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Abstract: In this article we investigate insertion systems of small size in the
framework of P systems. We consider P systems with insertion rules having
one symbol context and we show that they have the computational power of
context-free matrix grammars. If contexts of length two are permitted, then
any recursively enumerable language can be generated. In both cases a squeez-
ing mechanism, an inverse morphism, and a weak coding are applied to the
output of the corresponding P systems. We also show that if no membranes are
used then corresponding family is equal to the family of context-free languages.
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1 Introduction

The study of insertion-deletion operations on strings has a long history; we just mention
[2,5,11,16,20]. Insertion-deletion systems motivated from molecular computing have been studied
in [1, 3, 10,19,21]. With some linguistic motivation they may be found in [9].

In general form, an insertion operation means adding a substring to a given string in a
specified (left and right) context, while a deletion operation means removing a substring of a
given string from a specified (left and right) context. A finite set of insertion/deletion rules,
together with a set of axioms provide a language generating device: starting from the set of
initial strings and iterating insertion-deletion operations as defined by the given rules we get a
language. The number of axioms, the length of the inserted or deleted strings, as well as the
length of the contexts where these operations take place are natural descriptional complexity
measures of the insertion-deletion systems.

Inspired by the structure and the functioning of a living cell, especially by the local informa-
tion processing, P systems are brought to light few years ago [15]. This is a highly distributed
computational model which combines local processing (in membranes) and communication (be-
tween them). It is natural to consider insertion and deletion operations in the framework of P
systems and it was firstly done by Gh. Paun in [17]. Such a combination permits do define
programmed-like insertion-deletion systems, which, as expected, increase their computational
power. Some combinations of parameters for pure insertion-deletion lead to systems which are
not computationally complete [6, 12] or even decidable [22], while in [7, 8] it was shown that P
systems framework can easily increase the computational power comparing to ordinary insertion-
deletion systems.

Traditionally, language generating devices having only insertion or only deletion rules were
studied. Early computational models based only on insertion appear already in [9], and are
discussed in [19] and [17] (with membrane tree structure). It was proved that pure insertion
systems having one letter context are always context-free. Yet, there are insertion systems with
two letter context which generate nonsemilinear languages (see Theorem 6.5 in [19]). On the
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other hand, it appears that by using only insertion operations the obtained language classes with
contexts greater than one are incomparable with many known language classes. For example,
there is a simple linear language {anban | n ≥ 1} which cannot be generated by any insertion
system (see Theorem 6.6 in [19]).

In order to overcome this obstacle one can use some codings to “interpret” the generated
strings. The computational power of insertion systems with morphisms and intersection with
special languages was investigated in [14] and [18]. In [11] there were used two additional mapping
relations: a morphism h and a weak coding φ. The strings of a language are considered being the
products h−1◦φ over the generated strings. More precisely, the squeezing mechanism selects only
those output strings of the corresponding (P) systems to which h−1 and φ are being applied. As
expected, the language generating mechanisms have greater expressivity, and the corresponding
language family is larger. It appears that with the help of morphisms and codings one can obtain
every RE language if insertion rules have sufficiently large context. It is proved in [11] that for
every recursively enumerable language L there exists a morphism h, a weak coding φ and a
language L′ generated by an insertion system with rules using the length of the contexts at most
7, such that, L = h(φ−1(L′)). The result was improved in [13], showing that rules having at most
5 letter contexts are sufficient to encode every recursively enumerable language. Recently, in [4]
it was shown that the same result can be obtained with the length of contexts equal to 3.

Our aim is to reduce the length of the contexts in insertion rules by regulating derivations
in terms of membranes. Unlike the previous works, our article considers the encoding as a part
of insertion P systems. The obtained model is quite powerful and has the power of matrix
languages if contexts of length one are used. We also show that if no encoding is used, then
the corresponding family is strictly included into the family of matrix languages and is equal to
the family of context-free languages if no membranes are used. If an insertion of two symbols in
two letters contexts is used, then all recursively enumerable languages can be generated (using
of course the inverse morphism, the weak coding, and the squeezing mechanism).

2 Prerequisites

Here we use standard formal language theoretic notions and notations. The reader can consult
any of the many monographs in this area (see, e.g., in [20] for the unexplained details).

We denote by |w| the length of a word w and by card(A) the cardinality of the set A, while
ε denotes the empty string.

By CF and RE we denote the classes of context-free and recursively enumerable languages,
respectively. A language L is context-free if there exists a context-free grammar G such that
L(G) = L. A context-free grammar is a construct G = (N,T, S, P ), where N and T are disjoint
alphabets, S ∈ N , and P is a finite set of context-free rules of the form A −→ v, where A ∈ N
and v ∈ (N ∪ T )∗. We say that a context-free grammar G = (N,T, P, S) is in Chomsky normal
form, if each rule in P has one of the forms A −→ α, or A −→ BC, for A,B,C ∈ N,α ∈ T ∪{ε}.

A language L is recursively enumerable if there exists a type 0 grammar G such that L(G) =
L. A type 0 grammar is a construct G = (N,T, S, P ), where N and T are disjoint alphabets,
S ∈ N and P is a finite set of rules of the form u −→ v, where u ∈ (N ∪ T )∗N(N ∪ T )∗ and
v ∈ (N ∪ T )∗.

We say that a type 0 grammar G = (N,T, P, S) is in Penttonen normal form, if each rule in
P can be written either as A −→ α, or AB −→ AC, for A,B,C ∈ N,α ∈ (T ∪N)∗, |α| ≤ 2. It
is well known that for every type 0 language there is a modified Penttonen normal form where
each rule can be written as either: A −→ α, or A −→ AC, or A −→ CA, or AB −→ AC, or
AB −→ CB, for A,B,C ∈ N,α ∈ T ∪ {ε}.
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We also recall the following definition from [17]. A context-free matrix grammar (without
appearance checking) is a construct G = (N,T, S,M), where N,T are disjoint alphabets (of non-
terminals and terminals, respectively), S ∈ N (axiom), and M is a finite set of matrices, that is
sequences of the form (A1 −→ x1, . . . , An −→ xn), n ≥ 1, of context-free rules over N ∪ T . For
a string w, a matrix m : (r1, . . . , rn) is executed by applying the productions r1, . . . , rn one after
the other, following the order in which they appear in the matrix. Formally, we write w =⇒m u
if there is a matrix m : (A1 −→ u1, . . . , An −→ un) ∈ M and the strings w1, w2, . . . , wn+1 ∈
(N ∪ T )∗ such that w = w1, wn+1 = u, and for each i = 1, 2, . . . , n we have wi = w′Aiw

′′ and
wi+1 = w′uiw

′′. If the matrix m is understood, then we write =⇒ instead of =⇒m. As usual, the
reflexive and transitive closure of this relation is denoted by =⇒∗. Then, the language generated
by G is L(G) = {w ∈ T ∗ | S =⇒∗ w}. The family of languages generated by context-free matrix
grammars is denoted by MAT λ (the superscript indicates that erasing rules are allowed). It is
well known fact that every language from MAT λ can be generated by a modified binary normal
form, (similarly to the binary normal form, see e.g., [17]) having each matrix m of the following
form m : (A −→ α,A′ −→ α′), for A,A′ ∈ N,α, α′ ∈ (N ∪ T )∗,max(|α|, |α′|) ≤ 2.

An insertion system is a construct Γ = (V,A, I), where V is an alphabet, A is a finite language
over V , and I is finite set of triples of the form (u, α, v), where u, α, and v are strings from V ∗.
The elements of A are called axioms, the triples in I are insertion rules. An insertion rule
(u, α, v) ∈ I indicates that the string α can be inserted in between u and v. Stated otherwise,
(u, α, v) ∈ I corresponds to the rewriting rule uv → uαv. We denote by =⇒ the relation defined
by an insertion rule (formally, x =⇒ y iff x = x1uvx2, y = x1uαvx2, for some (u, α, v) ∈ I and
x1, x2 ∈ V ∗). We denote by =⇒∗ the reflexive and transitive closure of =⇒ (as usual, =⇒+ is
its transitive closure).

The language generated by Γ is defined by

L(Γ) = {w ∈ V ∗ | x =⇒∗ w, x ∈ A}.

We say that an insertion system (V,A, I) has weight (n,m,m′) if

m = max{|u| | (u, α, v) ∈ I}, m′ = max{|v| | (u, α, v) ∈ I},
n = max{|α| | (u, α, v) ∈ I}.

We denote by INSm,m′
n the corresponding families of languages generated by insertion sys-

tems.
An insertion P system is a construct:

Π = (V, µ,M1, . . . ,Mk, R1, . . . , Rk),

where

• V is a finite alphabet,

• µ is a (cell-like, i.e., hierarchical) membrane structure with k membranes. This structure
will be represented by a word containing correctly nested marked parentheses, i.e., by a
word from the Dyck language. The skin membrane is labeled with “1".

• Mi, for each 1 ≤ i ≤ k is a finite language associated to the membrane i.

• Ri, for each 1 ≤ i ≤ k is a set of insertion rules with target indicators associated to
membrane i and which have the following form: (u, x, v; tar), where (u, x, v) is an insertion
rule, and tar, called the target indicator, is from the set {here, inj , out}, 1 ≤ j ≤ k.
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A configuration of Π is a k-tuple (N1, . . . , Nk) of finite languages over V . For two configurations
(N1, . . . , Nk) and (N ′

1, . . . , N
′
k) of Π we write (N1, . . . , Nk) =⇒ (N ′

1, . . . , N
′
k) if we can pass from

(N1, . . . , Nk) to (N ′
1, . . . , N

′
k) by applying nondeterministically the insertion rules, to all strings

which can be rewritten from the corresponding regions, and following the target indications
associated with the rules. More specifically, w′ ∈ N ′

j if either w′ ∈ Nj or there is a word
w ∈ Ni and w =⇒r w′, where r = (u, x, v; tar) ∈ Ri. Moreover, the membrane labeled by j
is immediately outside the membrane labeled by i if tar = out; the membrane labeled by j is
immediately below the membrane labeled by i if tar = inj ; and i = j if tar = here. No other
words are present in N ′

j , 1 ≤ j ≤ k. We say that a word w′ is sent out of the system if there is a
configuration (N1, . . . , Nk), a word w ∈ N1, and w =⇒r w′ where r = (u, x, v; out) ∈ R1.

We use the definition of the language generated by Π according to [17]. This language is
denoted by L(Π) and it is defined as follows: we start from the initial configuration (M1, . . . ,Mk)
of the system and proceed iteratively, by transition steps performed by applying the rules in
parallel, to all strings which can be rewritten. All strings over the alphabet V sent out of the
system (i.e. sent from the skin membrane) during any step of any computation form the language
L(Π).

Insertion tissue P systems are defined in an analogous manner. As the tissue P systems use
arbitrary graph structures we write the target indicator in the form tar = goj , j = 1, . . . , k. We
remark, that the result of a computation consists of all strings over V which are sent to one
selected output cell.

The weight of insertion rules (n,m,m′) and the membrane degree k describe the complexity
of the system. We denote by LSPk(ins

m,m′
n )(see [17]) the family of languages L(Π) generated

by insertion P systems of degree at most k ≥ 1, having weight at most (n,m,m′). If some of the
parameters n,m,m′, or k is not specified we write “ * ” instead.

We say that a language L′ is from MorINSm,m′
n (from MorLSPk(ins

m,m′
n ), respectively) if

there exist a morphism h, a weak coding φ and L ∈ INSm,m′
n (L ∈ LSPk(ins

m,m′
n )) such that

φ(h−1(L)) = L′.

For every language L ∈ MorLSPk(ins
m,m′
n ), L = φ(h−1(L(Π)), we add h and φ to the

system, and we write Π in the form

Π = (V, µ,M1, . . . ,Mn, R1, . . . , Rn, h, φ),

Hereafter h and φ are naturally extended to strings: h(a1a2 . . . at) = h(a1)h(a2) . . . h(at), and
φ(a1a2 . . . at) = φ(a1)φ(a2) . . . φ(at), ai ∈ V.

We insert “t′′ before P to denote classes of languages corresponding to the tissue cases (e.g.,
LStP ). We also write “[t]” (e.g., LS[t]P ) if we do not distinguish between tissue and tree classes.

We say that a letter a is marked in a sentential form waw′′ if it is followed by #, i.e., |w′′| > 0,
and # is the prefix of w′′. In the following proofs we use a marking technique introduced in [17].
The technique works as follows: in order to simulate a rewriting production A −→ B we add
adjacently right from A the word #B specifying that letter A is already rewritten. As soon as
the derivation of the simulated sentential form is completed, every nonterminal A is marked and
the pair A# is subject to the inverse morphism.

3 Main results

Let us consider insertion systems (without membranes) with one letter context rules, i.e., the
family MorINS1,1

∗ . Applying the marking technique we get a characterization of context-free
languages.

Theorem 3.1. MorINS1,1
∗ = CF.
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Proof: First we show that CF ⊆ MorINS1,1
3 .

Let G = (V, T, S, P ) be a context-free grammar in Chomsky normal form. Consider the
following insertion system

Π = (T ∪ V ∪ {#}, R, {S}, h, φ),

where R = {(A,#γ, α) | α ∈ T ∪ V,A −→ γ ∈ P, γ ∈ (T ∪ V )∗, 1 ≤ |γ| ≤ 2}, the morphism h is
defined as follows

h(a) = a#, if a ∈ V, and h(a) = a, if a ∈ T,

and the weak coding φ is defined as follows

φ(a) −→ ε, if a ∈ V, φ(a) −→ a, if a ∈ T.

It is clear that L(Π) ∈ MorINS1,1
3 . We claim that L(Π) = L(G). Indeed, each rule (A,#γ, α) ∈

R can be applied in the sentential form wA alphaw′ if A is unmarked (not rewritten). Hence,
the production A −→ γ ∈ P can be simulated by the corresponding derivation of G. Hence,
by applying the counterpart rules we get equivalent derivations. At the end of the computation
every nonterminal is marked, and no rules can be applied any more. (Indeed, if the system
produces a word having some unmarked nonterminal then h−1 is not defined on this word.) At
this point h−1 removes all marks, and φ removes all nonterminal symbols. Hence L(Π) = L(G).
We get CF ⊆ MorINS1,1

3 .

The equivalence of these two classes follows from Theorem 6.4 in [19] stating that INS1,1
∗ ⊆

CF and the fact that the family of context-free languages is closed under inverse morphisms and
weak codings. �

Now we consider insertion P systems with the left and right contexts of at most one letter. It
is known from Theorem 5.5.1 in [17] that LSP2(ins

1,1
2 ) contains non context-free languages. We

prove that the more general family LSP∗(ins
1,1
∗ ) is bounded by the class of languages generated

context-free matrix grammars:

Lemma 3.2. LStP∗(ins
1,1
∗ ) ⊂ MAT λ.

Proof: The proof uses a similar technique as in [19], Theorem 6.4 for context-free grammars.
Let Π = (V, µ,M1, . . . ,Mn, R1, . . . , Rn) be an insertion P system such that

L(Π) ∈ LStPn(ins
1,1
∗ ) for some n ≥ 1.

Consider the matrix grammar G = (D ∪ Q ∪ {S}, V, S, P ), where Q = {Qi | i = 1, . . . , n},
D = {Da,b | a, b ∈ V ∪ {ε}}, and P is constructed as follows:

1. For every rule (a, b1 . . . bk, c, goj) ∈ Ri, a, c ∈ V ∪ {ε}, b1, . . . , bk ∈ V, k > 0 we add to P
(Qi −→ Qj , Da,c −→ Da,b1Db1,b2 . . . Dbk−1,bkDbk,c), where

a =

{
a, if a ∈ V,
t,∀t ∈ V ∪ {ε}, if a = ε

c =

{
c, if c ∈ V,
t,∀t ∈ V ∪ {ε}, if c = ε.

2. For every rule (a, ε, c, goj) ∈ Ri, a, c ∈ V ∪ {ε}, k > 0 we add to P
(Qi −→ Qj , Da,c −→ Da,c), where a and c are defined as in the previous case.

3. Next, for every w = b1 . . . bk ∈ Mi, i = 1, . . . , n, k > 0 we add to P the matrix
(S −→ QiDε,b1Db1,b2 . . . Dbk−1,bkDbk,ε).

4. As a special case if ε ∈ Mi we add (S −→ QiDε,ε) to P.

5. Also, for every Da,b ∈ D, a, b ∈ V ∪ {ε} we add (Da,b −→ a) to P.
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6. Finally, we add (Q1 −→ ε) to P (we assume that the first cell is the output cell).

The simulation of Π by the matrix grammar is straightforward. We store the label of current
cell by means of nonterminals from Q. Every nonterminal Da,c ∈ D, a, c ∈ V ∪ {ε} represents a
pair of adjacent letters, so we can use them as a context. A rule (a, b1 . . . bk, c, goj) ∈ Ri, a, c ∈
V, b1 . . . bk ∈ V k can be simulated by the grammar iff the sentential form contains both Qi

and Da,c. As a result, the label of the current cell is rewritten to Qj and Da,c is rewritten to
the string Da,b1Db1,b2 . . . Dbk−1,bkDbk,c. We note, that in order to simulate rules that have no
context we introduce productions with every possible context symbols by writing a ∈ V ∪ {ε}
and c ∈ V ∪ {ε}. Clearly, since indexed symbols are duplicated for adjacent nonterminals, e.g.,
Dbi−1,biDbi,bi+1

, every nonterminal thus preserves one symbol right and left contexts.
The simulation of Π by the grammar starts with a nondeterministic choice of the axiom from

M1, . . . ,Mn. Then, during the derivation any rule from R1, . . . , Rn having the context (a, b) is
applied in one to one correspondence with grammar productions having Da,b in the left hand
side. Finally, the string over V is produced by the grammar iff Q1 has been deleted from the
simulated sentential form. The deletion of Q1 specifies that Π reached the output cell. So, we
obtain L(Π) = L(G). Hence, LStP∗(ins

1,1
∗ ) ⊆ MAT λ.

The strictness of the inclusion follows from the fact there are languages from MAT λ which
cannot be generated by any insertion P system from LStP∗(ins

1,1
n ), for any n ≥ 1. Indeed,

consider the context-free language La = {cakcakc | k ≥ 0}. Since every context-free language is
a matrix language we have La ∈ MAT λ. On the other hand, La /∈ LStP∗(ins

1,1
n ), for any n ≥ 1.

For the contrary, assume there is such a system Π′. We note, that the system cannot delete or
rewrite any letter, so every insertion is terminal. As the languages of axioms are finite we need
an insertion rule of letter a. Consider the final insertion step in a derivation which has at most
one step and derives a word w = cakcakc, for some k ≥ n+ 1 :

w0 =⇒∗ w′ =⇒ w,

where w0 is an axiom. Since |w0|c ≤ 3, c may be inserted by the last insertion. Assume, that
|w′|c = 3. In the latter case, let ap be the inserted string, p ≤ n. Because, we may insert ap in
the distinct positions of w′ we get that either cak−pcak+pc ∈ L(Π′) or cak+pcak−pc ∈ L(Π′). This
is a contradiction.

Now assume that c is inserted by the last insertion. We note that the insertion of two c is not
possible, since k ≥ n+ 1. Consider three cases: (1) the last applied rule inserts c in the middle,
(2) at the end, or (3) at the beginning of w′.
(1) Let wc = ap

′
cap

′′ be the inserted string, where p′ + p′′ ≤ n − 1. Hence, w′ = cak
′+k′′c,

where k′ + p′ = k′′ + p′′ = k, and k′ + k′′ = 2k − p′ − p′′ ≥ 2n + 2 − n + 1 ≥ 4. Obviously,
regardless of the contexts of the last insertion rule there are at least two positions at which
wc can be inserted. So, we get a contradiction because either cak

′+p′+1cak
′′+p′′−1c ∈ L(Π′), or

cak
′+p′−1cak

′′+p′′+1c ∈ L(Π′).
(2) Let aqc be the inserted string, where q ≤ n− 1. The corresponding insertion rule has one of
the following forms: (ε, aqc, ε, goj) or (a, aqc, ε, goj), where j is an index of the final membrane.
In ether case, aqc may be inserted in w′ before the last letter a. This is a contradiction. The case
(3) is a mirror to the case (2) and can be treated similarly.

So we proved La /∈ LStP∗(ins
1,1
n ), for any n ≥ 1 and, hence, LStP∗(ins

1,1
∗ ) ⊂ MAT λ. �

Since trees are special cases of graphs we get the following result

Corollary 3.3. LSP∗(ins
1,1
∗ ) ⊂ MAT λ.

Lemma 3.4. MAT λ ⊆ MorLSP∗(ins
1,1
2 ).
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Proof: We prove the lemma by direct simulation of a context-free matrix grammar
G = (N,T, S, P ). We assume that G is in the modified binary normal form, i.e., every ma-
trix has the form i : (A −→ BC,A′ −→ B′C ′) ∈ P , where A,A′ ∈ N ;B,B′, C, C ′ ∈ N ∪T ∪{ε},
and i = 1, . . . , n.

Consider a P insertion system Π defined as follows:

Π = (V, [1 [2 [3 [4 ]4 . . . [n+3 ]n+3 ]3 ]2 ]1, {S$}, ∅, . . . , ∅, R1, . . . , Rn+3, h, φ),

where V = N ∪ T ∪ {Ci, C
′
i | i = 1, . . . , n} ∪ {#, $}.

For every matrix i : (A −→ BC,A′ −→ B′C ′) we add

r.1.1 : (A,#Ci, α, in2), to R1;

r.2.1 : (Ci, BC, α, in3), r.2.2 : (C ′
i,#, α, out) to R2;

r.3.1 : (Ci,#, α, ini+3), r.3.2 : (C ′
i, B

′C ′, α, out) to R3;

r.i+ 3.1 : (A′,#C ′
i, α, out), to Ri+3

for every α ∈ V \{#}. In addition we add (ε, $, ε, out) to R1.

We define the morphism h and the weak coding φ by:

h(a) =

{
a, if a ∈ T,
a# if a ∈ V \(T ∪ {#}) φ(a) =

{
a, if a ∈ T,
ε if a ∈ V \T.

Clearly, L(Π) ∈ MorLSPn+3(ins
1,1
2 ). We claim that L(Π) = L(G). To prove this it is enough

to prove that w ∈ L(G) iff w′ ∈ L(Π) and w′ = φ(h−1(w)).

First we show that for every w ∈ L(G) there exists w′ ∈ L(Π) and w′ = φ(h−1(w)). Consider
the simulation of the i-th matrix (A −→ BC,A′ −→ B′C ′) ∈ P. It is controlled by letters Ci and
C ′
i. First, we insert #Ci in the context of unmarked A and send the obtained string to the second

membrane. Then we use Ci as a context to insert adjacently right the word BC. After that, we
mark the control letter Ci and send sentential form to the (i+3)-rd membrane. Here we choose
nondeterministically one letter A′, mark it, write adjacently right the new control letter C ′

i, and,
after that, send the obtained string to the third membrane. (We remark, the third membrane
is immediately outside of the i + 3-rd membrane.) It is clear that it is not possible to apply
the rule r.i+ 3.1 : (A′,#C ′

i, α; out) in the (i+ 3)-rd membrane and to reach the skin membrane
if the sentential form does not contain unmarked A′. So, this branch of computation cannot
influence the result and may be omitted in the consideration. Next, in the third membrane,
B′C ′ is inserted in the context of unmarked C ′

i and the form is sent to the second membrane.
Finally, we mark C ′

i and send the resulting string back to the skin membrane.
At the beginning of the simulation the sentential form in the skin membrane does not contain

unmarked Ci, C
′
i. Hence, the insertions in the second and third membranes are deterministic. The

derivation preserves this property, as after the sentential form is sent back to the skin membrane,
introduced Ci, and C ′

i are marked. At the end of the computation we send the resulting form
out from the system by the rule (ε, $, ε, out).

Let w be a string in the skin region which contains some unmarked A and A′. If the letter
A precedes A′ then we can write w = w1Aα1w2A

′α2w3. The simulation of the matrix is the
following

w1Aα1w2A
′α2w3

r.1.1,r.2.1,r.3.1
=⇒ w1A#Ci#BCα1w2A

′α2w3
r.3+i.1,r.3.2,r.2.2

=⇒
w1A#Ci#BCα1w2A

′#C ′
i#B′C ′α2w3,

where w1, w2, w3 ∈ V ∗, α1, α2 ∈ V \{#}. We can write a similar derivation if A′ precedes A.
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Hence, as result of simulation of i-th matrix we get both A and A′ marked and BC, B′C ′

inserted in the correct positions. The derivation in Π may terminate by the rule (ε, $, ε, out) only
in the first membrane. Hence it guaranties that the simulation of each matrix has completed.
According to the definition of MorLSP the string w′ belongs to the language if w′ = φ(h−1(w)),
where w is the generated string. We may consider only the final derivations of Pi in which each
nonterminal is marked. Hence, we have L(G) ⊆ φ(h−1(L(Π))).

The inverse inclusion is obvious since every rule in Π has its counterpart in G. Moreover the
case when the derivation in Π is blocked corresponds to the case in which the simulation of a
matrix cannot be completed.

Hence, we get MAT λ ⊆ MorLSP∗(ins
1,1
2 ). �

Remark 3.5. One can mention that a similar result can be obtained with a smaller number of
membranes at the price of the maximal length of inserted words. Precisely, for any context-free
matrix grammar G′ there is a P insertion system Π′ such that L(Π′) ∈ MorLSPn+1(ins

1,1
3 ) and

L(G′) = L(Π′), where n is the number of matrices in G′. To prove this we can use the same
argument as in the previous theorem and replace rules in R1, . . . , Rn+3 by

(A,#BC,α, ini+1) to R1,

(A′,#B′C ′, α, out) to Ri+1,

for every α ∈ V \{#}, i = 1, . . . , n.

Since trees are special cases of graphs we get the following result

Corollary 3.6. MAT λ ⊆ MorLStP∗(ins
1,1
2 ).

Taking into account Lemma 3.4 and 3.2, and the fact that the class of languages generated
by context-free matrix grammars is closed under inverse morphisms and weak codings we get a
characterization of MAT :

Theorem 3.7. MorLS[t]P∗(ins
1,1
∗ ) = MAT λ.

Now we increase the maximal size of the context of insertion rules to two letters. It is known
from [19] that INS2,2

2 contains non-semilinear languages. By considering these systems with
membrane regulation we obtain the following result
Theorem 3.8. MorLSP3(ins

2,2
2 ) = RE.

Proof:
We prove the theorem by simulating a type 0 grammar in the modified Penttonen normal

form. Let G = (N,T, S, P ) be such a grammar. Suppose that rules in P are ordered and
n = card(P ).

Now consider the following insertion P system,

Π = (V, [1 [2 [3 ]3 ]2 ]1, {S$}, ∅, ∅, R1, R2, R3, h, φ),

where V = T ∪N ∪ F ∪ F ∪ {#,#, $}, F = {FA, | A ∈ N}, F = {FA, | A ∈ N}.
We include into R1 the following rules:

(AB,#C,α, here), if AB −→ AC ∈ P ;

(A,#C,Bα, here), if AB −→ CB ∈ P ;

(A,C, α, here), if A −→ AC ∈ P ;

(ε, C,Aα, here), if A −→ CA ∈ P ;

(A,#δ, α, here), if A −→ δ ∈ P ;

($, ε, ε, out),
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where α ∈ V \{#}, A,B,C ∈ N, and δ ∈ T ∪ {ε}. It may happen that the pair of letters AB
subjected to be rewritten by a production AB −→ AC or AB −→ CB ∈ P is separated by letters
that have been marked. We use two additional membranes to transfer a letter over marked ones.
In order to transfer A ∈ N we add for each α ∈ V \{#}

r.1.1 : (A,#FA, α, in2),

to the skin membrane. Then we add to the second membrane

r.2.1 : (FA,#A,α′, out), r.2.2 : (FA,#A,α′, out),

r.2.3 : (FAX,#FA,#, in3), r.2.4 : (FAFB,#FA,#, in3),

r.2.5 : (FA#, FA, α, in3), r.2.6 : (FA#, FA, α, in3),

r.2.7 : (FA#, FA,#, in3), r.2.8 : (FA#, FA,#, in3),

r.2.9 : (FA#, FA,#, in3), r.2.10 : (FA#, FA,#, in3),

for every

X ∈ F ∪N,FB ∈ F , α ∈ V \{#,#},
α′ ∈ {ab | a ∈ N ∪ T, b ∈ N ∪ T ∪ {$}} ∪ {$}.

Finally, we add to the third membrane the rules

r.3.1 : (FA,#, α, out), r.3.2 : (FA,#, α′, out),

for every α ∈ V \{#}, α′ ∈ V \{#}.
The morphism h and the weak coding φ are defined as

h(a) =

{
a, if a ∈ V \N,
a# if a ∈ N.

φ(a) =

{
a, if a ∈ T,
ε if a ∈ V \T.

We simulate productions in P by marking nonterminals from N and inserting corresponding
right hand sides of the productions. This can be done with insertions in the skin membrane
by rules of weight (2, 2, 2) since the grammar has such a form that production rewrites/adds at
most one letter.

The simulation of the transfer is done in the second and third membranes. The idea of the
simulation is (1) to mark the nonterminal we want to transfer, (2) jump over the marked letters
with the help of one special letter, at the end (3) mark the special letter and insert the original
nonterminal. Since we use two letter contexts, in one step we can jump only over a single letter.
We also need to jump over the marking letter # as well as over the marked nonterminals, and
the letters inserted previously. In order to jump over # we introduce one additional marking
symbol #. We mark letters from F by #, and all the other letters in V \{#,#} by #, e.g., in a
word FA#, letter FA is unmarked.

(1) The rule r.1.1 : (A,#FA, α, in2), specifies that every unmarked letter from N may be
subjected to the transfer.

(2) The rules r.2.3 − r.2.10 in the second membrane specify that FA or FA is copied to the
right in such a way that inserted letters would not be marked. In order to do so, the appropriate
rule chooses to insert either the overlined copy FA or the simple copy FA. The rules r.2.3, r.2.4
describe jumps over one letter not in {#,#}, and r.2.5− r.2.10 describe jumps over #, #. Every
rule r.2.3− r.2.10 sends the sentential form to the third membrane, and the rules r.3.1, r.3.2 in
the third membrane send the sentential form back to the second membrane after marking one
symbol FA ∈ F or FA ∈ F.
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(3) The rules r.2.1 and r.2.2 may terminate the transferring procedure and send the sentential
form to the first membrane if letter $ or two letters from {ab | a ∈ N ∪ T, b ∈ N ∪ T ∪ {$}}
appear in the right context.

For example, consider the transfer of A in the string AX#C$ (here, we underline inserting
substrings)

AX#C$
r.1.1
=⇒ A#FAX#C$

r.2.3
=⇒A#FAX#FA#C$

r.3.1
=⇒

A#FA#X#FA#C$
r.2.6
=⇒A#FA#X#FA#FAC$

r.3.2
=⇒

A#FA#X#FA ##FAC$
r.2.1
=⇒A#FA#X#FA ##FA#AC$.

The sentential form preserves the following property: (i) The first membrane does not contain
unmarked letters from F ∪ F ; there is exactly one unmarked letter from F ∪ F in the second
membrane; and there are always two unmarked letters from F ∪ F in the third membrane.

We mention that property (i) is preserved by every derivation. Indeed, we start derivation
from the axiom S$ that satisfies the property, then one unmarked symbol is inserted by r.1.1.
Rules r.2.3 − r.2.12 always add one more unmarked letter, whereas rules r.2.1, r.2.2, r.3.1, r.3.2
always mark one letter from F ∪ F.

In order to verify that Π generates the same language as G we note that every reachable
sentential form in G will be reachable also in Π by simulating the same production.

We also note that the derivation in Π may terminate by the rule ($, ε, ε, out) only in the
first membrane. Hence, every transfer will be completed. It follows from property (i) that the
simulation of the transfer is deterministic in the second membrane. Also note, that there is a
nondeterministic choice in the third membrane, where the rules r.3.1, r.3.2 may mark one of the
two unmarked letters. In the case the rule marks the rightmost letter, the derivation has to
“jump" again over the inserted letter.

In a special case if r.1.1 starts the transfer of a letter adjacently left from an unmarked one
then the rules r.1.1, r.2.1 produce two marked symbols which do not affect the result of the
simulation.

The output string w is in the language, iff w′ = φ(h−1(w)) is defined. Hence, the resulting
output of Π does not contain unmarked nonterminals. On the other hand every final derivation
in Π has its counterpart in G. By applying the inverse morphism h−1 we filter out every sen-
tential form with unmarked nonterminals from N . Hence, the corresponding derivation in G is
completed. Finally, the weak coding φ filter away all supplementary letters. Hence, we have
L(G) = L(Π). �

4 Conclusions

This article investigates the generative power of insertion P systems with encodings. The
length of insertion rules and number of membranes are used as parameters of the descriptional
complexity of the system. In the article we exploit the fact that a morphism and a weak coding are
incorporated into insertion P systems. The obtained family MorLS[t]P∗(ins

1,1
∗ ) characterizes

the matrix languages. When no membranes are used, the class MorINS1,1
∗ is equal to the

family of context-free languages. We proved also the universality result regarding the family
MorLSP∗(ins

2,2
∗ ). Also, for the family LSP∗(ins

2,2
∗ ) one can get an analogous computational

completeness result by applying right(left) quotient with respect to a regular language.
We recall the open problem posed in [4], namely, whether MorINS2,2

∗ is computationally
complete. Our work gives a partial solution of the problem by using the membrane comput-
ing framework. One may see that in order to solve the problem completely (by the technique
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promoted in the article), it is enough to find a concise way to transfer a letter over a marked
context. In our case this can be reduced to the question whether it is possible to compute the
membrane regulation in the skin membrane.

One may mention that there is a trade-off between the number of membranes and the maximal
length of productions. By introducing additional nonterminals and fitting the grammars into the
normal forms we decrease the amount of membranes used. On the other hand by raising the
number of membranes we can simulate larger production rules. Moreover, the descriptional
complexity used in the paper may be extended by such internal system parameters as, e.g., the
size of the alphabet, the number of rules per membrane, etc. It may be promising to continue
the research of the minimal systems regarding these parameters. We are also interested in the
computational power of the insertion P systems having only one sided (right or left) contexts.
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