
HofC. OWA is integrated with the HofC to evaluate the satisfactions of queries by texts in
documents. This process is mapped as the aggregation of the activations of the concepts from
the HofC.

The proposed process successfully implements concept identification. A term, as a piece
of atom information, is not a binary string, but is related to a concept that is a meaningful
entity defined in the ObKB or in an HofC. That is, it has semantics. This is accomplished
based on semantics instead of a simple presence. The main techniques, such as an ontology-
based knowledge base (the ObKB), an AATI scheme, a HofC format, and OWA operators for
aggregation, are applied for this purpose.

• An ontology provides a specification of a conceptualization. That is, it provides lists of
concepts, terms and their relations in a domain.

• An AATI scheme assigns importance to terms and in turn to concepts in the ObKB by
“blindly” reading of documents.

• Users’ SeeKCons are organized into concepts in hierarchical structures (HofC).
• OWA operators aggregate the satisfactions of concepts in a HofC to evaluate the satisfaction

of the whole HofC. The HofC accepts different linguistic quantifiers that make the approach
flexible in defining concepts and representing different user interests.

5 Ontologies and Ontology-based Knowledge Base

In order to identify high-level concepts we need to find out how many terms and subconcepts
from concept definitions are present in a document. Concepts which have their definitions "highly
activated" are concepts identified in the document. The process of concept identification requires
two essential parts:

1) definitions of concepts that contain lists of related concepts, subconcepts and terms, as well
as relations between them: here, we use ontology as source of such information;

2) levels of importance of concepts and terms: they represents levels of contribution of terms/-
concepts toward concept activation levels; to address that issue we have developed Adaptive
Assignment of Term Importance (AATI) schema.

There are two very important parts of KnUp: one that builds ontology-based knowledge
base – ObKB – from existing domain ontologies, and the other one that updates ObKB. The
process of updating the ObKB is accomplished by the new self-adaptive scheme, AATI (Adaptive
Assignment of Term Importance), which assigns importance values to terms/concepts in the
ObKB, and continuously updates them.

5.1 Ontology-based Knowledge Base (ObKB)

In an ontology, a class is described with properties. There are two types of properties:
datatype property, and object property (Section 3.1). In such a case, a concrete piece of infor-
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mation – called an individual – is an instance of a class and is created by assigning values to
the properties. The ontology as defined above does not contain information required for concept
identification in a suitable format. There are few main reasons for that:

1. a HofC contains concepts, while an ontology contains classes and individuals; it is difficult
to expand HofCs directly from ontology without a transformation process;

2. HofC connections and ontology connections have different meanings;
3. an ontology does not contain importance (represented by vector M), and linguistic quan-

tifiers (represented by Q) which are necessary for OWA operators to determine levels of
activation of concepts contained in HofCs (section 3.2).

Ontology vs. HofC: Component Aspect

In the Semantic Web definition of ontology, classes are abstract and individuals represent
concrete information. That is, class defines properties that have no concrete values; while in-
dividuals are defined by values assigned to the properties. Unlike an ontology that is designed
to store a large amount of organized knowledge, a HofC represents a list of specific information
relevant to a high level concept. If a class in an ontology has no individuals, i.e., no concrete
information associated with it, it can be provided later by others. But it is not reasonable that
a HofC should contain a vertex without a concrete value associated with it. Such a concept is
useless because there is no way to identify it in a document. Therefore, both classes as well
as individuals from domain ontologies are translated into concepts in the ObKB. The following
formats and operations pertain here:

• concepts are used in the HofC and the ObKB; classes and individuals are used in the
ontology;

• attributes are used in the HofC and the ObKB; properties are used in ontology;
• the attributes in the HofC and the ObKB are called terms, which can be found in docu-

ments.
• OWA operators are applied to aggregate activation levels of terms and concepts included

in HofCs; OWA operators require M (importance) and Q (linguistic quantifiers)3.

Ontology vs. HofC: Conncection Aspect

Another important difference between ontologies and HofCs is related to connections between
components existing in both structures.

The ObKB has the same connections as ontology. These connections have different meanings.
For example, let us assume there is a ObKB built based on the ontology shown in Fig. 1. The
connection between the concept Player Drogba and the concept Soccer Player is different from
the connection between the concept Player Drogba and the concept Club Chelsea. The former
connection means “is-a” or “has-a.” That is, Player Drogba is-a Soccer Player or Soccer Player
has-a Player Drogba. The latter connection means “InClub” or “HasPlayer”. That is, Player
Drogba InClub Club Chelsea or Club Chelsea HasPlayer Player Drogba.

The connections in HofCs represent relative levels in the hierarchy structure, that is, one con-
cept is a subconcept (superconcept) of another concept. HofCs are built to represent SeeKCons
where subconcepts contribute to defining their related superconcepts. The connection may be
meaningless, because the user can connect any concepts to express his/her interests. For exam-
ple, let us assume the knowledge in the ontology shown in Fig. 1 is correct. A user can create

3Details about M and Q are in section 3.2 and section 3.3
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his/her own HofC which has player Player Drogba as the superconcept, and Club FC Barcelona
as the subcocnept if he/she assumes that Player Drogba will transfer to Club FC Barcelona and
he/she wants to check if there is any rumour about it. In this case, the satisfaction of Club FC
Barcelona contributes to the satisfaction of Player Drogba, and in turn to the satisfaction of the
whole HofC, though it seems the connection should not exist.

In general, subconcepts (superconcepts) are used to describe two connected concepts in a
HofC; while the term related-concepts is used to describe two connected concepts in the ObKB.
Overall, we define three types of connections.

1. TypeI connection connects concepts that are parts of users’ SeeKCons; in other words the
concepts provided by users are related to each other through TypeI connections; they are
the strongest type of connections;

2. TypeII connection connects concepts defined in the domain ontology; these connections
are “is-a” and “has-a” relations; the first stage of expanding an equivalent HofC is based on
this type of connection (Section 6.2);

3. TypeIII connection also connects concepts defined in an ontology; however these connec-
tions represent all types of relations except “is-a” or “has-a” relation; this is the weakest
connection; the second stage of expanding an equivalent HofC is based on this type of
connection (Section 6.2).

Mapping from Ontology to ObKB

In a nutshell, the process of building the ObKB from domain ontologies consists of a few
steps which transforms ontology specific elements into components suitable for construction of
HofC. Those steps are:

1. a class from ontology is translated into a concept, however the definitions of properties are
not translated;

2. an individual from ontology is translated into a concept, and

• the values of object properties of this individual are translated into concepts attached
to the concept created based on this individual;

• the values of datatype properties of this individual are translated into attributes at-
tached to the concept created based on this individual;

3. a default value of Q is added to the created concept; the default Q is MOST ;
4. the default value of M is set as zero for each concept and term.

The ObKB is used to expand equivalent HofCs created based on SeeKCons provided by users.

5.2 Estimating Importance Levels

The ObKB is a model of a given domain. It contains concepts, terms, and relations that
are specific for this domain. The AATI scheme integrated with the ObKB, determines impor-
tance values that represent levels of contributions of these concepts and terms towards concept
activation.

In [39], the AATI was studied and validated through experiments. The AATI scheme is
implemented based on the power iteration [38], which is used to find eigenvectors of a matrix in
linear algebra. The main steps of AATI implementation are as follows:

1. translate an ontology into the ObKB;
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2. take a new document;
3. parse the document and annotate it with concept names an terms from the ObKB;
4. for each term do one of the following:

(a) if Term Weight is not zero (it means the term has already appeared in documents),
take this as its new Term Weight;

(b) if Term Weight is zero (the term has not been found in any documents), randomly
generate a number between 0 and 1, and assign it as its Term Weight;

5. calculate the Page Value of this document;
6. update the Term Weights of those terms found in the document;
7. normalize Term Weights across all terms (make the sum of Term Weights equal to 1);
8. if there are no more documents, STOP ; otherwise go back to Step 2.

The AATI continuously updates Term Weights based on available documents. Intuitively,
we can say that the Page Value is high when terms occurring in a document have high Term
Weights. At the same time, we can state that the Term Weight of a term is high when the Page
Values of documents that contain the term are high.

5.3 ObKB-based Annotation of Documents

We have developed a Java annotation module based on the UIMA (Unstructured Information
Management Architecture) library created by IBM [40], which adds extra information to the texts
of documents.

Annotation is the basis for concept identification processes. Terms, which are literal values
of the datatype properties – attributes in the ObKB – are used to identify concepts in texts.
All occurrences of ObKB terms in a document are identified, and annotation information is
added to them. This information includes its position (begin, end) in a document, the concept
it belongs to, and the attribute it belongs to. Annotation connects the ObKB with documents:
the frequency of a term presented in a document is stored and used later for determination how
well the document satisfies the concept, to which the term is attached in the ObKB.

Fig.4 shows how a document is annotated. For example, the term “Chelsea” from ObKB is
the attribute Name attached to the concept Club Chelsea. The annotation module finds that
this term is present twice in the document. So, for the ObKB and the annotation module, a
string “Chelsea,” which to most computer agents is meaningless (nothing but a binary string),
has its own semantics/meaning: it is the name of a soccer club.

6 HofC Preparation Process

The HofCPp preprocesses SeeKCons, builds HofCs from them, and expands these HofCs with
knowledge from the ObKB.

The preprocessing of SeeKCons removes stop words and stems words. Stop words include
articles such as “the” and “a” and prepositions such as “in” and “from.” The stemming process
removes suffixes and prefixes reducing words to their stems. For example, the term “extended”
can be stemmed to “extend.”

The process of building equivalent HofCs translates SeeKCons into concept structures as
explained in Section 6.1. Next, knowledge is retrieved from the ObKB to enhance the definitions
of concepts. The details are presented in Section 6.2.
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Figure 4: Document Annotation: Example

6.1 Representation of Users’ Sets of Keywords as HofCs

A SeeKCon is a statement representing the interest of the user. The user provides keywords
that describe objects that the user desires to identify in a document. The keywords are repre-
sented as a flat structure, that is, there is no indication that the keywords are related to each
other, or that some keywords depend on others. This is a simplification suitable for automatic
processing but it is not a realistic representation of a human-like way of finding concepts. For
a human, all keywords are interconnected. They constitute a network of words representing
concepts. The activation of a single word initiates activation of a concept and related concepts.

A SeeKCon is represented by a HofC – a tree-like structure built of concepts (vertices) and
terms (terminal vertices/leaves) (Section 3.3). This structured form of a SeeKCon, that resembles
a network of words and concepts, provides a more intuitive way of expressing things the user is
looking for. A document that satisfies an equivalent HofC contains a high-level concept related
to this HofC. The satisfaction of the HofC is a result of an aggregation of satisfactions performed
at each vertex of HofC using OWA, and associated with it the linguistic quantifier Q, and the
vector M of importance values.

As presented in Section 3.2, a linguistic quantifier Q associated with a vertex is used at the
time of the aggregation of satisfactions of terms and other concepts (subconcepts) attached to
this vertex. The possible quantifiers are SOME, MORE, etc. The notion of linguistic quantifiers
plays an important role in representing different ways of combining satisfactions.
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A vector M (Section 3.2) represents the importance of each term and concept that is taken
into consideration during an aggregation process. Not all terms and concepts contribute uni-
formly to the activation of a concept associated with a vertex of HofC.

RC

concept1

(a) Keyword

RC

Concept1 Concept2 Concept3

(b) Multiple Keywords

RC

Concept1

Concept2 Concept3

(c) Structured Keywords

Figure 5: Sample Root Concepts (RCs)

A SeeKCon represents a high-level concept to be identified in documents. The goal is to find
out if a given document contained terms and subconcepts that are part of the equivalent HofC.
This translates into a process of estimating a level of activation (or satisfaction) of the HofC.
In order to simplify this process, a special concept, called Root Concept (RC), is automatically
added to each equivalent HofC. In this case, the activation of the HofC is the same as the
activation of the top level concept of the equivalent HofC.

Some possible structures of HofCs are presented in Fig 5. In Fig. 5a, a SeeKCon contains
one single concept; in Fig. 5b, a SeeKOnt contains multiple concepts in a flat structure; and in
Fig. 5c, a SeeKCon contains a few structured concepts. Activation of these HofCs is simplified
to the activation of a single root concept (RC), regardless the complexity of HofCs.

6.2 Building and Expanding HofC

The process of identifying high-level concepts in a document depends on the ability to de-
termine if HofC concepts can be inferred based on the texts of the document. This depends
on the contents of the HofC itself – the more terms and concepts are used to build the HofC,
the higher the chance of proper evaluation of presence of a high-level concept in a document.
We do not expect users to provide comprehensive SeeKCons containing a large number of terms
and concepts. The model accepts conventional keyword-based SeeKCons that are automatically
translated into HofCs (Section 6.1). That is, the keywords are translated into concepts with a
specific hierarchy representing how those concepts are related to each other. The keywords from
SeeKCon are regarded as connected with a typeI connection.

The names of concepts from an equivalent HofC (the same as keywords provided by the user)
are used to retrieve knowledge of equivalent concepts from the ObKB. The knowledge includes
subconcepts, attributes, linguistic quantifiers (Q), and importance vectors (M). The expansion
process is as follows.

for each concept from the HofC do
search ObKB for a concept equivalent to the concept
if an equivalent concept is found then

1. copy all concepts from the ObKB connected via connection TypeII to the found concept
as subconcepts of the concept
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2. copy all attributes of all just copied concepts from ObKB as attributes of the subcon-
cepts
3. copy all concepts, and their attributes, connected to the concept found in ObKB via
TypeIII connection

else
add a string-type attribute “NAME” to the concept; the value of this attribute is the name
of the concept

end if
end for

A HofC includes concepts and attributes arranged in a hierarchy. Identification of a concept
in the ObKB through a keyword means finding the matching keyword among the concept names
or concept attributes in the knowledge base. Once an equivalent concept is found, all knowledge
regarding it present in the ObKB is used to enhance the HofC.

It is also possible that the user provides other linguistic quantifiers Q different from the
default quantifier contained in the ObKB. Different linguistic quantifiers mean different ways of
aggregation of activation levels (Section 3.2).

7 Identification of Concepts: HofC Satisfaction Process

HofC Satisfaction Process (HofCSp) accepts expanded HofC (output from HofCPp), and
identifies concepts in documents.

An extended HofC contains not only concepts (user’s keywords) themselves but also con-
cepts and attributes from the definitions of keyword-based concepts. Those “new” concepts and
attributes can be identified in documents.

The evaluation of relevance is mapped as the “activation” of the HofC based on OWA (Section
3.2). The more of the HofC is activated, the higher the chance that the document contains a
high-level concept represented by HofC.

7.1 Satisfaction, Importance and Aggregation weights

Before explaining how HofCSp works, three terms used here: satisfaction, importance, and
aggregation weights, need to be defined

• Satisfaction represents how well a criterion in the HofC is satisfied by the text from a
document. A criterion can be an attribute, a concept or even a complete HofC. The
satisfaction of the root concept (RC) (Section 6.1) is equivalent to the satisfaction of the
whole HofC.

• Importance represents how important a criterion is. With the AATI scheme, each entity
(term or concept) in the ObKB includes a measure of importance.

• Aggregation weight is the weight of a criterion calculated by the OWA operator (Sec-
tion 3.2). Aggregation weight depends not only on the importance of the criterion but
also on the linguistic quantifier. In Section 7.2, the use of linguistic quantifiers and their
importance in calculating aggregation weights is explained.

7.2 Linguistic Quantifier

The concept of linguistic quantifiers was introduced by Zadeh [35] in the early 1980s. Some
examples are ALL, MOST, AT LEAST HALF and ABOUT ONE THIRD. To formally rep-
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resent those quantifiers, Zadeh suggested using a fuzzy subset Q(r) as a linguistic expression
corresponding to a quantifier that indicates the degree to satisfy the concept for any proportion
r ∈ [0, 1].

(a) some (b) most

Figure 6: Linguistic quantifiers

Yager [36] used the linguistic expression Q(r) to obtain a weighting vector W associated
with an OWA aggregation. These quantifiers were then able to guide aggregation procedures by
verbally expressed concepts in a description independent dimension.

In the presented work, two linguistic quantifiers are considered:

• Q(r) = r represents the linguistic quantifier some, Fig. 6a. The equation means that
the aggregation weight of a criterion depends only on its importance value. That is, the
relations between concepts do not change their aggregation weights.

• Q(r) = r2 represents linguistic quantifier most, Fig. 6b. Using this equation, the aggre-
gation weight of a criterion tends to be large when it is less satisfied (more details are in
section 3.2).

7.3 Satisfaction of Concept with Attributes Only

A criterion for a single concept can be an attribute or a subconcept. The simplest situation
is when a concept has only attributes attached to it.

The literal values of attributes are called terms. The presence (more precisely, frequencies)
of a term or terms in a document decides how well the criterion (attribute) is satisfied. Mathe-
matically, the satisfaction of a term si is expressed with the following formula:

si = e
− 1

freqi (4)

where freqi is the frequency of the term in the document. The reasons for using Eq. 4 are:

1. It is a monotonically increasing function, so when its frequency increases, the satisfaction
increases.

2. The function “saturates” with increasing values of the argument, so if a given term occurs
many times in a document, its satisfaction does not overshadow the satisfactions values of
other terms.
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Each criterion has an assigned value of importance. Assuming there are n different datatype
attributes attached to a single concept C, the importance vector M contains n elements, where
each element represents the importance of a criterion. The satisfaction vector S also contains n
elements, where each element represent the satisfaction level calculated for a criterion based on
a given document. In such case, the ordered satisfaction vector Sprime (Eq. 1) is formed based
on S, in which sprime

j is the jth largest of all satisfactions s1, s2, ..., sn. Furthermore, we assume
µj denotes the importance weight associated with the attribute that has the jth largest value.
Thus if s3 is the largest value, then sprime

1 = s3 and µ1 = m3. Based on this, the OWA weighing
vector W is obtained by Q(r) in Eq. 5,

wj = Q(
Xj

T
)−Q(

Xj−1

T
) (5)

where Xj =
∑j

k=1 µk and T = Xn =
∑n

k=1 µk. That is, Xj is the sum of the importance weights
of the jth most satisfied arguments, and T is the sum of all importance weights.

So, the satisfaction of concept Sc is:

Sc =
n∑

k=1

wk · sprime
k (6)

7.4 Satisfactions of Concept with Attributes and Subconcepts

As mentioned earlier, a criterion can be an attribute or a subconcept. The satisfaction of
a subconcept is the satisfaction of a concept. The calculations of the satisfaction of a criterion
based on terms (attributes) and the calculation of the satisfaction of a criterion based on concepts
(subconcepts) are different. The calculation of the satisfaction of a criterion based on terms is
quite simple, as shown in Eq. 4, while the calculation of the satisfaction of a criterion based
on concepts includes more complicated aggregation. When both attributes and subconcepts are
attached to the concept, we aggregate separately satisfactions of attributes and satisfactions of
subconcepts, and then aggregate the results of both aggregations.

For example, for the conceptD in Fig. 7 its satisfaction is calculated using Eq. 6 using
frequencies of terms. In the case of the conceptA in Fig. 7, its satisfaction is calculated in
two steps: firstly, the satisfaction of the TermA1 is determined as well as satisfactions of the
conceptB and the conceptC; secondly, all satisfactions are aggregated using OWA with M_A
and Q_A.

7.5 Satisfaction of HofC

Activation of subconcepts the HofC is propagated upward as the process to calculate satis-
faction of the HofC continues. That is, calculation of the satisfaction of the HofC starts from the
attributes/concepts at the lowest level and ends with the concepts at the highest level. The pres-
ence of terms/attributes (for example, TermD1, T ermD2, T ermC1, and TermC2, see Fig. 7)
in a document contributes to the satisfaction of the corresponding concepts (ConceptD and
ConceptC, respectively, Fig. 7). The aggregation of the satisfactions of those concepts and other
terms contributes to the satisfaction of the higher-level concepts (for example, TermB1 and
ConceptD lead to activation of ConceptB, Fig. 7). The process is repeated until the satisfaction
of the concept on the top level is calculated.

The structure of HofC determines which terms/attributes and concepts contribute to the
satisfactions of which concepts – satisfaction of a single concept is calculated based on the
satisfactions of all terms and concepts that are attached (from the bottom) to it. The aggregation
of satisfactions is performed at each concept of HofC using OWA (Eq. 6).
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Figure 7: Enhanced HofC

8 Case Study

In order to illustrate the proposed process for concept identification we present a simple case
study where two SeeKCons: A:Chelsea and B:Drogba;Terry;Chelsea, are “checked” against two
documents Doc.1 and Doc.2. The process is performed with two linguistic quantifiers MOST
(Q(r) = r2) and SOME (Q(r) = r). The frequencies of terms in Doc.1 and Doc.2 are listed in
Table 1. Roughly, Doc.1 contains more information about Concept Chelsea and Doc.2 contains
more information about Player Drogba and Player Terry.

Table 1: Term frequencies in documents

Doc.1 Doc.2
Concept Chelsea
Name:Chelsea 6 0
Location:London 2 1
Stadium:Stamford 2 1
Concept Player Drogba
First Name:Didier 0 2
Last Name:Drogba 1 2
Position:Forward 0 1
Concept Player Terry
First Name:John 0 2
Last Name:Terry 1 3
Position:Midfielder 0 0

8.1 Building and Expanding HofC

Both SeeKCons A and B are used to create HofCs. HofC_A is built from the keyword
“Chelsea”, Fig. 8. The keyword “Chelsea” itself is a piece of meaningless text for the machine.
However, KnUp tries to figure out the concept embedded in this keyword. It finds the concept
Club Chelsea in the ObKB because the term “Chelsea” is the value of its attribute Name. Then
definitions of the concept in the knowledge base are added into the SeeKCon including the



Human-inspired Identification of High-level Concepts
using OWA and Linguistic Quantifiers 493

Figure 8: Construction of HofC_A

values of its datatype attributes such as “London” (attribute Location) and “Stamford”(attribute
Stadium), and the values of the object attribute HasPlayer associated with the two concepts:
concept Player Drogba and Player Terry. The connection between concept Club Chelsea and
concept Player Drogba and the connection between concept Club Chelsea and concept Player
Terry are all TypeIII connections (Section 6.1 for more details). For simplicity, in this chapter
we treat TypeI, TypeII and TypeIII connections equally in calculation.

Similarly, HofC_B is built from keywords “Drogba,” “Terry,” and “ Chelsea”, Fig. 9. Since
there is no indication about their relations, the process HofCPp places the three concepts in a
flat (equal level) structure. The connections in this HofC are TypeI.

Figure 9: Construction of HofC_B

8.2 Importance of Terms

The importance (TW) of terms is assigned by the AATI. The values are displayed in the
table below:
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Concept Player Drogba
Term Didier Drogba Forward
Importance 0.06 0.11 0.02
Concept Player Terry
Term John Terry Midfielder
Importance 0.03 0.07 0.06
Concept Club Chelsea
Term Chelsea London Stamford
Importance 0.15 0.02 0.08

8.3 Evaluation

In total, there are four cases using the linguistic quantifiers MOST and SOME : HofC_A(most),
HofC_A(some), and HofC_B(most), HofC_B(some). Cases HofC_(most) and HofC_A(some)
utilize HofC_A; cases HofC_B(most) and HofC_B(some) utilize HofC_B. Table 2 shows the
design.

Table 2: Case study design

Case Linguistic Quantifier
HofC_A(most) most
HofC_A(some) some
HofC_B(most) most
HofC_B(some) some

Due to space limitations we show all computational details for two of those cases: HofC_A(some)
and HofC_B(most). The results for the rest of the case are given in the table in Section 8.4.

Case HofC_A(most) for Doc. 1

HofC_A, shown in Fig. 8, is generated from the keyword “Chelsea.” It is composed of three
concepts, which are Club Chelsea, Player Drogba, and Player Terry. The linguistic quantifier in
this case is MOST.

Fig. 10 displays the aggregation orders in both cases: HofC_A(most) and HofC_A(some).
The ellipses in the figure denote the aggregation processes; the numbers in the ellipses are the
orders of the processes. As shown in Fig. 10, satisfactions of the concepts Player Drogba and
Player Terry are calculated firstly. As subconcepts of the concept Club Chelsea, their satisfactions
are aggregated. Then satisfactions of the terms in concept Club Chelsea are calculated and
aggregate with the satisfactions of the aggregated subconcepts, which is the satisfaction of the
whole HofC.

Player Drogba has no subconcept, so its satisfaction is decided by attached terms. The term
satisfaction is calculated based on Eq. (4). We calculate the ordered satisfactions of the terms
in Player Drogba:

Concept Player Drogba satisfaction importance
term: Drogba 0.3679 0.11
term: Didier 0 0.06
term: Forward 0 0.02

Because the linguistic quantifier is MOST, which is defined by Q(r) = r2. For the concept
Player Drogba, the sum of the importance of all attached terms is 0.11 + 0.06 + 0.02 = 0.19.
Based on OWA, the weights of its criteria/terms are:
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Figure 10: HofC_A: Satisfaction Calculation Process

term Drogba:

wtDrogba = Q(
0.11

0.19
)−Q(

0

0.19
) = 0.3352

term Didier:
wtDidier = Q(

0.17

0.19
)−Q(

0.11

0.19
) = 0.4654

term Forward:
wtForward = Q(

0.19

0.19
)−Q(

0.17

0.19
) = 0.1994

For Doc.1, concept Player Drogba has its satisfaction as:

scDrogba = 0.3352× 0.3679 + 0.4654× 0 + 0.1994× 0

= 0.1233
(7)

Then we calculate the ordered satisfactions of the terms in concept Player Terry :

Concept Player Terry satisfaction importance
term: Terry 0.3679 0.07
term: John 0 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in concept Player Terry is 0.07+0.03+0.06 =
0.16. Based on OWA, the weights of its criteria/terms are calculated:

term Terry:

wtTerry = Q(
0.07

0.16
)−Q(

0

0.16
) = 0.1914
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term John:
wtJohn = Q(

0.10

0.16
)−Q(

0.07

0.16
) = 0.1992

term Forward:
wtForward = Q(

0.16

0.16
)−Q(

0.10

0.16
) = 0.6094

For Doc.1, the concept Player Terry has its satisfaction as:

scTerry = 0.1914× 0.3679 + 0.1992× 0 + 0.6094× 0

= 0.0704
(8)

Defined by the structure of the HofC_A, satisfaction of the concept Club Chelsea is obtained
by aggregating the satisfactions of its subconcepts (concept Player Drogba and concept Player
Terry) and terms(“Chelsea,” “London,” and “Stamford”). Because the methods for calculateing
the satisfaction of subconcepts and terms are different, we calculate the satisfactions separately
and then combine them. The details are as follows.

The ordered satisfactions of sub-concepts in concept Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
concept: Drogba 0.1233 0.19 0.2947
concept: Terry 0.0704 0.16 0.7053

Satisfaction of the combination of sub-concepts in concept Club Chelsea is:

sprime
cChelsea = 0.1233× 0.2947 + 0.0704× 0.7053

= 0.0860
(9)

The ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.8465 0.15 0.3600
term: London 0.6065 0.02 0.1024
term: Stamford 0.6065 0.08 0.5376

Satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.8465× 0.3600 + 0.6065× 0.1024 + 0.6065× 0.5376

= 0.6929
(10)

Satisfaction of Club Chelsea is calculated by the combination of subconcepts sprime
cChelsea and terms

s”cChelsea as:

Concept Club Chelsea satisfaction importance weights
comb. of terms 0.6929 0.25 0.1736
comb. of sub-concepts 0.0860 0.35 0.8264

Finally, when applied to Doc.1, satisfaction of the HofC_A is the same as satisfaction of concept
Club Chelsea:

scChelsea = 0.6929× 0.1736 + 0.0860× 0.8264

= 0.1914
(11)
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Figure 11: HofC_B: Satisfaction Calculation Process

Case HofC_B(some) for Doc. 1

If a SeeKCon “Chelsea Drogba Terry” is provided, a new HofC is created as shown in Fig. 9.
Fig. 11 displays the aggregation order for HofC_B in cases HofC_B(most) and HofC_B(some).

The ellipses in the figure denote the aggregation processes; the numbers in the ellipses are the
orders of the processes. As shown in Fig 11, the three single concepts (concepts Player Drogba,
Player Terry, and Club Chelsea) are processed first. The satisfaction of the three separated
concepts are aggregated as the satisfaction of the whole HofC.

First, we calculate the ordered satisfaction of the terms in Player Drogba as:

Concept Player Drogba satisfaction importance
term: Drogba 0.3679 0.11
term: Didier 0 0.06
term: Forward 0 0.02

Because the linguistic quantifier is some, which is defined by Q(r) = r. For Player Drogba,
the sum of the importance of all attached terms is 0.11 + 0.06 + 0.02 = 0.19. Based on OWA,
the weights of its criteria/terms are:

term Drogba:

wtDrogba = Q(
0.11

0.19
)−Q(

0

0.19
) = 0.5789

term Didier:
wtDidier = Q(

0.17

0.19
)−Q(

0.11

0.19
) = 0.3158

term Forward:
wtForward = Q(

0.19

0.19
)−Q(

0.17

0.19
) = 0.1053

For Doc.1, concept Drogba has its satisfaction as:
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scDrogba = 0.5789× 0.3679 + 0.3158× 0 + 0.1994× 0

= 0.2130
(12)

We calculate the ordered satisfactions of the terms in Player Terry :

Concept Player Terry satisfaction importance
term: Terry 0.3679 0.07
term: John 0 0.03
term: Midfielder 0 0.06

The sum of the importance of all attached terms in Player Terry is 0.07+0.03+0.06 = 0.16.
Based on OWA, the weights of its criteria/terms are:

term Terry:

wtTerry = Q(
0.07

0.16
)−Q(

0

0.16
) = 0.4375

term John:
wtJohn = Q(

0.10

0.16
)−Q(

0.07

0.16
) = 0.1875

term Forward:
wtForward = Q(

0.16

0.16
)−Q(

0.10

0.16
) = 0.3750

For Doc.1, concept Terry has its satisfaction as:

scTerry = 0.4375× 0.3679 + 0.1875× 0 + 0.3750× 0

= 0.1610
(13)

The ordered satisfactions of the terms in Club Chelsea are:

Concept Player Chelsea satisfaction importance weights
term: Chelsea 0.8465 0.15 0.6000
term: London 0.6065 0.02 0.0800
term: Stamford 0.6065 0.08 0.3200

The satisfaction of the combination of the terms in Club Chelsea is:

s”cChelsea = 0.8465× 0.6000 + 0.6065× 0.0800 + 0.6065× 0.3200

= 0.7505
(14)

The ordered satisfactions of the three concepts are:

RC satisfaction importance weights
concept:Chelsea 0.7505 0.35 0.4167
concept:Drogba 0.2130 0.19 0.3167
concept:Terry 0.1610 0.16 0.2667

Therefore, the satisfaction of the RC, which is the satisfaction of HofC_B(some), is:

scRC = 0.4167× 0.7505 + 0.3167× 0.2130 + 0.2667× 0.1610

= 0.4231
(15)
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8.4 Discussion

The results for all cases are summarized in Table 3. There are 12 pieces of information (sum
of the frequencies of terms) to satisfy three aimed concepts (Table 1) in both documents. For
Doc.1, 10 out of 12 are directly related to Club Chelsea, while for Doc.2, 10 out of 12 are directly
related to Player Drogba and Player Terry. In all of the results, the scores for Doc.2 are greater
than the scores for Doc.1. This is mainly because different pieces of information have different
importance (section 8.2). Moreover, the scores differ when calculated with different hierarchical
structures or with different linguistic quantifiers.

Table 3: The results of cases

Case Linguistic Quantifier Doc.1 Doc.2
HofC_A(most) most 0.1914 0.3234
HofC_A(some) some 0.4231 0.4391
HofC_B(most) most 0.1977 0.3115
HofC_B(some) some 0.4231 0.4391

For HoC_A(some) and HofC_B(some) the satisfaction of HofC_A is equal to the satisfaction
of HofC_B when the same document is evaluated. That is, with the linguistic quantifier some,
the hierarchical structures do not affect the calculation of satisfactions. This is because some is
defined by Q(r) = r (Fig. 6a), which means the aggregation weight of a criterion is decided by its
importance value directly. That is, with the linguistic quantifier some, the order of aggregation
does not change the calculation.

For information aggregated by the linguistic quantifier most (defined by Q(r) = r2,Fig. 6b)
order is crucial. For example, if there are two pieces of information (i1 and i2) with importance
imp1 = 0.2 and imp2 = 0.3, respectively, and the order of the aggregation is i1 then i2, with most
their weights are: wgt1 = (0.2/0.5)2 = 0.16 and wgt2 = 1− (0.2/0.5)2 = 0.84, respectively. That
is, i2 obtains larger aggregation weight than i1. If the order of the aggregation is i2 then i1, their
weights are: wgtprime

2 = (0.3/0.5)2 = 0.36 and wgtprime
1 = 1 − (0.3/0.5)2 = 0.64, respectively.

That is, i1 obtains larger aggregation weight than i2. Thus with most, the order of aggregation
is important for calculations. Moreover, because the aggregation of pieces of information is in
an order from most satisfied to less satisfied, the less satisfied piece of information tends to have
larger weights.

The difference in satisfactions between Doc.1 and Doc.2 with the linguistic quantifier some
is much smaller than that with the linguistic quantifier most. For HofC_A, when the linguistic
quantifier changes from some to most, the difference in satisfactions between Doc.1 and Doc.2
changes from 0.4391 − 0.4231 = 0.0160 to 0.3234 − 0.1914 = 0.1315. For HofC_B, when the
linguistic quantifier changes from some to most, the difference in satisfaction between Doc.1 and
Doc.2 changes from 0.4391 − 0.4231 = 0.0160 to 0.3115 − 0.1977 = 0.1138. This is because
satisfaction calculated with most is affected by hierarchies while satisfaction with some is not.

The case studies are good examples of how HOTIR, especially component Eval, ranks docu-
ments. Moreover, the detailed calculations illustrate the effects of the linguistic quantifiers some
and most in HOTIR. In the next chapter, the designed experiments examine the performance of
HOTIR with some and most.

9 Conclusions

The constant need for finding relevant documents leads to increased interests in concept-based
search techniques. A necessary part of it is concept identification. In the paper we propose
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a human-inspired approach to detect concepts in text documents. The proposed approach is
a fusion of multiple techniques: ontology, term importance evaluation schema, hierarchies of
concepts, linguistic quantifiers and the aggregation operator OWA. The following elements are
proposed for the implementation of the approach:

• ObKB – the ontology-based knowledge base provides supplementary knowledge to define
concepts in sets of keywords representing users’ interests;

• AATI – the scheme for assigning importance values to terms and concepts;
• Hierarchies of Concepts (HofC) – structures built from concepts, terms/attributes; they are

used as representation of users’ keywords; they are enhanced with knowledge from ObKB;
• linguistic quantifiers and OWA – used to aggregate activation levels of concepts and terms

from HofC and estimating overall activation of HofC which is equivalent to identification
of concepts in documents.

The case study has been designed to show how the proposed approach performs with different
settings. The obtained results and inspection of the calculation processes confirm the ability of
the approach to identify concepts in documents in a way similar to humans. A new set of
experiments is being planed to verify this in real-world environment.
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