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Abstract:
Incorporating network coding into TCP has the advantage of masking packet
losses from the congestion control algorithm. It could make a lossy channel
appear as a lossless channel for TCP, therefore the transport protocol can only
focus on handling congestion. However, most schemes do not consider the
decoding delay, thus are not suitable to be implemented in practical systems.
We propose a novel feedback based network coding (FNC) retransmission
scheme which has high throughput and quite low decoding delay without
sacrificing throughput. It uses the implicit information of the seen scheme to
acquire the exact number of packets the receiver needs for decoding all packets
based on feedback. We also change the encoding rules of retransmission,
so as to decode part of packets in advance. The scheme can work well on
handling not only random losses but also bursty losses. Our scheme also
keeps the end-to-end philosophy of TCP that the coding operations are only
performed at the end hosts. Thus it is easier to be implemented in practical
systems. Simulation results show that our scheme significantly outperforms
the previous coding approach in reducing decoding delay, and obtains the
throughput which is close to the scenarios where there is zero error loss. It is
particularly useful for streaming applications.
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1 Introduction

It is well known that TCP suffers poor performance in lossy wireless networks. Even if a
perfect congestion control algorithm can avoid congestion loss in transmission, there are still non-
congestion losses (including random losses with a fixed bit error rate and bursty losses due to
bad weather or signal shadowing, etc.), which necessarily degrade the transmission performance.
Network coding has emerged as an important potential approach in the operation of communi-
cation networks [1]. The core idea is that the sender transmits coded packets combined with
unacknowledged original packets rather than transmitting individual packets. Thus sending a
packet can be seen as adding a packet to the pool and acknowledgement as removing the received
packets from the pool. Each transmission is not affected by any other losses. Thus, incorporating
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network coding with TCP is a natural way to enhance the robustness and effectiveness of data
transmission in lossy channels.

The ARQ for network coding (ANC) scheme presented in [2] defines the seen packet as an
abstraction for the case in which a packet has not yet been decoded, but can be safely removed
from the sender’s buffer. The expected queue size of the scheme is reduced from the traditional
length Ω((1−ε)−2), to Ω((1−ε)−1) where is the erasure probability. However, the weak receivers
are unlikely to recover from erasures in reasonable time, since the decoding delay becomes very
large.

TCP/NC [3] uses seen scheme to mask losses from the congestion control algorithm. It aims
to make a lossy channel appear as a lossless channel to TCP, so the congestion control protocol
does not need to pay attention to the error losses and thus can focus solely on the congestion.
In fact, masking losses from TCP was considered earlier by using link layer retransmission [4].
Yet it has been noted in [5], [6] that the interaction between link layer retransmission and TCP’s
retransmission is complicated and the performance may suffer due to independent retransmission
protocols at different layers. TCP/NC uses a constant redundancy factor for retransmission in
order to compensate for the loss rate of the channel and match TCP’s sending rate. However,
if it suffers bursty losses due to bad weather or signal shadowing, the algorithm must wait a
long time to decode all packets. In fact, most coding schemes do not take decoding delay into
consideration. The receiver has to wait for a considerable number of packets before it can decode
the data. Consequently, it is hard for them to deploy in a real system in spite of the benefits in
terms of throughput and robustness the network coding can bring [7], [8].

The work by Barros et al. [9] redesigns the encoding rules and stages of the ANC scheme to
decrease decoding delay, which is useful for streaming applications with special delay require-
ments. However, it reduces delay by sacrificing some of the throughput. And its expected queue
size increases from Ω((1−ε)−1) in ANC to Ω((1−ε)−2), since the sender cannot discard a packet
after it is being seen by all senders.

Therefore, when incorporating the existing coding mechanisms with TCP in wireless envi-
ronment, we faced two main problems: (1) retransmission schemes which are triggered by a
static parameter such as a fixed delay threshold or a redundancy factor, can not balance both
throughput and decoding delay. This is shown in Sec V., Fig. 3 [9], and Sec 3 of our paper.
(2) The retransmission schemes require the fixed loss rate and are deeply influenced by it. As a
result it cannot handle bursty losses well.

To overcome the disadvantages in existing approaches, we provide the end-to-end Feedback
based Network Coding (FNC) retransmission scheme which makes use of the implicit information
of the seen scheme to obtain the exact number of packets needed by the receiver to decode all data
as soon as possible. We also change the encoding rules to decode part of the packets in advance.
Our effective retransmission scheme can mask losses better than the previous scheme, and hence
significantly improve the performance of decoding delay and throughput under both random
losses and bursty losses. Simulation results show that our scheme significantly outperforms the
previous coding approach in reducing decoding delay while increasing throughput. It obtains the
throughput which is close to the scenarios where there is zero error loss.

The remainder of the paper is organized as follows. Section 2 introduces the terminology
and describes basic ideas of network coding in TCP with the seen scheme. Section 3 proposes
our new network coding retransmission scheme FNC. The corresponding simulation results are
presented in Section 4. We conclude the paper in Section 5.
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2 Essential Background

We treat packets as vectors over a finite field Fq of size q. The kth packet generated by the
source has an index k and is denoted as pk. When the source is allowed to transmit, it sends a
random linear combination of all packets instead of the original packet. We will firstly explain
the seen scheme with logical description and then illustrate its implementation in the existing
protocol stacks.

2.1 ARQ for Network Coding

The ARQ for network coding (ANC) scheme presented in [2], is designed to handle loss in
a multicast environment. In the scheme, the decision of which packets to combine relies on
the concept of the seen packets. A packet pk is said to be seen by a receiver if it has enough
information to compute a linear combination in the form of pk + q, in which q is a linear
combination of packets that are newer than pk, i.e. q =

∑
l>k αl · pl, with αl ∈ Fq for all l > k.

The receiver acknowledges the oldest unseen packet, so the sender always transmits a packet that
is a combination of the oldest unseen packets of each receiver. A packet can be dropped from
the sender queue when it is seen by all receivers. This provides an efficient method to keep the
sender’s queue sizes small, although the receiver may not decode all packets. It is demonstrated
to be throughput optimal for the case of Poisson arrivals, perfect feedback, and identical erasure
probabilities on all channels, because each reception is innovative.

2.2 Network Coding for TCP

The reference system for our scheme is the TCP/NC protocol [3], which is designed with
respect to a single source that generates a stream of packets to one sink. It incorporates the
seen scheme with congestion control and introduces a new network coding layer between the
transport layer and the network layer in the protocol stack, which masks packet losses from
congestion control algorithm.

There are several modifications on ANC to be fit for end-to-end connection. First, the sender
transmits random linear combinations of packets in the coding window, instead of combinations
of the oldest unseen packets of each receiver. The receiver acknowledges the oldest unseen packet
although it may not be decoded yet. There will never be any duplicate ACKs as each reception is
innovative. Every ACK will cause the congestion window to advance, so it is not proper to apply
fast retransmit/recovery algorithms which use three duplicate ACKs as the packet loss indication.
Therefore TCP/NC chooses TCP Vegas [12] as the congestion control approach and introduces
a novel RTT estimation algorithm. It matches the newly arrived ACK with the transmission
that occurred after the one that triggered the previous ACK, rather than the transmission that
triggered this ACK. For example, in Figure 1(c), RTT2 matches the 2nd transmission, rather
than the 4th transmission.

In the implementation, TCP/NC embeds the network coding operations in a separate layer
below TCP and above IP on two end nodes in order to naturally add network coding to the
current protocol stack. In the source side, when a packet arrives at the coding layer from the
transport layer, the coding layer generates a random linear combination of the packets in the
coding window and sends it to the sink. In order to compensate for the loss rate of the channel
and to match TCP’s sending rate, for every packet from TCP, R linear combinations are sent
to IP on average, where R is the constant redundancy factor equal to the reciprocal of the
probability of successful reception. As an example shown in Figure 1(a), assuming packet loss
rate e to be 20%, hence R is 1/0.8=1.25, which means that the sender makes a retransmission
after sending four combinations triggered by TCP. The retransmission does not include any new
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Figure 1: Example of the transmission with a redundancy factor

original packet from TCP. In Figure 1(a), the 5th transmission is a retransmission which only
encodes p2, p3 and p4, without p5. It compensates the loss of the 2nd transmission, makes p3,
p4 to be seen and p3, p4, p5 decodable. However, the retransmission with a fixed rate may
result in the following two problems: 1) the retransmission may be useless. For example, in
Figure 1(b), the 5th retransmission is useless since no losses happened before it. We call this
redundancy or redundant retransmission. 2) The retransmission may be helpless. In Figure 1(c),
the 5th retransmission is valid but still can not help the receiver to decode all packets as there
are two combinations lost before. Therefore, it is natural to think about using a feedback based
retransmission scheme to replace the scheme with a fixed retransmission rate.

3 Network Coding Retransmission Scheme

To reduce the decoding delay and redundancy, we propose the feedback based network coding
(FNC) retransmission scheme. It acknowledges the total number of coding packets required to
repair a loss and then decodes all packets. In the receiver, the difference between the number
of seen packets and the largest packet index in the coefficient matrix implies the number of
packets that the source needs to retransmit. So we maintain two variables in the receiver side:
one is the number of seen packets SEEN_CNT ; the other is the largest index of the received
packets MAX_SEQ. For each ACK, the receiver embeds in the header not only the sequence
number that equals the oldest unseen packet, but also the difference between MAX_SEQ and
SEEN_CNT , which is called DIFF . For example, suppose the source transmits the following
linear combinations: x = p1, y = (p1 + p2) and z = (p1 + p2 + p3). The second transmission y
is lost. So the sink only receives the linear combinations x and z. As p1 and p2 have been seen,
SEEN_CNT is 2, the largest index MAX_SEQ is 3, and hence DIFF = 3 − 2 = 1. Thus
DIFF indicates the number of packets the receiver needs to change into the decodable state
which means the receiver can decode all packets. In the sender side, when an ACK arrives, if the
DIFF is larger than zero, the sender uses this value to decide to retransmit in the following two
steps: First, it checks to see if the difference between the current time Tnow and the time of the
last retransmission Tlast is greater than the timeout value. If it is, the sender retransmits DIFF
linear combinations of first DIFF packets in the coding window. This avoids retransmission more
than once for losses that occurred during one RTT interval. If it is not, the sender compares
the DIFF received this time with the previous retransmission LAST_DIFF . If the current
DIFF is greater than the LAST_DIFF , there is new packet loss and it retransmits (DIFF −
LAST_DIFF ) random linear combinations of the first (DIFF − LAST_DIFF ) packets in
coding window.

If we try to retransmit the combinations of all packets in the coding windows, as in TCP/NC
[3], then the average decoding delay of our scheme is indeed lower than NC. However, it is still
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Figure 2: Retransmission based on feedback

much higher than our expectation. Given an example in Figure 2(a), if the sender retransmits the
coded packet combined with p2, p3 and p4 in the current coding window in the 5th transmission,
the receiver is still in undecodable state and cannot decode any packets, because the DIFF has
changed to 2 due to the loss of the 3rd transmission. Therefore, we improve the encoding rule in
which retransmission packets are only combined with first DIFF (or DIFF − LAST_DIFF )
packets in the coding window in order to make a part of packets decodable. Although we do not
decode all packets together, we significantly reduce the number of undecodable packets as well as
the decoding delay. Additionally, encoding less packets can reduce the overhead and complexity
of encoding and decoding operations. Consequently, in the example of FNC in Figure 2(b), we
only retransmit the combination containing p2 (as DIFF equals to 1) in the 5th transmission,
and thus p1 and p2 are decodable.

Additionally, TCP/NC simply retransmits packets through redundancy factor to compensate
for error losses, rather than for congestion losses. The retransmission in the coding layer does not
consume the congestion window. However, our previously mentioned algorithm treats congestion
losses and error losses the same, which may bring or exacerbate congestion. We can solve this
problem by limiting the current total number of retransmission packets in the coding layer with
no more than the product of the total number of transmitted packets N and the loss rate e. In
contrast with TCP/NC that retransmits dispersedly, our policy can retransmit the appropriate
number of packets together while they are required, and does not mask congestion losses at the
same time. In other words, NC (i.e. TCP/NC) is a static retransmission scheme whereas FNC is
a dynamic one. However, regarding those near-zero congestion loss algorithms such as VCP [10]
and MLCP [11], it is unnecessary to adopt this policy. Thus, it can handle such losses much
better, when it encounters burst or inconstant loss rate conditions.

The improved algorithm is specified below using pseudo-code:

Source side:
Initialization:

Set LAST_DIFF and Tlast to 0.
ACK arrives from receiver:

The source side algorithm removes the seen packet from the buffer and retrieves DIFF
from ACK header. If this is the fourth uninterrupted time that DIFF is larger than 0:
1) If (Tnow − Tlast > RTT )

a) Set LAST_DIFF=0;
b) goto 3);

2) If DIFF <= LAST_DIFF goto 5).
3) Repeat the following (DIFF − LAST_DIFF ) times:

a) Generate a random linear combination of the packets in the coding window.
b) Deliver the packet to the IP layer.
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4) Update Tlast to the current time;
5) Update LAST_DIFF to the DIFF of the new arrival.

Receiver side:
Initialization:

Set SEEN_CNT and MAX_SEQ to 0.
Packet arrives from source side:

1) Performs Gaussian elimination to update the set of seen packets.
2) Update SEEN_CNT and MAX_SEQ.
3) Add the network coding ACK header to TCP ACK, consisting of the value of DIFF
which is the difference between MAX_SEQ and SEEN_CNT .

The algorithm not only avoids the redundant transmissions when the receiver is in the de-
codable state, but also retransmits the appropriate number of packets so as to make a part of
packets decoded in advance. It significantly reduces the decoding delay, which is particularly
useful for streaming applications with stringent delay requirement. Also, as we do not change
the acknowledgment scheme of seen packet, the expected queue size for our scheme remains
Ω((1− ε)−1) rather than Ω((1− ε)−2) in SNC [9] and TCP.

In contrast with traditional retransmission schemes, such as SACK etc., our scheme obtains
the total number of packets for decoding. It significantly reduces overheads in the ACK header.
It is also more robust and effective. Compared with TCP/NC [3], FNC has a relative small
decoding delay. It can handle both random losses and unknown bursty losses. Furthermore, our
scheme respects the end-to-end philosophy of TCP that coding operations are only performed
at the end hosts while achieving the aim of masking losses from congestion control algorithm at
the same time.

4 Simulation Results

We evaluate the performance of different coding algorithms by means of the network simulator
"ns-2" [13]. The basic setting is a tandem network consisting of 4 hops. The source and sink nodes
are at opposite ends of the chain. The packet size is 1000 bytes. We incorporate network coding
with TCP Vegas. The Vegas parameters are set as α = 28, β = 30, γ = 2. The performance
metrics are the throughput, the average decoding delay and the maximum decoding delay. The
throughput with network coding is calculated as the total number of seen packets, rather than
the decoded packets, divided by the simulation time. All simulations are run for at least 200s to
ensure that the system reaches its steady state.

4.1 Random Losses

We first evaluate the performance of FNC under the case of a fixed packet loss rate. The
basic setting is a 10Mbps link capacity, an 80ms round-trip time, and a 5% packet loss rate. We
compare the throughput of NC, FNC and Vegas under a fixed loss rate with the standard Vegas
under no loss rate to evaluate their performance on masking losses. Each scenario runs 20 times
and we get the mean value.

4.2 Impact of Packet Loss Rate

We first study the variation of throughput with loss rate from 0% to 15%. Figure 3(a) shows
that the throughput of Vegas falls rapidly as losses increase. NC performs better than Vegas
but it is worse than FNC since it only successfully masks part of losses. In contrast, FNC
is very robust to losses. It maintains over 88% throughput as if there is no error loss. Our
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Figure 3: Performance as a function of the loss rate variation
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Figure 4: Performance as a function of RTT variation

scheme also keeps quite a low decoding delay and the average value does not increase as the
loss rate increases. This is because FNC is according to the actual losses to retransmit packets
dynamically. In contrast, NC is deeply affected by the loss rate since its retransmission is static.
In some cases, the average decoding delay of NC is even higher than the maximum decoding
delay of FNC.

4.3 Impact of Feedback Delay

Next, we evaluate the performance across a wide range of propagation delay from 10ms to
1000ms. As illustrated in Figure 4(a), our scheme performs much better than NC and Vegas in
every case. The throughput in FNC is at least 2 times more than in NC. However, the FNC’s
throughput degrades significantly when RTT increases to 1000ms. This is because our retrans-
mission scheme is based on feedback. NC may perform better than FNC when RTT becomes
much larger. Thus our retransmission scheme can not be applied in deep space communication
of which RTT may be hundreds of seconds, whereas in most real cases, RTT is no more than
1000ms. Figure 4(b) shows that the average decoding delay of NC is 2 to 10 times of FNC.
The decoding delay for both schemes increases quickly when RTT grows beyond 500ms. When
RTT is 500 ms, FNC’s average decoding delay is 1.00165s, and when RTT is 1000ms, its average
decoding delay is 2.35303s. They are approximately 2 times that of RTT, which is in accordance
with our expectations. The average decoding delay of NC is 3.0087s and 8.93286s respectively,
much larger than FNC.
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Figure 5: Performance as a function of the bandwidth variation

4.4 Impact of Link Capacity

We fix the round-trip time to 100ms with a packet loss rate of 5%, and vary the link capacity
from 0.1Mbps to 1000Mbps. As shown in Figure 5(b) and (c), the maximum decoding delay for
NC is very high in every case, whereas both the maximum and the average decoding delay for
FNC are quite low. When the bandwidth is lower than 1Mbps, the congestion control algorithm
itself leads to congestion or even loss, which increases the delay. If the bandwidth is very high, one
loss can lead to great throughput decrease. It is shown in Figure 5(a) that due to the limitation of
Vegas itself, the performance of all three schemes is not very high when the bandwidth is larger
than 100Mbps. Since our scheme can mask packet losses more effectively, it has the highest
throughput in contrast with NC and Vegas without incorporating with network coding.

Overall, the decoding delay for FNC depends on the RTT, the overhead of operation of
encoding and decoding rules, and the congestion control algorithm, but it is not deeply affected
by the loss rate. It seldom has a long undecodable chain thus its maximum decoding delay is
endurable. Furthermore, FNC masks random losses more effectively than NC does, and hence
obtains higher throughput in most cases.

4.5 Bursty Loss

All previous simulations focus on the behavior of FNC under the fixed loss rate. Now, we
investigate its performance in an unknown environment with unfixed loss rate. The setting of
this scenario is a 10Mbps link capacity with 80 ms RTT, where the background loss rate is 0.1%.
At t=40s, the loss rate is changed to 50%, and lasts for 5 seconds until t=45s. At t=60s, the loss
rate is changed to 100% which means the signal is fully shadowed by obstacles, and it lasts for 2
seconds until t=62s. The tested protocols Vegas and FNC do not know these loss rate changes.
Figure 6 clearly shows that FNC can quickly and effectively handle the sudden bursty losses.
Before t=40s, FNC almost masks all random losses whereas Vegas without network coding is
seriously affected by random losses. When the loss rate is changed to 50%, Vegas could hardly
work whereas FNC still has a relatively high throughput. FNC does not mask all losses because
the retransmission packet also has a 50% probability to be lost. After around t=63s, the sending
rate of FNC has a sudden increase because the sender retransmits all lost packets together.
Due to the limitation of the congestion control algorithm Vegas itself, the stable sending rate
after this burst does not recover as before. The maximum decoding delay of FNC is 3.33053s,
which contains 2 seconds during which the connection is broken. The average decoding delay is
0.0839042s, a little more than one RTT . We do not test NC because its retransmission scheme
depends on the estimation of the loss rate, and it is hard to give an effective estimation algorithm.



Effective Retransmission in Network Coding for TCP 61

0 20 40 60 80 100
0

200

400

600

800

1000

 

 

Th
rou

gh
pu

t (
pk

t/s)

Time (secs)

 FNC
 Vegas

Figure 6: Performance under unknown bursty losses

5 Conclusions

Network coding is a powerful tool in fighting against non-congestion losses. However, its
redundancy and decoding delay can significantly impair transmission performance so that most
schemes cannot be implemented in practical systems. In our work, we propose a novel dynamic
network coding retransmission scheme which makes use of the information implied in the seen
scheme to acquire the exact number of packets the receiver wants instantly. As we do not
retransmit packets with a stable rate or a constant redundancy factor, our approach can handle
not only random losses, but also unknown bursty losses. Simulation results show that our scheme
significantly outperforms the previous coding approach in reducing decoding delay and masking
losses. It obtains the throughput which is close to the scenarios where there is zero error loss.

The remaining issue in our research is to evaluate the performance of incorporating network
coding with other congestion control algorithms, such as those load factor-based algorithms,
VCP and MLCP, etc. Furthermore, we intend to implement our algorithm in a Linux protocol
stack to asses its strengths and limitations in practice.
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