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Abstract: The study of some typical complex computer simulations, pre-
senting one or more Complexity features, as the: a) symmetry breaking, b)
nonlinear properties, c) dissipative processes, d) high-logical depth, e) self-
organizing processes, etc allows to point out some several numerical artifacts,
namely the: (i) distortions, (ii) scattering, (iii) pseudo-convergence, (iv) insta-
bility, (v) mis-leading (false) symmetry-breaking simulations and others. The
detailed analysis of these artifacts allowed clarifying the numerical mechanisms
of some such artifacts, which can be named in following numerical phenomena,
because their basic features can be exactly predicted.
Keywords: Computer Simulations, Numerical Artifacts, Numerical Phenom-
ena, Self-organizing Processes.

1 Introduction

We live in a computerized world, our civilization being a "civilization of Computers". Taking
into account that computers control the work of all-present complex installations and devices, the
appearance (due to some numerical phenomena) of some important distortions of the simulated
processes lead usually to major failures of the technical installations. Particularly, the events
referring to the erroneous computer (numerical) simulation and design of the flight of the Patriot
Missile which failed (with disastrous results) - during the Gulf War in 1991 - to stop a Scud
Missile [1] and the self-destruction of the European Space Agency’s Ariane 5 rocket, at 37 seconds
after its launch [2], were both assigned to computer errors [3] and to their associated numerical
artifacts/artefacts/phenomena.

Given being the computer simulations are considerably cheaper than the experimental studies
and they allow the prediction of the physical systems behavior even in inaccessible conditions,
the computer simulations are widely used in technical studies. Because the modern (optimized)
technical systems are complex [4], the computer simulations are also complex, and - for this
reason - they generate specific numerical artifacts. In fact, there is a huge number of publications
reporting such phenomena (usually related to some complex numerical simulations), as it can be
easily found consulting some search systems, e.g. the Google system. As it results from Table 1,
even eliminating by the use of quotation marks (") the "parasitic" published works entitled as
numerical simulations of... boiling phenomena, etc, there remain very large numbers of published
works in these fields.

This work deals with the study of possibilities to discover the mechanisms of the artifacts
intervening in some complex simulations and to predict quantitatively the basic parameters of
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Topics No quotation marks With quotation marks,
e.g. "Numerical Artifacts"

Numerical Artifacts 1,180,000 9,370
Numerical Artefacts 126,000 2,440

Numerical Phenomena 4,160,000 1,340
Complex Simulations 3,000

Table 1: Numbers of published papers found by the Google search system (beginning of 2009)

the computer generating errors, transforming so the observed numerical artifacts/artefacts in
the so-called numerical phenomena. We have to underline from beginning that the discovery of
these mechanisms belong to the field of Numbers Theory and that many problems in the field
of Numbers Theory are extremely difficult. E.g., the statement of the (Pierre de) Fermat’s last
(greatest) theorem was published (after his death, by his eldest son - Clément Samuel Fermat)
in 1670 [4], but its solution was found only in 1995 [5] by the professor Andrew Wiles [6].

We will focus mainly to the study of the main features of the classical [7], [8] and of the newly
found [9], [10] numerical phenomena associated to the Finite Differences (FD) simulations [11]
of the pulses propagation through media with sharp interfaces and attenuative character, as well
as of other numerical methods (as the random walk method, the gradient one, etc), applied
to the study of different physical processes, as diffusion [12], [13], solitary wave propagation,
applications to the evaluation of the parameters of some physical systems, etc.

2 Symmetry breaking in some computing programs

2.1 Symmetry breaking of the wave equation in ideal media

The Finite Differences (FD) discretization of the wave equation in ideal media:

∂2w

∂t̃2
= V2

Φ

∂2w

∂x2
→ wt+1 +wt−1 − 2w

τ2
= V2

Φ

wi+1 +wi−1 − 2w

ϵ2
(1)

which is symmetrical relative to the space steps i− 1, i, i+ 1 and the time steps t− 1, t, t+ 1,
if the FD velocity and the wave propagation one are equal:

VFD =
ϵ

τ
= VΦ (2)

Defining the Courant’s number [7] by means of the relation:

C =
VΦ

VFD

(3)

one finds easily that if: (i) C > 1, there will intervene instabilities, because the FD schema
does not use all information received at the observation point (VΦ > VFD), (ii) C < 1, there
will intervene distortions, because for VΦ < VFD, the FD schema uses more information than it
receives, and this additional information acts as a jamming, (iii) C = 1, we have an ideal FD
schema (stable and convergent), because this schema has all necessary physical information and
nothing more! One finds that the symmetry breaking for values different than 1 of the Courant
number leads to the "classical" numerical phenomena.
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2.2 Symmetry breaking of the smoothing model of a sharp interface

Consider a sharp interface between 2 homogeneous elastic media. If the method of Finite
Differences (FD) is used, then - in order to avoid the use of Dirac function - a certain smoothing
of the sharp interface is necessary, spreading it over 2 or 3 FD nodes, whose indices i are denoted
as I− 1, I and I+ 1 (see Figure 1).

Figure 1: Smoothing models of the sharp 1-D interfaces (see also [14]-a).

Then the differential equation ρ(x)∂
2w
∂t̃2

= ∂
∂x

[
S(x)∂w

∂x

]
of the elastic pulses propagation

through an in-homogeneous medium becomes:

ρ̃i
wt+1 +wt−1 − 2w

τ2
=

⟨
∂S

∂x

⟩
i

wi+1 +wi−1

2ϵ
+ S̃i
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ϵ2
. (4)

where ρ̃i = ⟨ρ⟩i, S̃i = ⟨S⟩i and
⟨
∂S
∂x

⟩
i

are the chosen average values around the FD node i.
The chosen expressions of these average values (see Table 2) can succeed or not to remake the
(apparent) symmetry of the propagation medium in the frame of the FD simulation; e.g., one
finds from the examination of Table 2, that all required expressions are symmetrical around the
sites I − 1, I and I + 1 for model 1, and around the sites I and I + 1 for model 2a, while this
general symmetry is not kept for all average expressions of models 2b, 3a and 3b.

That is why - while the smoothing models 1 and 2a ensure always stable and convergent
numerical simulations - for the smoothing models 2b 3a and 3b, respectively, there appear the
basic types of usual numerical artifacts [7, 8, 14]: a) the instability, b) the pseudo-convergence.
The plots of these numerical artifacts for the above-indicated 5 types of studied Finite Differ-
ences (FD) smoothing schemes (models), intended to the simulation of certain elastic pulses
propagation through complex materials are presented by Figures 2 and 3 below (see also [15]).

i ρ̃i S̃i
⟨
∂S
∂x

⟩
i

I− 1 I I+ 1 I− 1 I I+ 1
⟨
∂S
∂x

⟩
I−1

⟨
∂S
∂x

⟩
I

⟨
∂S
∂x

⟩
I+1

1 ρ ρ ′+ρ
2

ρ ′ S S+S ′

2
S ′ 0 S ′−S

ϵ
0

2a ρ 3ρ ′+ρ
4

3ρ ′+ρ
4

S 3S+S ′

4
S+3S ′

4
0 S ′−S

2ϵ
S ′−S
2ϵ

2b ρ ρ ρ ′ S S S ′ 0 S ′−S
2ϵ

S ′−S
2ϵ

3a ρ ρ ′+ρ
2

ρ ′ S S+S ′

2
S ′ S ′−S

4ϵ
S ′−S
ϵ

S ′−S
4ϵ

3b ρ ρ ′+ρ
2

ρ ′ 7S+S ′

8
S+S ′

2
S+7S ′

8
S ′−S
4ϵ

S ′−S
ϵ

S ′−S
4ϵ

Table 2: Expressions of the average values of the main elastic parameters for the basic smoothing
models of one-dimensional (1-D) interfaces (see also [14]-a)
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Figure 2: Plots of numerical simulations corresponding to different FD schemes (those of models
3a and 3b are pseudo-convergent, and unstable, respectively).

Figure 3: Convergent numerical simulations corresponding to models 1 and 2a, and pseudo-
convergent ones for models 2b, 3a.

One finds that while the instabilities can be easily detected and eliminated, the pseudo-
convergence is considerably more "dangerous", because: a) the pseudo-convergent simulations
have a right shape, while: b) the corresponding wrong displacement values can be considerably
more difficult observed, hence the pseudo-convergent simulations could be easily misleading.

3 Nonlinear properties of the propagation medium

It is well-known [7] that the computer rounding errors are amplified considerably in the frame
of some non-linear equations, as those corresponding to certain solitary waves, leading due to
some instability numerical artifacts (see Figure 4). Particularly, the Korteweg-de Vries equation:

∂u

∂t
= −v00u

′ − nuu ′ − d1u
′′′ (5)

can be discretized as:

f(i) = p(i)−γ · [a(i+ 1) − a(i− 1)]+α ·a(i) · [a(i− 1) − a(i+ 1)]+β · [a(i− 2) − a(i+ 2)] (6)

There were studied the numerical artifacts corresponding to the 2 main types of nonlinear
solitary waves (which can propagate keeping their shapes): the bell-shaped (or breathers) and
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Figure 4: FD simulation of a Korteweg-de Vries (KdV) solitary wave breather propagation

the kink-shaped waves [16]. Figures 4 and 5 present the basic numerical artifacts intervening in
the FD simulations of the breathers propagation (see also [17]).

While the artifacts intervening in the simulations of the KdV breathers propagation reduce
to a monotonic increase of distortions up to the appearance of the instability (Figure 4), the use
of the discrete version (DNLS) of the cubic nonlinear Schrödinger (NLS) equation to describe
the wave-guide arrays with saturable nonlinearity leads in certain conditions to the artefact
corresponding to the merging of two breathers with symmetry breaking (see Figure 5 and [17]).

Figure 5: The symmetry breaking artefact intervening in the merging (bound state formation)
of 2 symmetric SNLS breathers

4 Dissipative media

Because the modulus of the first solution of the attenuation-dispersion relation [15] is larger
than 1: |g1| = eϵE > 1, the FD schemes used for the simulation of the acoustic pulses propagation
in dissipative media are always unstable. There were pointed out also: (i) the instability of the
attenuated wave simulation, even for absolutely exact initial conditions, due to the generation of
the amplified wave (mathematically possible, but without a physical meaning) by the stochastic
local accumulation of some local "rounding" inaccuracies of the exact values corresponding to
such waves, acting as a self-organising process in the computing program run, as well as: (ii) the
extremely strong acceleration of the amplified wave generation when the complex wave-functions
are used (stability and convergence radii of the magnitude order of 1 dB or even smaller). The
introduction of some: (i) corrective measures (the use of some analytical expressions of some
partial derivatives, particularly), (ii) properly chosen effective parameters, allows the weakening
of these unpleasant numerical phenomena, ensuring stability and convergence radii of the mag-
nitude order of 100 dB [13], which represent sufficiently high values for accurate descriptions, by
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means of the finite difference method, of the cases of technical interest.

5 High Logical Depth

As it results from equation (1), the FD scheme of waves propagation in ideal media is not
too intricate, even if the Courant’s number is less than 1: C < 1. The repeated use [by a large
number (N > 105) of successive iterations, e.g. for simulations of the ultrasonic non-destructive
examinations of some industrial components] of this equation, leads however to the high logical
depth Complexity feature of the used computer program, and consequently to several numerical
artifacts indicated in the frame of Figure 6.

The expressions of the main limits are: xe = −Ct−2 3
√
t, xp = 1+C(t−1), Xp = N+C(t−1),

xn = Ct + N + 2 3
√
t, while for C ≈ 0.5 and N ≈ 71, the relative (to the incoming pulse one)

amplitudes of the echo pulses have the magnitude orders: 0.1 for the rectangular pulse, 0.01 for
the sine pulses, and 0.001 for the Gaussian pulses.

Figure 6: Structure of FD simulations of the propagation of pulses of different shapes

6 From the Numerical Artifacts to the Numerical Phenomena

6.1 Difficulties and main methods used to study the numerical artifact mech-
anisms

Because many problems in the field of Numbers Theory are extremely difficult, the aim of
this study is to point out the main features of the mechanisms leading to some numerical arti-
facts intervening in the computer simulations of pulses propagation. The accomplished analysis
pointed out that the main methods to study these numerical artifact mechanisms are the meth-
ods of the: a) FD transfer coefficients [18], b) Fourier’s representation of the exact solutions of
the discretized wave equation [19].

6.2 The method of transfer coefficients

In order to explain the results corresponding to the linear FD schemes, a partition of the
incoming pulse in N components of amplitudes (in the order of their incoming on the studied
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material) s1, s2, . . . , sN is considered. The amplitudes of the same components in the previous
time step are denoted by s ′1, s

′
2, . . . , s

′
N.

The transfer coefficients kti are defined by means of the expressions (4) of the displacement
wIt corresponding to the space site I at the moment (time step) t:

wIt =

N∑
j=1

kt,N+2+t−I−j · sj −
N∑
j=1

kt,N+t−I−j · s ′j (7)

A simplified definition of the transfer coefficients corresponds to the FD simulations with
equal values of the real phase speed VΦ and of the FD one: VFD = ϵ

τ
(i.e. for the value 1 of the

Courant number [7]: C = VΦ

VFD
), because then the pulse partition components at successive time

steps coincide: S ′
i = si (for any i = 1, 2, . . . ,N). In the particular case of a sharp 1-D interface

located in the site I, the transfer coefficients describing the transmitted wave are defined as [14]-a:

wI+1,t =

t−2∑
j=1

kjst−j−1 (8)

6.3 Fourier’s representation method of the exact solutions of the discretized
wave equation

The exact discrete solution of the wave equation is written by means of its Fourier expansion,
as:

wj,t =

∞∑
k=−∞Ck · [g(k)]t · eik·jϵ (9)

where g(k) is named the amplification factor. Introducing this expression in the wave equation,
one obtains the "attenuation-dispersion" relation:

g− 2+
1

g
= F(k · ϵ, VFD, w) (10)

where F(k · ϵ, VFD, w) is a specific function of the considered wave.
According to von Neumann’s theorem ( [19]-a, p. 42), the considered FD scheme will be

stable if both solutions of the algebraic equation (10) fulfil the requirement: |g1,2| ≤ 1, else this
scheme will be unstable.

6.4 Applications to the study of mechanisms of some numerical artifacts

The method of transfer coefficients. Appplying this method to the problem of sharp
interfaces (see Section 2a and Figures 1 - 3), we will find that the above indicated numerical
artifacts belong to the class of numerical phenomena, because they can be identified and described
starting from the values of the roots of the characteristic equation [15]:

ξ2 − (t_t1 + 2t_t2 + t0t1)ξ− t_t2 = 0. (11)

where: ti = ai−1bi − 1, while ai and bi are the coefficients of the FD wave equation (4):
wi,t+1 = aiwi+1,t +biwi−1,t −wi,t−1. One finds so that as |ξ| > 1 or |ξ| < 1, the used FD scheme
is unstable, or it is stable.

The method of Fourier’s representation. Using the above presented method of the
Fourier’s representation of the exact solutions to the problem of Korteweg-de Vries solitons
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(Section 3), one obtains the following expression [19]-b,c of the upper threshold (for the numerical
scheme stability) of the time step:

τmax =
ϵ

αA+ 4β

ϵ2

(12)

Our study [15] pointed out both the validity of the Vliegenthart condition (13), as well as
the monotonic improvement of the FD simulations accuracy as the representative point of the
FD steps ϵ, τ tends to the Vliegenthart’s boarder of the stability and instability regions.

One finds so that the stability field of the FD simulations of KdV solitons propagation is
rather broad. Because the size and borders of the stability domain depend on the: a) strongly
(e.g., in the case of some exponential dependencies) or weakly (as in the above studied case)
character of the nonlinear dependence, b) number of interacting system components.

7 Stability and Convergence Radii of Different Numerical
Schemes

The accomplished numerical studies [20], [21] have pointed out that, for given values of the
wave frequency (or wavelength) and of the tangent of mechanical losses, beginning from a certain
number of space (or time) steps xlim, one finds usually the appearance of large oscillations of the
simulated displacements, which lead quickly to instability. Because the instability is determined
by the value of the factor eEx and: E = k tan δ

2
, while the wave intensity is proportional to the

square of displacement: I ∝ w2, one finds that the measure (in deci-Bells) of the intensity level
corresponding to the stability field is:

⟨LI,stab⟩dB = 2 ⟨Lw,stab⟩dB = 20Exlim = 20kxlim tan
δ

2
= 40π

xlim

λ
tan

δ

2
. (13)

Of course, the decrease of the wave intensity corresponding to the stability field (limit) is:

Ilim

I0
= e−2Exlim = e

⟨LI,stab⟩
10 (14)

Table 3 synthesizes the obtained numerical results.

Type of the wave equation No. of numerical ⟨LI,stab⟩dB tlim
interactions (stability, life, steps)

Complex stiffness equation 12 0.0321 102
Complex stress relaxation time 10 4 12732
Complex wave-vector equation 8 20 63622
Space evolution Equation 6 40.476 128839
Real wave, equation 5 80.130 255062

Table 3: Stability radii and mean life of different numerical simulations [15].

8 Analysis of the Obtained Results for Different Studied Numer-
ical Schemes and Physical Processes

The obtained results (Tables 1 and 2) concerning the stability and convergence radii of
different numerical schemes intended to the computer simulation of certain physical processes
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(acoustic pulse propagation, diffusion with drift, absorption, etc) indicate the "accessible" logical
depths [22] of the specific studied physical problems, for each of the used numerical schemes.
These results present also a considerable importance for the choice and optimization of the
numerical schemes [23]. Certain numerical schemes, e.g. that corresponding to the complex
stiffness S̄ symmetric wave equation of the propagation in dissipative media:

ρ
∂2w̄

∂t ′2
= S̄

∂2w̄

∂x2
(15)

allow multiple solutions; using the FD descriptions: t ′ = tτ and: x = Iϵ (in terms of the time τ

and space ϵ steps) of the real time t and space coordinate x, these solutions can be written as:

w̄I,t = A · e±iωtτ · e±(E+ik)Iϵ (16)

Even if the initial conditions launch only the "direct" wave:

w̄dir.
I,t = A · e−EIϵ · ei(ωtτ+kIϵ) (17)

some random accumulations of the rounding errors intervening in the evaluation of the partial
derivatives produce a local ("spontaneous") generation of the inverse wave:

w̄inv.
I,t = A ′ · eEIϵ · ei(ωtτ+kIϵ) (18)

leading to the sudden apparition of instabilities.
One finds so that the numerical simulations of the waves propagation through dissipative

media lead to a typical problem of self-organizing systems, with a spontaneous symmetry break-
ing. This symmetry breaking corresponds to the "spontaneous" local generation of the inverse
wave, launched by the random accumulation of the "garbage" rounding errors and followed by
the transition between the attenuated wave and the apparently amplified wave, corresponding
to the "inverse" wave. The accomplished study (see Tables 1 and 2) points out that the "speed"
of this self-organization process crucially depends on the number and intensity of the numerical
"interactions" between the components (the values wI,t of the displacement in different sites I,
t of the FD grid) of the simulation process.

Because such numerical "interactions" are achieved mainly by the FD approximate expres-
sions of the partial derivatives, the "spontaneous" breaking of the symmetry appears quicker for
(in the decreasing order of importance):

• a) large numbers of displacement components involved in the expressions of partial deriva-
tives, e.g. when their expressions with 2 previous time steps (instead of those using an
only one previous time step) are used1:
ḟ(0) = −f(2τ) + 8f(τ) − 8f(−τ) + f(−2τ)/12τ,
f̈(0) = −f(2τ) + 16f(τ) − 30f(τ) + 16f(−τ) − (−2τ)/12τ2 when the instabilities appear af-
ter only few tens of iterations,

• presence and repeated "mixture" of the values of both real and pure imaginary parts of
the complex wave function (displacement) w̄,

• more parasitic solutions,

• more partial derivatives involved in the expression of the differential equation of the acoustic
pulse propagation.

1The formulae in more points are considerably more accurate for rather small numbers of iterations, but they
give rise later to spurious solutions and instability (see Table 1).
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For these reasons, the highest "accessible" logical depth [22] is reached (for the simulations
of the acoustic pulse propagation through attenuative media) for the numerical scheme using the
real wave function equation (see table reftab02), with the usual FD approximations of the first
2 order derivatives:

ḟ(0) =
f(τ) − f(−τ)

2τ
, f̈(0) =

f(τ) − 2f(0) + f(−τ)

τ2
. (19)

9 Conclusions and Future Works

The obtained results concerning the different numerical phenomena associated to the complex
computer simulations present a considerable importance for the choice and optimization of these
numerical schemes [23]. It was also found that some numerical simulations (e.g, those of the
acoustic pulse propagation through attenuative media) allow the study of some features of the
self-organizing systems (the "spontaneous" symmetry breaking, the influence of the interactions
between the system components on the "accessible" logical depth, etc).
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