
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. V (2010), No. 5, pp. 719-726

A Homogeneous Algorithm for Motion Estimation and
Compensation by Using Cellular Neural Networks

C. Grava, A. Gacsádi, I. Buciu

Cristian Grava, Alexandru Gacsádi, Ioan Buciu
University of Oradea
Faculty of Electrical Engineering and Information Technology
Oradea, Romania
E-mail: {cgrava,agacsadi,ibuciu}@uoradea.ro

Abstract: In this paper we present an original implementation of a homoge-
neous algorithm for motion estimation and compensation in image sequences,
by using Cellular Neural Networks (CNN). The CNN has been proven their
efficiency in real-time image processing, because they can be implemented on
a CNN chip or they can be emulated on Field Programmable Gate Array
(FPGA). The motion information is obtained by using a CNN implementation
of the well-known Horn & Schunck method. This information is further used
in a CNN implementation of a motion-compensation method. Through our
algorithm we obtain a homogeneous implementation for real-time applications
in artificial vision or medical imaging. The algorithm is illustrated on some
classical sequences and the results confirm the validity of our algorithm.
Keywords: cellular neural networks, motion estimation, Horn & Schunck
method.

1 Introduction

The motion estimation and compensation algorithms were developed for different applications
as artificial vision, video information compression, medical imaging, digital and high-definition
television, video-telephony, virtual-reality and multimedia techniques. Motion estimation allows
one to reduce the temporal redundancy in a sequence of images in order to reduce the trans-
mission rate and has been widely used in television signal coding (e.g. motion-compensated
(MC) prediction, MC interpolation) and videoconference services [1]. To avoid this limitation
in this paper we propose a fully parallel solution in order to realize the motion estimation and
compensation, using CNN [2], as a competing alternative to classical computational techniques.
The advantage of the algorithms that can be implemented on CNNs is that these kinds of neural
networks already exists in hardware version [3], [4] and thus we can obtain real-time applica-
tions. In our case, because the motion estimation and compensation methods have generally a
great computational cost, we develop homogeneous algorithms (that is the estimation part and
compensation part are implemented in the CNN environment) for real-time applications that
can be after that applied in artificial vision or medical imaging. After a small introduction, in
the second part of this paper we present an overview of motion estimation and compensation
methods, followed by a section that presents the CNN implementation of the Horn and Schunck
motion estimation method and a section that presents the CNN implementation of the motion
compensation. In the section dedicated to experimental results we present results that confirm
the validity of our algorithm and we finalize our paper with a section of conclusions giving also
some perspectives to our work.

Copyright c⃝ 2006-2010 by CCC Publications

720 C. Grava, A. Gacsádi, I. Buciu

2 Overview on motion estimation and compensation methods

The most used motion estimation methods are [5]:

• differential methods (or gradient methods); in this case the motion being estimated based
on the spatial and temporal gradients of images [6], [7], [1];

• block-based methods (or correlative methods). These methods could be classified in phase-
correlation methods and block-matching methods. In the case of phase-correlation meth-
ods, the motion is estimated based on the Fourier phase-difference between two blocks
from two successive images. These methods are less used in practice because of the high
noise-sensitivity. In the case of block-matching methods the location of the block (in the
following or previous images) that best matches the reference block in the current image
is searched, based on a certain matching or difference criteria. Both methods are usually
applied in the case of a translation movement, but could be also adapted for other spatial
models of the movement [8].

The principle of almost all motion estimation methods is that the brightness intensity of
each pixel is constant along the motion trajectory or is modifying in a predictable way. This
hypothesis of brightness intensity preservation of each point (x,y,t) along the motion trajectory
can be expressed through the equation of Displaced Frame Difference (DFD), between the t and
t− 1 = t− ∆t instants [9]:

DFD(x, y) = Φ(x− dx, y− dy, t− dt) −Φ(x, y, t), (1)

where Φ(x, y, t) denote the brightness distribution of the image at the moment t and d =
[dx, dy]T is the displacement vector between the moments t and t ′ = t − ∆t (dx and dy being
the displacement vectors on x and y direction, respectively).

Differential motion estimation methods are based on spatial and temporal gradients of a
sequence of images. If the brightness intensity of a pixel is not varying in time, then dΦ/dt =
Φt = 0 [1]. The first order Taylor development of this last relation, has as result the “equation of
movement constraint” EMC (or “optical flow equation” OFE) that links the spatial and temporal
gradients of brightness intensity [9]:

∂Φ

∂x

∂x

∂t
+

∂Φ

∂y

∂y

∂t
+

∂Φ

∂t
= 0. (2)

We can rewrite:
Φx · νx +Φy · νy +Φt = 0, (3)

where Φx and Φy are the spatial gradients, Φt is the temporal gradient of the brightness intensity
and νx = dx/dt, νy = dy/dt are the velocities on x and y directions [1].

As it can be observed in eq. 3, the optical flow equation has two unknowns (νx, νy), hence
the system is under-determined leading to an ill-posed issue. In order to obtain both movement
components (νx, νy), it has to be introduced a second constraint, to obtain a fully determined
system (two equations with two unknowns). One of the possible constraints is offered by the
well-known Horn & Schunck motion estimation method [1], which assumes that all the neighbor
pixels have similar movement (we say that the velocity field is uniform or smooth). It results
that it has to be minimized an energy:

E2 = E2
flow + γE2

uniformity (4)

The first term correspond to the difference related to the projection of the velocity vectors on
the spatial gradient (as in the EMC) and the second term correspond to the difference related

A Homogeneous Algorithm for Motion Estimation and Compensation by Using Cellular Neural
Networks 721

to a smooth field, g being the weighting term between the two terms. The uniformity constrain
is expressed by the equation:

E2
uniformity =

(
∂νx

∂x

)2

+

(
∂νx

∂y

)2

+

(
∂νy

∂x

)2

+

(
∂νy

∂y

)2

(5)

E2
flow =

(
Φx · νx +Φy · νy +Φt

)2

(6)

The solution is obtained after a Gauss-Seidel minimization [1]. Equation 6 will be minimized
when the error (that means the difference between two successive values of (νx, νy), will be con-
sidered as being the minimal or when the maximum chosen number of iterations will be reached.
This method is not limited to translations as block-matching method and the computations are
shorter, but the movement amplitude has to be small (less than three pixels) because of the
considerations regarding Taylor development. The solution to avoid the constraint regarding
small amplitude of movement is to use the multi-resolution technique [1]. Using two consecutive
frames (Φi(x, y, ti) and Φf(x, y, tf)) of a sequence (Fig. 1), after the application of a motion
estimation algorithm, as Horn and Schunck method, for each pixel it results an estimation of
its movement in the both two directions (x,y) of the system of co-ordinates that is attached to
image plane.

Figure 1: The illustration of motion compensation.

The purpose of motion compensation is that based on estimated motion information and
starting from a reference image (the initial image Φi, in Fig. 1) to obtain an estimation of the
real comparison image (the final image Φf) that was used in the process of motion estimation [10].

3 The CNN implementation of the Horn & Schunck motion esti-
mation method

Regarding CNN gray-scale image processing generally, variational computing based template
design is possible if the design constrains are respected [11], [12]. In order to analytically de-
termine the template, cost functions or energies are used in the designing step. An important
designing aspect is represented by the way to associate each energy function with one of the A,
B, C or D template, as well as the way to chose the layers number of the CNN. Taking into
account the characteristics of the existing CNN chip it is recommended to use only mono-layer
CNN and only A and B templates. In the cost functions some weights can be introduced in
order to maintain the state values in the linear zone of the state-output transfer characteristic.
The motion estimation results using the two images, Φ1(x, y, t) and Φ2(x, y, t+∆t), a two-layer
CNN structure and the Hosch.tem (see Fig. 2). After the cost function minimization [13], for
the Hosch.tem it results:

• polarization images Z1 = ΦxΦt and Z2 = ΦyΦt,

722 C. Grava, A. Gacsádi, I. Buciu

Figure 2: Two-layer CNN structure for the proposed Horn & Schunck motion estimation method.

• nonlinear templates A1 and A2:

0 a 0
a 1-4a a
0 a 0

where the parameter a also includes the γ parameter from the equation (6), obviously weighted
with the constants that results at the energy minimization. Nonlinear D− type template D is:

0 0 0
0 dkl 0
0 0 0

where each element dkl is expressed as follows: d11(νx) = (Φx)2 · νx, d21(νy) = ΦxΦy · νy,
d22(νy) = (Φy)2 · νy, and d12(νx) = ΦxΦy · νx, respectively.

In Fig. 3 the images with the estimated motion in the case of the “taxi” real sequence are
presented. The first two images represent two images of the well-known sequence in motion
estimation reference, “Hamburg-taxi”, and in the last two images the motion νx and νy (or
displacement) images are presented. The two last images represent the displacement in the two
spatial directions. The combination between these two images could be also represented as a
single image with vectors corresponding to the displacement of each pixel of the reference image,
as we will present in the section presenting other experimental results. For a better visualization,
the motion images, νx and νy, are not calibrated in the CNN domain. If we want to use these
images in image compensation we have to calibrate them in the CNN domain [−1,+1].

Figure 3: Two images of the Hamburg-taxi real sequence, used in our experiments.

A Homogeneous Algorithm for Motion Estimation and Compensation by Using Cellular Neural
Networks 723

4 The CNN implementation of motion compensation

In order to develop a motion compensation algorithm that can be directly implemented on
a CNN chip, we have to decompose such an algorithm as elementary steps that can be then
implemented on the existing hardware. As a result of the motion estimation process, a pixel
could be stationary or can change its position in one of the eight elementary directions: N, N-E,
E, S-E, S, S-W, W, N-W. After the application of a motion estimation technique, the pixels
of the intermediary image frame Φ(x, y, t), that corresponds to any given moment t ∈ (ti, tf),
could be classified in the following categories (see Fig. 1), where t is the time-position of the
intermediary image, between the initial image and the final image:

• Pixels of “a” type that has an identical position in the two consecutive images. These pixels
does not change, at a given moment t ∈ (ti, tf), neither their positions nor their values;

• Pixels of “b” type, that will moves as a result of the fact that the corresponding pixels in
the two images that contains the motion information has a value greater than a current
elementary value (that could be view as a quantum or a threshold). The value of these pixels
is not changing, but inserting intermediary images between the initial and final image, Φi

and Φf, their positions are changing successively with one elementary value (one quantum)
corresponding to the spatial discretization. The maximum number of intermediary images
that could be inserted equals the maximum number of elementary values (quantum) that
could be identified in the images that contains motion (or displacement) information;

• Pixels of “c” type are those pixels that will change their values because will be covered by
the pixels that will arrive in that position, overlapping the initial pixel:

c(t) = shift(b(t)) (7)

• Pixels of “d ” type, with unknown values, that are the result of the displacement of “b”
type pixels, that liberates a location but there is no pixel arriving in that location. In each
step of the movement, the value of these pixels could be determined through spatial CNN
spline-cubic interpolation [10]:

d(t) = ⌊d(t− 1) · c(t) + b(t) · c(t)⌋ · b(1) (8)

• Pixels of “e” type that at the current time during the processing will have the same value
as in the initial image Φi, due to the movement of the pixels (arrivals and departures of
the pixels). The values of these pixels will be restored from the initial image:

e(t) = c(t− 1) · b(t) · c(t) · d(t) (9)

Each intermediary step has as result an associate image and to create this intermediary
image it has to be done the following operations:

• determine the “c” type pixels, that is the displacement with one pixel in the direction
resulting from the motion information;

• interpolation, in order to determine the values of unknown pixels, that is the “d ” type
pixels.

For each intermediary image, the value of a pixel results after the determination of the type of
that pixel. The state of a pixel could change during the processing. The initial and final image,

724 C. Grava, A. Gacsádi, I. Buciu

Φi and Φf, and the images that contain the motion information have the same dimensions. In
this paper, all images are converted to standard CNN gray-scale images, taking values between -1
to +1 (see Fig. 5). The convention is that pixels with negative value are coding a displacement
to the left (Fig. 5 a) or to up, respectively (Fig. 5 b) and the pixels having positive values are
coding the displacements to the right (Fig. 5 a) or to down, respectively (Fig. 5 b). The values
of the pixels coding the motion are multiples of the minimum detectable value of the motion. In
order to detect the pixels that will change their position and to move the pixels, the treshold.tem
and shift.tem templates family are used [14]. The determination of the value of pixels of “d ”
type could be made for each intermediate image or only to the final image. In order to avoid
the modification of the pixels of “a” type or in order to restore the pixels of “e” type, some
mask-images are created during the processing, using the equations (7), (8) and (9).

Figure 4: Conventions in the images containing the motion information.

5 Experimental results

In this section some experimental results obtained by using the "CadetWin" (CNN Appli-
cation Development Environment and Toolkit under Windows [14]) are presented. The images
containing the motion estimation, νx and νy, are calibrated in the CNN domain [−1,+1]. The
processing time depends on the number of interpolations and on the number of the motion esti-
mation quantum, that results after spatial discretization, that is on the total number of images
inserted between the initial and final image, Φi and Φf. Due to parallel processing, this total
processing time is independent by the dimensions of the original images or by the number of
moving pixels. In order to illustrate the implemented method in the case of real images and in
the case of a complex movement, starting from an initial image of a well-known “tennis-table”
sequence, we have simulated a complex motion, using the Free Form Deformation principle,
resulting (see Fig. 5) three real images of a sequence (Φ1, Φ2, Φ3). In Figure 5 we also repre-
sented the “Motion Estimation Field” obtained after applying our CNN implementation of the
Horn and Schunck motion estimation method. Starting from the first image of the real sequence
(Φ1) and this “Motion Estimation Field” we can obtain the “Motion Compensated image” (Φ̂2),
that represent an estimation of the real image (Φ2).

As it can be observed, the biggest errors between the real image and the motion compen-
sated image (Φ2 − Φ̂2) are located in the region with a high gradient of intensity that usually
corresponds to the regions with different motion. Another cause oh these errors could also be
the discrete nature of the image spatial support and the interpolations that are necessary.

6 Conclusions

Generally, in the case of serial implementation of a motion compensation algorithm, the
processing time depends on the image dimensions. In the case of our CNN motion estimation
and compensation algorithm, that uses only 3×3 linear templates, the algorithm can be directly

A Homogeneous Algorithm for Motion Estimation and Compensation by Using Cellular Neural
Networks 725

Figure 5: Motion estimation and compensation using CNN: principle and results.

implemented on the CNN-Universal Chip [4] and thus the image processing become completely
parallel. The advantage of using the CNN hardware platform is that the total processing time
doesn’t depend on image dimensions, being dependent only on the number of displacement steps
that has to be performed and thus we can obtain real-time applications with applications in
artificial vision and medical imaging. Taking into account that our CNN motion estimation and
compensation algorithm is based on the cost functions minimization (usually partially differential
equations) resulting nonlinear templates, our attention is focused on the FPGA implementation
of our algorithm, on a digital emulator of the CNN [11], [12].

7 Acknowledgement

This work was partially supported by a grant from the Romanian National University Re-
search Council, PNCDI Program ID-668/2008.

Bibliography

[1] Horn B.K.P. and Schunck B.G, Determining Optical Flow, Artificial Intelligence, Vol.17, pp.
185-203, 1981.

[2] Chua L.O. and Yang L, Fuzzy Control Rules in Convex Optimization, IEEE Transactions on
Circuits and Systems, Vol.35, pp.1257-1290, 1998.

726 C. Grava, A. Gacsádi, I. Buciu

[3] Cembrano G.L., Rodríguez-Vázquez A., Espejo-Meana S., and Domínguez-Castro R.,
ACE16k: A 128×128 Focal Plane Analog Processor with Digital I/O, Int. J. Neural Syst.,
Vol.17, Issue 6, pp. 427-434, 2003.

[4] Roska T. and Chua L.O., The CNN universal machine: an analogic array computer, IEEE
Transactions on Circuits and Systems, Vol.40, pp. 167-173, 1993.

[5] Konrad J., Motion detection and estimation, Image Processing Handbook, Networking and
Multimedia, pp. 207-227, 2000.

[6] Bruhn A., Weickert J., Feddern C., Kohlberger T., Schnorr C., Real-time optic flow compu-
tation with variational methods, Computer Analysis of Images and Patterns, pp. 222-229,
2003.

[7] Brox T., Bruhn A., Papenberg N., Weickert J., High accuracy optical flow estimation based
on a theory for warping, ECCV, pp. 25-36, 2004.

[8] Wei W., Hou Z.-X., Guo Y.-C., A displacement search algorithm for deformable block match-
ing motion estimation, Proc. of IEEE International Symposium on Communications and In-
formation Technology, pp. 457-460, 2005.

[9] Barron J.L., Fleet D.J., Beauchemin S., Performance of Optical Flow Techniques, Interna-
tional Journal of Computer Vision, Vol. 12, Issue 1, pp. 43-77, 1994.

[10] Grava C., Gacsádi A., Gordan C., Maghiar T., Bondor K, Motion Compensation using
Cellular Neural Networks, Proc. of the European Conference on Circuit Theory and Design
(ECCTD), Vol. I, pp. I-397-I-400, Krakow, Poland, 2003.

[11] Kincses Z., Nagy Z., Szolgay P, Implementation of nonlinear template runner emulated
digital CNN-UM on FPGA, Proc. of the 10th International Workshop on Cellular Neural
Networks and Their Applications, pp. 186-190, Istanbul, Turkey, 2006.

[12] Nagy Z., Vörösházi Zs., Szolgay P., Emulated Digital CNN-UM Solution of Partial Diferen-
tial, Int. Journal of Circuit Theory and Applications, Vol. 34, Issue 4, pp. 445-470, 2006.

[13] Gacsádi A., Grava C., Tiponut V., Szolgay P., A CNN implementation of the Horn &
Schunck motion estimation method, Proc. of the 10th International Workshop on Cellular
Neural Networks and Their Applications, pp. 381-385, Istanbul, Turkey, 2006.

[14] *** CadetWin, CNN application development environment and toolkit under Windows.
Version 3.0, Analogical and Neural Computing Laboratory, Hungarian Academy of Sciences,
Budapest, 1999.

