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Abstract: This paper deals with decision problems under uncertainty. The
solution of a decision problem involves observation, processing, and modeling
of statistical data in order to quantify the uncertainty. Better data measure-
ment and estimation of uncertainty add more consistency to the solution of a
decision problem. The paper proposes a new way of predicting the Bayesian-
Nash equilibrium which uses information sources to measure new information
received by information consumers. Thus, the estimation of uncertainty is
based on a more solid mathematical foundation, needed (as in the case of arti-
ficial intelligence) to produce logical inferences. From another perspective, the
externalization of information helps the software designers to produce better
software architectures for decision support systems. An theoretical example
illustrates a market situation with a small number of firms, each firm’s output
being likely to have a large impact on the market price.
Keywords: Bayesian-Nash equilibrium, information source, conditional prob-
ability distribution.

1 Introduction

Game theory, founded by von Neumann and Morgenstern (1947), studies situations in which
multiple agents or players interact in order to each maximize an objective (payoff) function. The
payoff function of a player is determined not only by its own actions, but also by the actions of
other players. In a game with incomplete information, the payoffs also depend on information
that is private to the individual agents. This information is known as an agent’s type.

Bayesian decision theory is concerned with the question of how a player (decision maker)
should choose a particular action from a set of possible choices if the outcome of the choice
also depends on some unknown state (from the states of the world). In our approach, the
decision maker is modeling the information received by the system (i.e. new information) as an
information source ( [2]). A decision problem involves one or several information sources. We
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assume that each person is able to represent his beliefs, as the likelihood of the different n states
of the information source, by a subjective discrete probability distribution ( [5]).

The structure of this paper is as follows. After this introductory section, the next one intro-
duces the teoretical background related to games with incomplete information and information
sources. The third section presents the Bayes-Nash equilibrium in the presence of information
sources, and the fourth discusses a market-related example. The last section compares the pro-
posed approach with the classical one, and outlines future work.

2 Theoretical background

This section introduces the main concepts discussed in this paper. It starts with some defini-
tions stating the context, and then defines the concept of information source, both taken from [1]
and [3]. The last sub-section introduces the new concept of Bayesian-Nash equilibrium based on
information sources.

In what follows, information means a message about an event that has occurred, will occur,
or is likely to occur. The received information regarding a possible realization of an event is
extremely important. Information is a particular case of reflection, as an interaction between
two processes; one’s properties (the process that generates or produces information) will be
reproduced in another process or several other processes (that consume information). Interaction
between two or more processes involves an exchange of information.

2.1 Games with incomplete information

Definition 1. A game with incomplete information ( [1]), is denoted by:

Γt = (I, (Fi)i∈I , (p
i
t(f, θ))i∈I , (Θi)i∈I , µt), (1)

where:

• I is the set of players, |I| = m,

• Fi is the strategy set for player i, i = 1,m, and F = F1 ×F2 × · · · ×Fm is the the set of all
possible strategy profiles;

• f = (f1, f2, · · · , fm) ∈ F is a joint strategy or strategy profile;

• Θi is the set of types for the player i, and Θ = Θ1 ×Θ2 × · · · ×Θm is the joint type space;

• θ = (θ1, θ2, · · · , θm) ∈ Θ is the joint type of all players;

• pit(f, θ) is the payoff function for player i at the moment t if the strategy f and the type
combination θ are chosen. Note that the payoff for the player i may depend not only on
its type θi, but also on the other players’ type, denoted by θ−i.

• µt - the probability distribution on the set Θ at the moment t.

In our exposition, we assume that type sets Θi are finite; consequently, Θ is a finite set
also. µt(θ), θ ∈ Θ denotes the probability of chosing type combination θ at the moment t. As
in [4], we assume, without loss of generality, that players have incomplete information about
their opponents’ payoffs but have complete information about the strategies of all other players.

The following definition, taken from [1,3], introduces the classical Bayes-Nash equilibrium of
a game with incomplete information.
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Definition 2. A strategy profile f(θ) = (f1(θ1), f2(θ2), · · · , fm(θm)) constitutes a Bayes-Nash
equilibrium of a game Γt with incomplete information if the following inequality:

∑
θ−i∈Θ−i

pit(f
∗
i (θi), f

∗
−i(θ−i), θi, θ−i)µt(θ−i|θi) ≥

∑
θ−i∈Θ−i

pit(fi(θi), f
∗
−i(θ−i), θi, θ−i) · µt(θ−i|θi) (2)

holds for all possible players i ∈ I and all types θi ∈ Θi and all strategies fi ∈ Fi.

2.2 Information sources

A process (information producer or consumer) is specified by a set of n variables, denoted by
V = {V1, V2, · · · , Vn}, where Vj is the set of values for the jth variable: Vj = {v1j , v2j , · · · , v

nj

j }.
The state of a process at a certain moment is given by the vector v = {v1, v2, · · · , vn}, vj ∈
Vj , j = 1, n. Future values of all variables are random, and the realization of the states depends
on received information. This information is in message form, decreasing or increasing the
uncertainty of the realization of an event.

An information source is a way of specifying the states of a process, regarding one or several
variables. The information source assigned to the jth variable is denoted by Sj , and the set
of distinct values vkj ∈ Vj , k = 1, nj , represents a complete space of events. The simultaneous
realization of two events is impossible, and the union of the events represents a certain event. A
state skj of the information source Sj is assigned to each event vj = vkj . For a bounded interval
of time, only information sources with a finite number of states will be taken into account.

Consider the following assumptions:

• each player is able to represent his beliefs, as to the likelihood of the different nj states of
the information source Sj , by a subjective discrete probability distribution.

• the information source Sj has discrete states and the individual is supposed to be able to
assign to each state skj a degree of belief, in the form of (normalized) numerical weights pkj ,
between zero and one and whose sum is one:

∀j = 1, n : 0 ≤ pkj ≤ 1,∀k = 1, nj ;
nj∑
k=1

pkj = 1.

(pkj is the probability that the state skj occurs).

If the information source Sj has nj states, the set of states and probabilities defined at a
moment t, forms a discrete random variable denoted by:

Sj
t :

(
skj

pkj (t)

)
k=1,nj

, j = 1, n.

A simple information source is an information source defined with respect to a single variable
Vj . A complex information source is an information source defined with respect to two or more
variables, which can be independent or dependent. In the second case (i.e. the variables are
related to one another), the mathematical model of the complex information source needs to
contain this dependency.

In order to illustrate how a complex information source is constructed, let’s consider for the
beginning the simplest case of two independent variables, V1 ∈ V and V2 ∈ V and assign to each
variable a simple information source, S1

t and S2
t respectively:

S1
t :

(
sk1

pk1(t)

)
k=1,n1

, S2
t :

(
sl2

pl2(t)

)
l=1,n2

,

where sk1, k = 1, n1 are the states of information source S1
t and sl2, l = 1, n2 are the states of

information source S2
t .
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The complex information source SC1,2
t , built with respect to the variables V1 and V2 at the

moment t, has the following mathematical model:

SC1,2
t :

(
sk1s

j
2

pk1(t)p
j
2(t)

)
k=1,n1,j=1,n2

.

Now let us consider the case of two dependent variables, with the simple information source
S1
t assigned to the independent variable V1, and the simple information source S2

t assigned to
the dependent variable V2. The discrete random variable S1

t is:

S1
t :

(
sk1

pk1(t)

)
k=1,n1

.

For a state of the source S1
t , denoted by sk1, the information source S2

t conditioned by the
state sk1 is defined as follows:

S
2/1
t (sk1) :

(
sl2

pk,l2 (t)

)
l=1,n2

,

where pk,l2 (t) = P (S2
t = sl2|S1

t = sl1) is the probability of occurence of state sl2 conditioned by
state sk1.

The complex information source SC
2/1
t , constructed by considering the two variables, has

the following form:

SC
2/1
t :

(
sk1s

l
2

pk1(t) · p
k,l
2 (t)

)
k=1,n1,l=1,n2

,

where the probability of occurence of the state sk1s
l
2 is:

P (S1
t = sk1;S

2
t = sl2) = P (S1

t = sk1) · P (S2
t = sl2|S1

t = sk1) = pk1(t) · p
k,l
2 (t).

If S2
t is a discrete probability distribution and S1

t is an information source, then, according
to the above discussion, we can say that S2

t is a distribution conditioned by information source
S1
t . Therefore we have a probability distribution updated by an information source.

3 Bayes-Nash equilibrium in the presence of information sources

Let us consider now the probability distribution µt defined on the discrete set Θ and a
information source St (simple or complex), common to all players. According to the probability
distribution conditioned by an information source discussed above, we have:

P (µt = θ;St = sj) = P (St = sj) · P (µt = θ|St = sj), where θ ∈ Θ and sj ∈ St.

3.1 Notations

Considering the following notations:

• P (µt, St) - the joint probability of µt and St occurring simultaneously, referred to as the
historic probability distribution,

• P (µt/St) - the probability of µt occurrring conditional on St having occurred (i.e. the con-
ditional probability of µt given St), also known as the probability distribution of information
source, and

• P (St) - the marginal probability of St, referred to as the posterior probability distribution,

the following equation holds (as in [7]): P (µt/St) =
P (µt,St)
P (St)

.
According to the above, posterior means historical updated with information, i.e. the proba-

bility distribution µt conditioned by the information source St, denoted by µct, is the probability
distribution µt updated by the information source St.
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The information source St is a possible probability distribution of states at the moment t+1.
Denoting the game with incomplete information at the moment t+1 and based on St with Γt+1,
it can be defined recursively as follows:

Γt+1 = Γt(St), where Γt+1 = (I, (Fi)i∈I , (p
i
t(f, θ))i∈I , (Θi)i∈I , µct).

The game Γt+1 is the updated game Γt based upon St. This information source updates
probability distribution µt on Θ and thus the equilibrium of Γt is modified.

3.2 Decision functions and strategies

If a player receives information about his/her own type, then he/she can choose a particular
strategy to maximize his/her expected payoff.

Definition 3. A decision function of player i ∈ I, denoted by fi(.), is a function that, for
each type θi ∈ Θi, specifies the strategy fi(θi) ∈ Fi this player will choose if his/her type turns
out to be θi.

Let µcjt (θ−i|θ(i)) be the updated probability obtained by using Bayesian updating rule, of a
particular type combination for the opponents θ−i, given that player i has type θi. For each type
profile θ ∈ Θ, there are updated beliefs for each player, i.e. a list of conditional probability dis-
tributions

(
µc1t (θ−1|θ1), · · · , µcmt (θ−m|θm)

)
. Players’ beliefs after they have received information

about their types, are no longer identical.

Definition 4. The strategy combination of all players except player i, that will be played
according to the decision functions f−i(.), if type combination θ−i occurs, is a list of decision
functions f−i(.) = (f1(.), · · · , fi−1(.), fi+1(.), · · · , fI(.)) for all players (other than player i) and
θ−i(.) = (θ1, · · · , θi−1, θi+1, · · · , θI), a type combination for the other players, f−i(θ−i), that is:
f−i(θi) = (f1(θ1), · · · , fi−1(θi−1), fi+1(θi+1), · · · , fm(θm)).

3.3 Bayes-Nash equilibrium in the presence of information sources

The above definitions allow us to give the following:

Definition 5. The Bayes - Nash equilibrium of the game Γt+1 is a list of decision functions
(f∗

1 (.), · · · , f∗
I (.)), such that for all possible players i ∈ I and all types θi ∈ Θi:∑

θ−i∈Θ−i

pit
(
f∗
i (θi), f

∗
−i(θ−i), θi, θ−i

)
·µct(θ−i|θi) ≥

∑
θ−i∈Θ−i

pit
(
fi, f

∗
−i(θ−i), θi, θ−i

)
·µcit(θ−i|θi) (3)

holds for all strategies fi ∈ Ft.

The equilibrium of Γt+1 can differ from the equilibrium of Γt due to the information in St.
For a given player i ∈ I the updated equilibrium of Γt+1 is:

f∗
i (.) =

∑
j
f∗
ij(.) · pj(t),

where f∗
ij(.) is the equilibrium of player i for the state sj of the information source St and

pj(t) is the probability that St = sj . The above equation represents the updated equilibrium as
a weighted average of all equilibria for the states of information source.

4 A market-related example

Consider a game with incomplete information, where the players are two firms supplying
slightly different products (produced with zero production costs, as in [1]), with prices denoted
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by p1 and p2. As a result of new received information, the variation of each price around the
average price can be modeled using two simple information sources, S1

t and S2
t , as it follows:

S1
t :

(
s11 : p1 ≤ p1 s21 : p1 > p1

π1 1− π1

)
; S2

t :

(
s12 : p2 ≤ p2 s22 : p2 > p2

π2 1− π2

)
where p1 represents the average price of the first firm, and p2 the average price of the second

firm. Both information sources have two states, (s11, s21) and (s12, s22), with the probabilities
(π1, 1− π1) and (π2, 1− π2), respectively.

4.1 Notations

For our example, consider the following problem-specific notations:

• The demand functions for the goods of the two firms:

d1(p1, p2) = a ·∆p1 + b ·∆p2, d2(p1, p2) = c ·∆p1 + d ·∆p2,

where ∆pi = pi − pi, i = 1, 2, are the deviation of price pi from the average price pi. Firm
one does not know parameters c and d; firm two does not know parameters a and b.

• The sets of possible types of the two players:

Θ1 = {(ai, bj), i = 1, 2; j = 1, 2} ,Θ2 = {(ci, dj), i = 1, 2; j = 1, 2};

• The payoff functions of the two players:

Π1 (p1, p2, (ai, bj)) = (ai ·∆p1 + bj ·∆p2) · p1,
Π2 (p1, p2, (ci, dj)) = (ci ·∆p1 + dj ·∆p2) · p2.

4.2 Building the complex information source

With the above notations, the complex information source is rewritten as:

SCt+1 :

(
p1 ≤ p1 ∧ p2 ≤ p2 p1 ≤ p1 ∧ p2 > p2 p1 > p1 ∧ p2 ≤ p2 p1 > p1 ∧ p2 > p2

π1 · π2 π1 · (1− π2) (1− π1) · π2 (1− π1) · (1− π2)

)
,

no matter what dependency relation is between the two prices considered. The information
source SCt+1 describes the behavior of the market of the both products considering the variation
of their prices in the next period, as a result of the received information.

In a Bayesian-Nash equilibrium, each firm is supposed to choose a type contingent strategy,
that is decision functions p1(.) and p2(.) respectively, which is the best response to the oppo-
nent’s decision function. In this example, µct is a probability distribution defined on Θ1 × Θ2

and conditioned by the information source SCt. For a state sk1s
l
2 of source SCt we build two

conditional distributions, µc1t and µc2t as can be seen next.

4.3 Computing the best response for the firm one

Consider p2(.) = (p2(c1, d1), p2(c1, d2), p2(c2, d1), p2(c2, d2)) as given (fixed) and suppose that
firm one has just learned that it has the demand parameters (a1, b1). Firm one’s expected payoff
can be rewritten as:

Π1 (p1(a1, b1), p2(c1, d1)) · µc1t ((c1, d1)|(a1, b1)) +
+Π1 (p1(a1, b2), p2(c1, d2)) · µc1t ((c1, d2)|(a1, b1)) +
+Π1 (p1(a2, b1), p2(c2, d1)) · µc1t ((c2, d1)|(a1, b1)) +
+Π1 (p1(a2, b2), p2(c2, d2)) · µc1t ((c2, d2)|(a1, b1)) =

= a1 · p21(a1, b1) + p1(a1, b1) (b1 · p2(cidj |a1b1)− a1p1 − b1p2) . (4)
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In the above equation we used the following notation for the average price p2 conditioned by
state (a1, b1):

p2(ci, dj)|a1b1) = p2(c1, d1) · µc1t ((c1, d1)|(a1, b1)) + p2(c1, d2) · µc1t ((c1, d2)|(a1, b1)) +
+p2(c2, d1) · µc1t ((c2, d1)|(a1, b1)) + p2(c2, d2) · µc1t ((c2, d2)|(a1, b1)).

The payoff function (4) is continuously differentiable in firm one’s strategy p1(.). Therefore,
any p1 satisfying the first - order condition for a maximum will be the best response to the
type-contingent strategy p2(.), previously considered. Solving the first - order condition for the
maximum of the expected payoff function (4), one obtains the following best response p∗1(a1, b1)
for firm one of type (a1, b1) to the decision functions (p2(c1, d1), p2(c2, d2), p2(c2, d1), p2(c2, d2))
of firm two:

p∗1(a1, b1) =
1

2
(p1 +

b1
a1

(p2 − p2(cidj |a1b1))). (5)

In a similar way, one obtains for all other types of firm one:

p∗1(a1, b2) =
1

2
(p1 +

b2
a1

(p2 − p2(cidj |a1b2))), (6)

p∗1(a2, b1) =
1

2
(p1 +

b1
a2

(p2 − p2(cidj |a2b1))), (7)

p∗1(a2, b2) =
1

2
(p1 +

b2
a2

(p2 − p2(cidj |a2b2)). (8)

4.4 Computing the best response for the firm two

Now consider that firm two learns that its type is (c1, d1). For a fixed type-contingent strategy
of firm one p1(.) = (p1(a1, b1), p1(a1, b2), p1(a2, b1), p1(a2, b2)), the expected payoff of firm two
will be as follows:

Π2 (p1(a1, b1), p2(c1, d1)) · µc2t ((a1, b1)|(c1, d1)) +
+Π2 (p1(a1, b2), p2(c1, d2)) · µc2t ((a1, b2)|(c1, d1)) +
+Π2 (p1(a2, b1), p2(c2, d1)) · µc2t ((a2, b1)|(c1, d1)) +
+Π2 (p1(a2, b2), p2(c2, d2)) · µc2t ((a2, b2)|(c1, d1)) =

= d1 · p22(c1, d1) + p2(c1, d1) (c1 · p1(aibj |c1d1)− c1p1 − d1p2) . (9)

In the equation (9) of the payoff function for the second firm, the average price p1 conditioned
by the state (c1, d1), is given by:

p1(ai, bj)|c1d1) = p1(a1, b1) · µc2t ((a1, b1)|(c1, d1)) + p1(a1, b2) · µc2t ((a1, b2)|(c1, d1)) +
p1(a2, b1) · µc2t ((a2, b1)|(c1, d1)) + p1(a2, b2) · µc2t ((a2, b2)|(c1, d1)).

First-order condition gives the best response function for a firm of type (c1, d1):

p∗2(c1, d1) =
1

2
(p2 +

c1
d1

(p1 − p1(aibj |c1d1))). (10)

A similar calculation yields firm two’s best response for all other types of the following type-
contingent strategies:

p∗2(c1, d2) =
1

2
(p2 +

c2
d1

(p1 − p1(aibj |c1d2))), (11)

p∗2(c2, d1) =
1

2
(p2 +

c1
d2

(p1 − p1(aibj |c2d1))), (12)

p∗2(c2, d2) =
1

2
(p2 +

c2
d2

(p1 − p1(aibj |c2d2))). (13)
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4.5 Conclusion

In order to find a Bayesian-Nash equilibrium, one has to solve the system of equations given
by the best response functions. With two players and four types for each player, this leads to a
system of eight equations. The solution, (p∗1(.), p∗2(.)), is the Bayesian -Nash equilibrium. The
probability of realization of equilibrium prices (p∗1(.), p

∗
2(.)), as a result of information received,

is equal to the probability of realization of state sk1s
l
2 of complex source SCt+1.

5 Conclusions and Future Works

5.1 Our approach vs other approaches

The main points of our approach are as follows:

• The complexity of uncertainty is given by the great (huge) number of variables; when the
complexity of a decision problem (and the number of components dominated by uncer-
tainty) grows, it is recommended to use a Bayesian network ( [6]); in our case, we use a
simple Bayesian network, subject to a learning algorithm;

• The original idea is to separate the set of problem components into two disjoint subsets: (a)
deterministic components, and (b) components dominated by uncertainty; the separation
of game information into external and internal can be done for each decision problem
dominated by uncertainty;

• This separation allows you to study the influence of each individual factor to the solution
of the game in a more efficient way; also, it suggests some architectural patterns (styles)
to be used when designing a decision support system. The paper [8] discusses this issue in
more detail.

The essential difference between the classic approach and those proposed in this paper is given
by the separation of the information external to the game from the game-specific information.
This separation follows the separation of responsibilities principle. This way, both external and
internal elements of the game are easier to model and understand.

The classical approach does not make any difference between these two categories of infor-
mation; more precisely, the influence of external information on the uncertainty that dominates
the game is not taken into account/quantified. By splitting the game information into external
and internal, the former being modeled by information sources, the influence of external environ-
ment on the variation of the solution is better captured and quantified. This provides a better
evaluation of the contribution of individual factors to the predicted equilibrium.

Another advantage of this separation is that it allows a better, easier calibration of the model,
by comparing the computed equilibrium with real solution, taken from historical data.

5.2 Future work

Our future efforts are directed to apply this general algorithm to various games with incom-
plete information and to build decision support systems based on it.
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