
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
ISSN 1841-9836, 11(2):292-304, April 2016.

Numerical P Systems with Thresholds

Z. Zhang, L. Pan

Zhiqiang Zhang
Key Laboratory of Image Information Processing and Intelligent Control,
School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China
zhiqiangzhang@hust.edu.cn

Linqiang Pan*
Key Laboratory of Image Information Processing and Intelligent Control,
School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China
*Corresponding author: lqpan@mail.hust.edu.cn

Abstract: Numerical P systems are a class of P systems inspired both from the
structure of living cells and from economics. In this work, a control of using evolution
programs is introduced into numerical P systems: a threshold is considered and a
program can be applied only when the values of the variables involved in the produc-
tion function of the program are greater than/equal to (lower-threshold) or smaller
than/equal to (upper-threshold) the threshold. The computational power of numer-
ical P systems with lower-threshold or upper-threshold is investigated. It is proved
that numerical P systems with a lower-threshold, with one membrane and linear pro-
duction functions, working both in the all-parallel mode and in the one-parallel mode
are universal. The result is also extended to numerical P systems with an upper-
threshold, by proving the equivalence of the numerical P systems with lower- and
upper-thresholds.
Keywords: membrane computing, numerical P system, computation power, univer-
sality, register machine.

1 Introduction

Membrane computing is a branch of natural computing, which is inspired from the structure
and functioning of living cells. The computing devices considered in membrane computing are
called P systems. They are parallel, distributed and non-deterministic computational models.
According to their membrane structure, there are two main classes of P systems: cell-like P
systems, with a hierarchical arrangement of membranes [7], and tissue-like P systems or neural-
like P systems, with a net of processor units placed in the nodes of a directed graph [3, 5]. The
present work deals with a class of cell-like P systems, called numerical P systems [10].

Numerical P systems are motivated by the cell structure and the economic reality. Numerical
variables are placed in the regions of a membrane structure. These variables can evolve by means
of programs, which are composed of two components, a production function and a repartition
protocol. A production value of the region at a given step is computed by means of the production
function. This value is distributed to variables from the region where the program resides,
and to variables in its upper and lower neighbors according to the repartition protocol. By a
synchronized use of production functions, followed by the repartition of the obtained values,
a transition is defined between system configurations. The values assumed by a distinguished
variable during a computation form the set of numbers computed by the system.

Many computational properties of numerical P systems have been investigated at both the
theoretical level and at the application level [4,9,10,12–17]. Several strategies of using production-
repartition programs were considered: sequential (at each step, in each region, only one program

Copyright © 2006-2016 by CCC Publications

Numerical P Systems with Thresholds 293

can be applied), all-parallel (all programs in a region of the membrane structure are used simul-
taneously, with each variable participating in all programs where it appears), one-parallel (the
programs are chosen to be used in parallel in such a way that each variable participates in only
one of the chosen programs).

Using a threshold is an interesting strategy of controlling the use of production-repartition
programs. The idea was introduced in numerical P systems in [12], under the name of enzymatic
control: a distinguished variable, called enzyme, is associated with each program and the program
is applied only if the current value of the enzyme is not smaller than the smallest value of the
variables involved in the production function of the program. The “enzymatic control" is useful
in designing robot controllers based on numerical P systems [13–15].

We here introduce a related but different strategy, similar to the threshold control used
in [18] for spiking neural P systems: rules can be used according to the result of the comparison
of the number of spikes in the neuron with the constant, which corresponds to the fact that
a neuron can fire when its potential is greater than or equal to its threshold. In our case, a
constant is associated with the numerical P system and it is used as a control threshold in two
natural ways: a program can be applied only when the values of the variables involved in the
production function are not smaller than (the lower-threshold case), respectively not greater
than (the upper-threshold case) the constant. The computational power of such P systems is
investigated. Specifically, it is proved that universality results can be obtained for such P systems
with one membrane and linear production functions, working both in the all-parallel mode and
in the one-parallel mode. The proof is done (by simulating register machines) only for lower-
thresholds, then the result is extended to the case of upper-threshold by proving that numerical
P systems with upper-thresholds can simulate systems with lower-thresholds.

The possible usefulness of the threshold control remains to be examined for applications (in
robot control). For the sake of applications, it could be useful to consider its stronger versions,
such as taking different thresholds for different membranes or even for different programs in the
system (maybe also mixing the way to use the thresholds, in the lower or upper ways).

2 Preliminaries

Readers are assumed to be familiar with basic elements of membrane computing, e.g., from
[7,8, 11]. Here we only mention some notions and notations which are used in this paper.

We denote by N the set of natural numbers, and the set of real numbers is denoted by R.
The family of all recursively enumerable sets of k-dimensional vectors of non-negative integers
is denoted by Ps(k)RE. Since numbers can be seen as one-dimensional vectors, we can replace
Ps(1) by N in the notation, thus obtaining NRE.

An n-register machine is a construct M = (n, P,m), where n > 0 is the number of registers,
P is a finite sequence of instructions bijectively labeled with the elements of the set {0, 1, . . . ,m},
0 is the label of the first instruction to be executed, and m is the label of the halt instruction
of P . Registers contain non-negative integer values. The instructions of P have the following
forms:

• j : (INC(r), k, l), with 0 ≤ j < m, 0 ≤ k, l ≤ m, and 1 ≤ r ≤ n.
This instruction, labeled with j, increments the value contained in register r, then non-
deterministically jumps either to instruction k or to instruction l.

• j : (DEC(r), k, l), with 0 ≤ j < m, 0 ≤ k, l ≤ m, and 1 ≤ r ≤ n.
If the value contained in register r is positive, then decrement it by 1 and jump to instruction
k. If the value of r is zero, then jump to instruction l (without altering the content of the
register).

294 Z. Zhang, L. Pan

• m: Halt.

A deterministic register machine is a register machine in which all INC instructions have
the form j : (INC(r), k, k); we write these instructions simply as j : (INC(r), k).

A register machine M generates a set N(M) of numbers in the following way: the machine
starts with all registers being empty (i.e., storing the number zero); the machine applies the
instruction with label 0 and continues to apply instructions as indicated by the labels (and made
possible by the contents of registers); if it reaches the halt instruction, then the number present
in register 1 at that time is said to be generated by M . If the computation does not halt, then
no number is generated. It is known that register machines generate all sets of numbers which
are Turing computable, hence they characterize NRE [6].

A register machine can also be used to compute functions. A function f : Nα → Nβ is
computed by a register machine M if, when starting with n1 to nα in registers 1 to α, if
f(n1, . . . , nα) = (r1, . . . , rβ), then M halts in the final label m with registers 1 to β contain-
ing r1 to rβ , and all other registers being empty; if f(n1, . . . , nα) is undefined, then the final
label of M is never reached.

A register machine can also be used as an accepting device. A set N of numbers is accepted
by a deterministic register machine M if, when starting with x ∈ N in register 1, M halts in the
final label m with all registers being empty.

The following propositions concerning the computational power of register machines are es-
sential for the main results established in this work [1, 2, 6].

Proposition 1. For any partial recursive function f : Nα → Nβ(α, β > 0), there exists a deter-
ministic register machine M with (max{α, β}+ 2) registers computing f.

Proposition 2. For any recursively enumerable set N ⊆ Ps(α)RE of vectors of non-negative
integers there exists a deterministic register machine M with (α+ 2) registers accepting N.

Proposition 3. For any recursively enumerable set N ⊆ Ps(β)RE of vectors of non-negative
integers there exists a non-deterministic register machine M with (β + 2) registers generating N.

3 Numerical P Systems with Thresholds

We introduce the class of numerical P systems to be investigated in this work. The definition
is general, for the computing case.

A numerical P system with a threshold is a construct

Π = (m,H, µ, T, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)), V arin, V arout),

where

• m ≥ 1 is the number of membranes;

• H is an alphabet of labels for membranes in µ;

• µ is a rooted tree with q nodes labeled with the elements of H;

• T is a constant, called threshold;

• V ari, 1 ≤ i ≤ m, is the set of variables in region i;

• V ari(0), 1 ≤ i ≤ m, is the set of initial values of the variables in region i;

Numerical P Systems with Thresholds 295

• Pri, 1 ≤ i ≤ m, is the set of programs in region i; each program has the form

Fl,i(x1,i, . . . , xki,i)|T → cl,i,1|vl,i,1 + · · ·+ cl,i,li |vl,i,li ,

where Fl,i(x1,i, . . . , xki,i) is the production function, and cl,i,1|vl,i,1 + · · ·+ cl,i,li |vl,i,li is the
repartition protocol of the program;

• V arin and V arout are the sets of input and of output variables, respectively.

The programs allow the system to evolve the values of variables during computations. Each
program is composed of two parts: a production function and a repartition protocol. The
former can be any function using variables from the region that contains the program. Only
polynomial functions are considered here. By using the production functions in each region, the
system computes a production value from the values of its variables at that time. This value is
distributed to variables from the region where the program resides, and to variables in its upper
(parent) and lower (children) compartments, as specified by the repartition protocol.

The programs are applied under the control of the threshold T , according to two strategies:
bounding the values of variables from below (lower-threshold) and bounding them from above
(upper-threshold).

More precisely, in the first case a program can be applied only when the current value of
each variable from its production function is greater than or equal to the threshold T . Dually, in
the upper-threshold case, a program can be applied only when the current value of each variable
from its production function is smaller than or equal to the threshold T .

The repartition of the “production" takes place as follows. For a repartition protocol RPl,i,
variables vl,i,1, . . . , vl,i,li come from the membrane i where the program resides, the parent mem-
brane and the children membrane. Formally, {vl,i,1, . . . , vl,i,li} ⊆ V ari∪V arpar(i)∪(

∪
ch∈Ch(i) V arch),

where par(i) is the parent of membrane i and Ch(i) is the set of children of membrane i. The
coefficients cl,i,1, . . . , cl,i,li are natural numbers (they may be also 0, in which case the terms
“+0|x" are omitted), which specify the proportion of the current production value distributed to

each variable vl,i,1,. . . ,vl,i,li . At time t, if we denote with Cl,i =
li∑

s=1
cl,i,s the sum of all coefficients

of the repartition protocol, and denote with

ql,i(t) =
Fl,i(x1,i(t), . . . , xki,i(t))

Cl,i
(1)

the “unitary portion", then the value adl,i,r(t) = ql,i(t)·cl,i,r represents the value added to variable
vl,i,r. If variable vl,i,r appears in several repartition protocols, for example, RPl1,i1 , . . . , RPlk,ik ,
all these values adl1,i1,r, . . . , adlk,ik,r are added to variable vl,i,r. After computing the production
function value, the variables involved in the production function are reset to zero. So, if at time
t variable vl,i,r is involved in at least one production function, its value at time t+1 is vl,i,r(t+1)

=
k∑

s=1
adls,is,r(t); otherwise, vl,i,r(t+ 1)=vl,i,r(t) +

k∑
s=1

adls,is,r(t).

Such a system evolves in the all-parallel mode (at each step, in each membrane, all programs
which can be applied are applied, allowing that more than one program share the same variable)
or in the one-parallel mode (apply programs in the all-parallel mode with the restriction that one
variable can appear in only one of the applied programs). A configuration represents the values
of all system’s variables at a given computation step. Initially, the variables have the values
specified by V ari(0), 1 ≤ i ≤ m. Using the programs in the way mentioned above, a transition of
the system from a configuration to the next one is defined. A sequence of such transitions forms
a computation. If no program in each region can be applied, we say that the system reaches a
halting configuration.

296 Z. Zhang, L. Pan

In this way, a numerical P system can compute a function f : Nα → Nβ(α, β ≥ 0): the α
values of the arguments are introduced in the system as the initial values of variables in V arin
and the β-vector of the function value is obtained in the variables from V arout in the halting
configuration of the system. If the system never reaches a halting configuration, then no result
is obtained.

By ignoring the input variables, (non-deterministic) numerical P systems with thresholds
can also be used in the generating mode, whereas by ignoring the output variables we can use
(deterministic or non-deterministic) numerical P systems with thresholds in the accepting mode.

Note that qj,i(t) are integers only if the value of the production functions Fj,i(x1,i(t), . . . , xki,i(t))
is divisible by the respective sums Cj,i(t). If at any step, all the values of the production func-
tions are divisible by the respective sums, we associate this kind of systems with the notation
div. If a current production is not divisible by the associated coefficients total, then we can take
the following decisions [10]: (i) the remainder is lost (the production which is not immediately
distributed is lost), (ii) the remainder is added to the production obtained in the next step
(the non-distributed production is carried over to the next step), (iii) the system simply stops
and aborts, no result is associated with that computation. We denote these three cases with
lost, carry, stop, respectively. In this paper, the numerical P systems with thresholds that we
construct are of the div type.

The set of natural numbers generated or accepted in the way mentioned above by a system
Π is denoted by Nα(Π), α ∈ {gen, acc}. We use NαTγP

D
m (polyn(r), β) to denote the family of all

sets Nα(Π) of numbers computed by systems Π working in α mode, with at most m membranes,
production functions which are polynomials of degree at most n, with integer coefficients, with at
most r variables in each polynomial, using the rules in the mode β ∈ {all, one}, where all stands
for all-parallel, and one stands for one-parallel, and with the threshold used in the γ ∈ {l, u}
way, with l indicating the lower-threshold case and u indicating the upper-threshold case; the
letter D indicates the use of deterministic systems (we remove D when the systems may also be
non-deterministic). If one of the parameters m,n, r is not bounded, then we replace it with ∗.

4 The Universality of Numerical P Systems with Lower-thresholds

In this section, we investigate the computational power of numerical P systems with lower-
thresholds working in the all-parallel mode and in the one-parallel mode.

Theorem 4. Each partial recursive function f : Nα → Nβ (α > 0, β > 0) can be computed by a
deterministic numerical P system with a lower-threshold, with only one membrane, using linear
production functions that use each at most three variables, and working in the all-parallel mode.

Proof: Let M = (n, P,m) be a deterministic register machine with n registers, computing
function f . The initial instruction of M has the label 0 and the machine halts only if the
instruction with label m is reached. According to Proposition 1, n = max{α, β}+ 2 is enough.
Before the computation starts, let us assume that the values of the first α registers are equal to
r1, . . . , rα. When the computation halts, the values stored in the registers 1, . . . , β are the values
computed by f(r1, . . . , rα).

We construct the following numerical P system with a lower-threshold:

ΠM = (1, {0}, [0]0, 1, (V ar0, P r0, V ar0(0)), V arin, V arout),

where

• V ar0 = {xi,1, xi,2, pj | 1 ≤ i ≤ n, 0 ≤ j ≤ m};

Numerical P Systems with Thresholds 297

• V ar0(0) is the vector of initial values of the variables, with:

– xi,1 = xi,2 = ri, for all 1 ≤ i ≤ α;

– xi,1 = xi,2 = 0, for all 1 + α ≤ i ≤ n;

– pj = 0, for all 0 ≤ j ≤ m with the exception of p0 = 1;

• Pr0 = {3pj |1 → 1|xi,1 + 1|xi,2 + 1|pk, for all instructions j : (INC(i), k) ∈ P}
∪ {pj |1 → 1|pl,
xi,1 − xi,2 − pj |1 → 1|pl,
xi,1 − xi,2 + pj |1 → 1|pk,
2(xi,1 − pj)|1 → 1|xi,1 + 1|xi,2, for all instructions j : (DEC(i), k, l) ∈ P};

• V arin = {x1,i, . . . , xα,i | 1 ≤ i ≤ 2};

• V arout = {x1,1, . . . , xβ,1}.

Note that the threshold is equal to 1. The value of register i (1 ≤ i ≤ n) is encoded by
variables xi,1 and xi,2. The values of xi,1 and xi,2 are always equal. The input values r1, . . . , rα
are set as the initial values of variables x1,i, . . . , xα,i 1 ≤ i ≤ 2, respectively. Variables p0, . . . , pm
are used to indicate the instruction to be simulated. During the computation, the values of
p0, . . . , pm are equal to 1 or 0 (at most one of them is equal to 1 in each step, and this indicates
that the system starts to simulate the corresponding instruction of M).

The increment instruction j : (INC(i), k) is simulated by the program 3pj |1 → 1|xi,1 +
1|xi,2+1|pk in one step. When pj = 0, the program cannot be applied because the value of pj is
smaller than the threshold 1. When pj = 1, the program can be applied since the value of pj is
equal to the threshold. After the application of this program, each of the variables xi,1, xi,2, pk
obtains a portion 1, and variable pj is reset to zero. Variable pk = 1 indicates that the instruction
labeled k will be simulated at the next step, the increment of variables xi,1, xi,2 corresponds to
the increase of the number stored in register i by 1. So, the increment instruction j : (INC(i), k)
has been correctly simulated.

The decrement instruction j : (DEC(i), k, l) is simulated in one step by the following four
programs:

pj |1 → 1|pl, (2)

xi,1 − xi,2 − pj |1 → 1|pl, (3)

xi,1 − xi,2 + pj |1 → 1|pk, (4)

2(xi,1 − pj)|1 → 1|xi,1 + 1|xi,2. (5)

When a decrement instruction j : (DEC(i), k, l) starts to be simulated, which means that pj = 1,
there are the following two cases.

• pj = 1, xi,1 = xi,2 = 0. In this case, only program (2) satisfies the threshold condition.
After applying program (2), variable pj is set to zero, and variable pl receives a contribution
1, which indicates the next instruction to be simulated. Programs (3)–(5) cannot be applied
since variables xi,1 and xi,2 are zero (smaller than the threshold 1). Hence the values of xi,1
and xi,2 are not changed, and the computation continues with the simulation of instruction
l of register machine M .

• pj = 1, xi,1 = xi,2 ≥ 1. In this case, all the four programs satisfy the threshold condition,
thus all of them can be applied. Program (4) transfers the production value 1 to variable pk,
which indicates the next instruction k to be simulated. By using program (5), variables xi,1

298 Z. Zhang, L. Pan

and xi,2 are decreased; their values are first zeroed and each of them receives a contribution
of their former value minus one. The role of program (3) is to cancel the effect of program
(2). Program (2) transfers the value of pj to pl, thus pl gets a contribution of 1, which
is canceled by program (3) by sending a contribution of −1 to pl. Hence the values of
variables xi,1 and xi,2 are decremented by one and the next instruction to be simulated is
the one labeled with k.

After the simulation of any instruction of M , the values of both variables xi,1 and xi,2 are
equal to the contents of register i (1 ≤ i ≤ n), while only one of variables p0, . . . , pm is equal to
1, indicating the next instruction of M to be simulated. When M reaches the halt instruction,
the corresponding value of variable pm is equal to 1. Since no program contains the variable pm
in the production function, ΠM reaches a final configuration; the result of the computation is
the values of variables x1,1, . . . , xβ,1. 2

According to Proposition 2, for any recursively enumerable set N ⊆ Ps(α)RE of vectors
of non-negative integers there exists a deterministic register machine M with (α + 2) registers
accepting N . For this register machine M , following the proof in Theorem 4, we can construct
a numerical P system with a lower-threshold that accepts N . So, the following corollary holds.

Corollary 5. Ps(α)RE = NaccTlP
D
1 (poly1(3), all).

For numerical P systems with lower-thresholds working in the one-parallel mode, the following
similar results hold.

Theorem 6. Each partial recursive function f : Nα → Nβ (α, β > 0) can be computed by a one-
membrane numerical P system with a lower-threshold working in the one-parallel mode, having
linear production functions that use each at most five variables.

Proof: We proceed like in the proof of Theorem 4, with the difference that here we simulate both
deterministic and non-deterministic register machines. Let M = (n, P,m) be a non-deterministic
register machine with n = max{α, β}+2 registers, computing the function f . As usual, the input
values r1, . . . , rα are stored in the first α registers before the computation starts, with all the
other registers being empty. When the computation halts, the values f(r1, . . . , rα) will be found
in registers 1, . . . , β.

The numerical P system with a lower-threshold to simulate register machine M is constructed
as follows.

ΠM = (1, {0}, [0]0, 1, (V ar0, P r0, V ar0(0)), V arin, V arout),

where

• V ar0 = {pj,g, xi,g | 1 ≤ g ≤ 5, 1 ≤ i ≤ m, 0 ≤ j ≤ n};

• V ar0(0) is the vector of initial values of the variables, with:

– xi,g = ri, for all 1 ≤ i ≤ α, 1 ≤ g ≤ 5;

– xi,g = 0, for all 1 + α ≤ i ≤ n, 1 ≤ g ≤ 5;

– pj,g = 0, for all 0 ≤ j ≤ m, 1 ≤ g ≤ 5;

– p0,g = 1, for all 1 ≤ g ≤ 5;

Numerical P Systems with Thresholds 299

• Pr0 = {2
∑5

g=1 pj,g|1 →
∑5

g=1 1|xi,g +
∑5

g=1 1|pk,g,
2
∑5

g=1 pj,g|1 →
∑5

g=1 1|xi,g +
∑5

g=1 1|pl,g;
for all instructions j : (INC(i), k, l) ∈ P}

∪ {5(xi,1 − pj,1)|1 →
∑5

g=1 1|xi,g,
8(xi,2 − xi,3 + pj,2)|1 →

∑5
g=1 1|pk,g +

∑3
g=1 1|pj,g,

−5(xi,4 − xi,5 + pj,3)|1 →
∑5

g=1 1|pl,g,
5pj,4|1 →

∑5
g=1 1|pl,g,

−3pj,5|1 →
∑3

g=1 1|pj,g; for all instructions j : (DEC(i), k, l) ∈ P};

• V arin = {xi,g | 1 ≤ g ≤ 5, 1 ≤ i ≤ α};

• V arout = {x1,1, . . . , xβ,1}.

In order to ensure that at each step only one variable can appear in the production functions
of the applied programs, the value of register i (1 ≤ i ≤ n) is contained in five variables
xi,g1 ≤ g ≤ 5, and the system uses five variables pi,g, 1 ≤ g ≤ 5, to control the simulation
of the instruction with label i of register machine M (in the following, for brevity, we use xi,g
and pi,g to represent all the five variables for 1 ≤ g ≤ 5, respectively). During the computation,
variables xi,g are always equal to each other, and the same holds for variables pi,g. The input
values ri (1 ≤ i ≤ α) are introduced into the system as the initial values of variables xi,g
(1 ≤ i ≤ α), respectively. When the instruction i is simulated, all the five variables pi,g are equal
to 1, while all the others are zero.

The simulation of an increment instruction j : (INC(i), k, l) is done in one step by the
following two programs:

2

5∑
g=1

pj,g|1 →
5∑

g=1

1|xi,g +
5∑

g=1

1|pk,g, (6)

2

5∑
g=1

pj,g|1 →
5∑

g=1

1|xi,g +
5∑

g=1

1|pl,g. (7)

If pj,g = 0, then programs (6) and (7) cannot be executed since the values of variables pj,g = 0
are smaller than the thresholds 1. If pj,g = 1, then only one of programs (6) and (7) can be
applied because their production functions share the same variables (the system works in the
one-parallel mode). If program (6) (resp., program (7)) is applied, then variable xi,g is increased
by one, setting pk,g (resp., pl,g) to 1, thus the system starts to simulate instruction k (resp.,
instruction l), and resetting variables pj,g to zero. If M is deterministic, then the simulation
of the instruction j : (INC(i), k) is performed by using the program (6). In this case, no
competition occurs between the programs, and so the simulation is deterministic.

The simulation of a decrement instruction j : (DEC(i), k, l) is done in one step by the

300 Z. Zhang, L. Pan

following five programs:

5(xi,1 − pj,1)|1 →
5∑

g=1

1|xi,g, (8)

8(xi,2 − xi,3 + pj,2)|1 →
5∑

g=1

1|pk,g +
3∑

g=1

1|pj,g, (9)

−5(xi,4 − xi,5 + pj,3)|1 →
5∑

g=1

1|pl,g (10)

5pj,4|1 →
5∑

g=1

1|pl,g, (11)

−3pj,5|1 →
3∑

g=1

1|pj,g. (12)

If pj,g = 0, then programs (8)–(12) cannot be applied, because pj,g = 0 are smaller than the
threshold. So, when pj,g = 0, no undesirable simulation steps can appear.

If pj,g = 1, xi,g = 0, then the values of xi,g should remain unchanged, and the computation
should jump to the simulation of instruction l, which is realized by programs (11) and (12) in
one step. (Note that in this case programs (8) – (10) cannot be applied, for the values of xi,g
are smaller than the thresholds.) The effect of program (11) is to reset variables pj,4 to zero
and to give a contribution 1 to each of variables pl,g, whose values are 1 after the application of
this program, thus correctly simulating the passing to instruction l. At the same time, program
(12) is applied, the role of which is to set all the variables pj,g (g ̸= 4) to zero. Variable pj,5
appears in the production function, so its initial value is canceled, and it receives no contribution,
hence its final value is zero. For variables pj,1, pj,2 and pj,3, their initial values are 1 and receive
contribution −1, hence their final values are zero, which is also correct.

If pj,g = 1, xi,g ≥ 1, then the values of xi,g should be decremented and the computation
should proceed to the simulation of instruction k. In this case, all the five programs (8)–(12) can
be applied. Programs (8) and (9) decrement the values of xi,g and increment the values of pk,g
by 1. The other programs have auxiliary roles. Note that all the variables pj,g and xi,g appear
in the production functions of programs (8)–(12), so their values are first reset to zero, and their
final values will be the sum of all the contributions they receive. Variables xi,g only appear in the
repartition protocol of program (8), which gives a contribution of their initial value minus 1, thus
correctly decrementing their values by one. Variables pj,1, pj,2 and pj,3 receive a contribution
1 from program (9) and a contribution −1 from program (12), thus their values will be equal
to 0. Variables pj,4 and pj,5 do not appear in any repartition protocol of programs (8) – (12),
thus their final values are zero. The role of program (10) is to cancel the effect of program (11).
Program (11) sends a contribution 1, and simultaneously program (10) sends a contribution −1,
to each of variables pl,g, whose final values are hence equal to 0. Each of variables pj,g receives
a contribution 1, thus their final values are 1, which is also correct.

After the simulation of each instruction of M , all the variables xi,g are equal to the contents of
register i (1 ≤ i ≤ n), while the variables pj,g (0 ≤ j ≤ m) correctly indicate the next instruction
of M to be simulated. When the program counter of M reaches the value k, the corresponding
values of variables pk,g is equal to 1. When the program counter of M reaches the value m, the
corresponding values of variables pm,g are equal to 1. Since no program contains variables pm,g

in the production function, ΠM reaches a halting configuration; the result of the computation is
values of variables x1,1, . . . , xβ,1. 2

Numerical P Systems with Thresholds 301

According to Propositions 2 and 3, for any recursively enumerable set N ⊆ Ps(α)RE of
vectors of non-negative integers there exists a deterministic (or non-deterministic) register ma-
chine M with (α+2) registers accepting (generating, respectively) N . For this register machine
M , following the proof in Theorem 6, we can construct a deterministic (or non-deterministic)
numerical P system with a lower-threshold that accepts (or generates, respectively) N .

Corollary 7. Ps(α)RE = NgenTlP1(poly
1(5), one) = NaccTlP

D
1 (poly1(5), one).

In conclusion, we obtain the following characterizations of NRE.

Theorem 8. NRE = NaccTlP
D
1 (poly1(3), all) = NgenTlP1(poly

1(5), one) =
= NaccTlP

D
1 (poly1(5), one).

Proof: The first equation can be obtained according to Corollary 5, where α = 1. Similarly,
letting α = 1 in Corollary 7, we can obtain the last two equations. 2

5 The Universality of Numerical P Systems with Upper-thresholds

In this section we prove that the computational power of numerical P systems with upper-
thresholds (for short, UTNP systems) is equivalent with that of numerical P systems with lower-
thresholds (for short, LTNP systems).

Lemma 9. For any numerical P system with a lower-threshold Πl, there is a P system Πu with
an upper-threshold, with the same variables, such that the corresponding variables of Πl and Πu

have equal values but of opposite sign.

Proof: Let Πl be a numerical P system with a lower-threshold of the form considered in the
previous sections. We construct a numerical P system with an upper-threshold Πu in the following
way. Πu has the same membrane structure as Πl. In the same membrane, the two systems have
the same variables. The initial values of variables in Πu is the same as in Πl multiplied with −1.
Similarly, for the thresholds of the two systems (they are equal, but of opposite signs). For a
program

fl(x1, . . . , xi)|T → c1|v1 + · · ·+ cl|vl

in Πl, we introduce in Πu the program

fu(x1, . . . , xi)|−T → c1|v1 + · · ·+ cl|vl,

where fu(x1, . . . , xi) is constructed as follows:

• If the production function fl(x1, x2, . . . , xn) is an odd function, that is,

fl(−x1,−x2, . . . ,−xn) = −fl(x1, x2, . . . , xn),

then fu(x1, x2, . . . , xn) = fl(x1, x2, . . . , xn);

• If the production function fl(x1, x2, . . . , xn) is an even function, that is,

fl(−x1,−x2, . . . ,−xn) = fl(x1, x2, . . . , xn),

then fu(x1, x2, . . . , xn) = −fl(x1, x2, . . . , xn);

302 Z. Zhang, L. Pan

• If the production function fl(x1, x2, . . . , xn) is neither an even function nor an odd function,
then it can be expressed as the addition of an even function with an odd function, that is,

fl(x1, x2, . . . , xn) =
fl(x1, x2, . . . , xn) + fl(−x1,−x2, . . . ,−xn)

2

+
fl(x1, x2, . . . , xn)− fl(−x1,−x2, . . . ,−xn)

2
,

and then

fu(x1, x2, . . . , xn) = −
fl(x1, x2, . . . , xn) + fl(−x1,−x2, . . . ,−xn)

2

+
fl(x1, x2, . . . , xn)− fl(−x1,−x2, . . . ,−xn)

2
= −fl(−x1,−x2, . . . ,−xn).

Based on the previous construction of the UTNP system Πu, we can get that, if the two
systems are deterministic, working in the all-parallel mode, then at any step, the program in
Πl and its corresponding program in Πu can simultaneously be applied or cannot be applied,
and the two production functions have equal values but of opposite signs. Thus at any step the
variable in the two systems get equal contributions but of opposite signs; this is true also for the
initial values, hence always the values of variables are equal but of opposite signs. The systems
halt simultaneously.

In conclusion, no matter whether Πl,Πu work in computing mode or in generating mode,
this lemma holds true. 2

Corollary 10. Ps(α)RE = NaccTuP
D
1 (poly1(3), all).

Proof: According to Proposition 2, for any recursively enumerable set N ⊆ Ps(α)RE of vectors
of non-negative integers there exists a deterministic register machine M with (α + 2) registers
accepting N . For this register machine M , following the proof in Theorem 4, we can construct
a numerical P system with a lower-threshold ΠM that accepts N .

For ΠM , according to Lemma 9, we can construct an UTNP system Πu with “contrary"
configurations (equal values of variables, but of opposite signs). Now we add the programs

1 + pm − xi,1|−1 → 1|xi,1, 1 ≤ i ≤ β. (13)

to Πu thus obtaining a new UTNP system Π′
u. The initial value of pm is 0, hence programs (13)

cannot be applied. As long as pm = 0, there is no difference between the functioning of Π′
u and

Πu. When pm is equal to −1, Πu reaches a halt configuration, while Π′
u continues executing

program (13). The effect of programs (13) is transforming the variables xi,1 ≤ −1 to their
contrary. Thus the system Π′

u has the same output as ΠM . 2

In a similar way to the proof of Corollary 7, we can prove the following corollary.

Corollary 11. Ps(α)RE = NgenTuP1(poly
1(5), one) = NaccTuP

D
1 (poly1(5), one).

If we set α = 1 in Corollary 10 and Corollary 11, then we can get the following characteriza-
tions.

Theorem 12. NRE = NaccTuP
D
1 (poly1(3), all) = NgenTuP1(poly

1(5), one) =
= NaccTuP

D
1 (poly1(5), one).

Numerical P Systems with Thresholds 303

6 Conclusions and Discussions

In this work, we have introduced thresholds into numerical P systems, and the computational
power of such P systems has been investigated. Specifically, we proved that universality can be
obtained for such P systems with one membrane and linear production functions working both
in the all-parallel mode and in the one-parallel mode.

The rules of numerical P systems with thresholds constructed in Section 4 are applied in
the all-parallel mode and in the one-parallel mode, respectively. It remains open what the
computational power of numerical P systems with thresholds working in the sequential mode is.

In this work, the polynomial functions used in numerical P systems with the two kinds
of thresholds have at most 3 variables for all-parallel systems and 5 variables for one-parallel
systems. It is a natural question whether the number of variables can be decremented.

The thresholds are used in the sense of lower-bounds and upper-bounds. Other ways to use
the thresholds could be of interest, for example, applying a program only if the values of all (or
part of) the variables are strictly greater (or smaller) than the threshold.

Numerical P systems and enzymatic numerical P systems have already been used in robot
control [4, 10, 16, 17]. It remains to check whether numerical P systems with thresholds are also
useful for such applications.

Acknowledgements

This work was supported by National Natural Science Foundation of China (61320106005
and 61472154), Ph.D. Programs Foundation of Ministry of Education of China (2012014213008),
Natural Science Foundation of Hubei Province (2011CDA027), and the Innovation Scientists and
Technicians Troop Construction Projects of Henan Province (154200510012).

Bibliography

[1] Freund, R.; Oswald, M. (2002); GP Systems with Forbidding Context. Fundamenta Infor-
maticae 49(1-3), 81–102.

[2] Freund, R.; Păun, G. (2001); On the Number of Non-Terminal Symbols in Graph-Controlled,
Programmed and Matrix Grammars. In: Machines, Computations, and Universality, 3rd
Internat. Conf., MCU, Lecture Notes in Computer Science, vol. 2055, Springer, Berlin,
214–225.

[3] Ionescu, M.; Păun, G., Yokomori; T. (2006); Spiking Neural P Systems. Fundamenta Infor-
maticae 71(2-3), 279–308.

[4] Leporati, A.; Porreca, A.E.; Zandron, C.; Mauri, G. (2013); Improving Universality Results
on Parallel Enzymatic Numerical P Systems. Proc. 11th Brainstorming Week on Membrane
Computing, Sevilla, 4–8.

[5] Martín-Vide, C.; Pazos, J.; Păun, Gh.; Rodriguez-Paton, A. (2003); Tissue P Systems.
Theoretical Computer Science 296(2), 295–326.

[6] Minsky, M.L. (1967); Computation: Finite and Infinite Machines. Prentice-Hall, Inc., En-
glewood Cliffs, New Jersey.

[7] Păun, G. (2000); Computing with Membranes. Journal of Computer and System Sciences
61(1), 108–143.

304 Z. Zhang, L. Pan

[8] Păun, G. (2002); Membrane Computing–An Introduction. Springer-Verlag, Berlin.

[9] Păun, G. (2013); Some Open Problems about Numerical P Systems. Proc. 11th Brainstorm-
ing Week on Membrane Computing, Sevilla, 245–252.

[10] Păun, G.; Păun, R. (2006); Membrane Computing and Economics: Numerical P Systems.
Fundamenta Informaticae, 73(1), 213–227.

[11] Păun, G.;Rozenberg, G.; Salomaa A.(eds.)(2010); The Oxford Handbook of Membrane Com-
puting. Oxford University Press, New York.

[12] Pavel, A.B.; Arsene, O.; Buiu, C. (2010); Enzymatic Numerical P Systems–A New Class of
Membrane Computing Systems. In: IEEE Fifth International Conference on Bio- Inspired
Computing: Theories and Applications (BIC-TA), 1331–1336.

[13] Pavel, A.B.; Buiu, C. (2012); Using Enzymatic Numerical P Systems for Modeling Mobile
Robot Controllers. Natural Computing 11(3), 387–393.

[14] Pavel, A.B.; Vasile, C.I.; Dumitrache, I. (2012); Robot Localization Implemented with
Enzymatic Numerical P Systems. In: Biomimetic and Biohybrid Systems, Springer, 204–
215.

[15] Pavel, A.B.; Vasile, C.I.; Dumitrache, I. (2013); Membrane Computing in Robotics. In:
Beyond Artificial Intelligence, Springer, Berlin, 125–135.

[16] Vasile, C.I.; Pavel, A.B.; Dumitrache, I. (2013); Universality of Enzymatic Numerical P
Systems. International Journal of Computer Mathematics 90(4), 869–879.

[17] Vasile, C.I.; Pavel, A.B.; Dumitrache, I.; Păun, G. (2012); On the Power of Enzymatic
Numerical P Systems. Acta Informatica 49(6), 395–412.

[18] Wang, J.; Hoogeboom, H.J.; Pan, L.; Păun, G.; Pérez-Jiménez, M.J. (2010); Spiking Neural
P Systems with Weights. Neural Computation 22(10), 2615–2646.

