
International Journal of Computers, Communications & Control
Vol. I (2006), No. 1, pp. 41-46

An Exact Algorithm for Steiner Tree Problem on Graphs

Milan Stanojevíc, Mirko Vujoševíc

Abstract: The paper presents a new original algorithm for solving Steiner tree problem
on graph. The algorithm is simple and intended for solving problems with relatively low
dimensions. It is based on use of existing open source software for solving integer linear pro-
gramming problems. The algorithm is tested and shown very efficient for different randomly
generated problems on graphs of up to 50 nodes, up to 10 terminals and average node degree
7.
Keywords: Steiner tree problem on graph, branch and cut, algorithm, optimization

1 Introduction

The Steiner tree problem (STP) is met in telecommunication and energetic systems, VLSI technologies and in
other network planning tasks. The problem is to find a minimal length tree which connects all terminal nodes of
a given graph, and contains arbitrary number of other nodes. The problem is similar to the well known shortest
spanning tree problem (SSTP), but unlike that it doesn’t necessary contain all nodes of given graph. Also, a very
important difference is that STP is much harder problem than SSTP.

The usual formulation of STP is the following: a connected undirected graphG= (N,E), whereN = {1, . . . ,n}
is a set of nodes andE ⊆ {{i, j} | i ∈ N, j ∈ N, i < j} denotes a set of edges, is given. A positive value (length,
weight, etc.)ce is associated to every edgee∈ E. Also, a setT ⊂ N of so called terminal (Steiner) nodes is given.

Definition 1. Steiner tree forT in G is a subgraphSt= (N′,E′), N′⊆N, E′⊂E which satisfies one of the following
statements:

1. T ⊆ N′ andSt is a tree;

2. ∀s, t ∈ T in St exists exactly one path froms to t.

The length of Steiner tree is the sum of lengths of all edges which it consists of. The Steiner tree problem is to
find the shortest Steiner tree. This is aNP-hard problem and its decision problem variant belongs toNP-complete
problem class [6]. The problem is presented in details in surveys: [4], [5], [9] and [11]. In papers [2], [8] and [7]
the problem was solved to optimality using sophisticated branch and cut methods.

In this paper an original exact algorithm, generally based on branch and cut procedure, for solving Steiner
tree problems on graph is proposed. It uses code from an available open source project which develops software
for solving linear and integer linear programming problems. An intention was to formulate an algorithm which
can be implemented in relatively short time and which will be able to solve STP of “reasonable” dimensions in
“reasonable” time. To be more precise, the implementation of proposed algorithm lasted about 3-4 days. The
program could solve problems of dimensions which are larger of the most of real life problems in, at most, several
minutes.

In this paper, in the next section, a mathematical model of the Steiner tree problem and its explanation are given.
In Section 3, the algorithm and the process of implementation are explained in details. In Section 4 the experiments
are described and some conclusions about the algorithm behavior are made. In Section 5, the conclusion of the
whole paper is given.

2 Mathematical model

A Steiner tree can be represented by a vector of binary variablesx = (xe)|E|. Each element of the vector is
assigned to one edge from the setE. The value of a variablexe indicates whether the corresponding edgee is in
the Steiner tree (xe = 1) or not (xe = 0). A mathematical model of the STP on undirected graphs has the following

Copyright c© 2006 by CCC Publications

42 Milan Stanojevíc, Mirko Vujoševíc

form:

min ∑
e∈E

cexe

subject to
(i) ∑

e∈δ (M)
xe≥ 1 ∀ M ⊂ N,

M∩T 6= /0,
(N\M)∩T 6= /0

(ii) xe∈ {0,1} ∀ e∈ E

(1)

whereN, E andT are as in Definition 1,ce is a positive value associated to each edgee andδ (M) denotes a
graph cut defined by subset of nodesM ⊂ N, i.e. the set of edges with one end node inM and the second one in
complement setN\M, δ (M) = {{i, j} ∈ E | i ∈M, j ∈ N\M}.

The mathematical model (1) is linear and integer. Constraints(i) ensure that in every cut, for which terminal
nodes are on the both sides (M andN\M), at least one edge exists. In other words, they ensure that between each
two terminal nodes exists at least one path. A feasible solution of model (1) is not necessary a Steiner tree. But
the optimal solution will be a Steiner tree because any edge constructing a contour would violate the optimality
condition. So, although the formulation is rather comprehensive, it can be applied only for those problems where
the goal is to minimize the length of the Steiner tree.

A disadvantage of model (1) is that the number of constraints grows exponentially in the problem size. On the
other hand, in branch and cut methods, the relaxation of the formulation may give acceptable results.

3 Implementation

Two main challenges in solving the model (1) are: (i) the exponential number of constraints, and (ii) the
exponential time needed to solve the integer program even with smaller number of constraints. To overcome the
first challenge, the proposed algorithm uses a relaxation of model (1). The idea was inspired by the paper [7] and
partly published at [10]. Namely, because of a big number of constraints, solving a model which includes all the
constraints is very hard and in many cases impossible. On the other hand, in the most cases it is not necessary
to include all the constraints in order to obtain an optimal solution. Only the constraints which are active in the
optimal solution are really necessary. Of course, we cannot predict which of them will be active, but we can start
with some smaller number of constraints, giving priority to those which are “more likely” to be necessary to obtain
a feasible solution (Steiner tree). If we solve a model with smaller number of constraints and the solution is a
Steiner tree of the given graph, then this solution will be the optimal for the starting problem, i.e. by adding more
constraints we cannot improve the solution. Otherwise, the obtained solution will consist of two or more subtrees.
Then, we iteratively add those constraints for which we find they are violated and which would probably lead to
feasible solution until we finally obtain a Steiner tree.

The most common way to solve a binary linear programming problem is implementation of branch and bound
method in combination with simplex method. According to the one of main features of the algorithm we intended
to formulate – quick and easy implementation, development of simplex and branch and bound algorithms from a
scratch wouldn’t be appropriate. Although it would finally give better performance if they would be incorporated
in the essence of complete procedure, the development of these procedures would last very long. An alternative
was found among Open Source projects. The project used in this implementation waslp_solve.

Lp_solve [1] is an open source project that realize very robust procedures and techniques for solving linear
programming problems. Beside that, it implements the branch and bound method for solving binary, integer and
mixed integer linear problems. It has a lot of options by which it is possible to influence the branch and bound
procedure changing its strategies, so it is possible to significantly improve its performance [13]. Lp_solve can be
used as independent application when it can read problem files inlp andmpsformats, and as a set of functions,
when it can be incorporated into other programs and controlled from the host code.

The project itself doesn’t have any restrictions of the problems dimensions. Some successful applications on
mixed integer programming problems with several thousands variables were reported. The license of the project is
GLGPL (GNU Lesser General Public License) [12] and it allows free download, using, changing and redistribution
of the source code of lp_solve project.

The algorithm is formally formulated as follows:

An Exact Algorithm for Steiner Tree Problem on Graphs 43

Algorithm 1 Simplified branch and cut algorithm for STP

1. Formulation of initial integer linear mathematical model:

(a) Goal function formulation: one variable is introduced for each edge and corresponding edge length is
associated as a parameter to each variable.

(b) For each terminal node, one constraint of type(i) is formulated, so the terminal node is a single node on
one side of the cut and the rest of the nodes are on the other side, i.e.∑

e∈δ (M)
xe≥ 1∀M ∈ {{t} | t ∈ T}.

The number of constraints after Step 1 will be|T|.

2. Solve the current mathematical model.

3. Check if the obtained solution is a Steiner tree, i.e. if there is a path between all pairs of terminal nodes. If
so, the optimal solution was found in Step 2; the end of the procedure. Otherwise, next step.

4. If solution is not a Steiner tree, then it represents two or more unconnected subtrees. For every subtree add
one type(i) constraint defined by cutδ (M) where the nodes of that subtree belong to setM. Go to Step 2.

The proposed algorithm can be qualified as a simplified version of branch and cut method, i.e. a combination
of branch and bound and cutting planes. The steps of the algorithm will be illustrated by an example. Suppose, we
have to obtain the minimal Steiner tree for the given graph, illustrated in Figure 1, where four terminal nodes are
marked with bigger circles.

The mathematical model created in Step 1 and updated in Step 4 will have one column for every edge. The
constraints added in the first step are necessary to provide that every terminal is connected to, at least, one edge. In
the example, four constraints will be added in the first step – one for every terminal. They will ensure that at least
one edge is connected to each terminal. In Figure 2, the four cuts are marked as open curves surrounding each
terminal node, and the edges marked by dashed lines are candidates to be in the first solution.

Figure 1: Initial graph

Figure 2: First step

The possible solution after Step 2 could be like one in Figure 3. As mentioned above, if the obtained solution
is not a Steiner tree, it will consist of several subtrees. The number of subtrees generally can be between 2 and|T|.
For determining if the obtained solution is a Steiner tree (in Step 3), Dijkstra’s shortest path algorithm was used.

In Step 4 a new constraint for each subtree is added. In the example, three new constraints, corresponding
to three subtrees shown in Figure 3, are added. On each image of Figure 4, one cut (represented by the curve
surrounding the subtree) and edges (dashed lines) among which, at least one will be in the next solution are shown.

After the next optimization, a possible solution could be like the one shown in Figure 5. The solution satisfies
all added constraints and the graph structure is a Steiner tree. Without further checking, we can claim that it is an

44 Milan Stanojevíc, Mirko Vujoševíc

Figure 3: Possible solution after the first iteration

Figure 4: Three new constraints

optimal solution of the given Steiner tree problem.

Figure 5: Final – feasible and optimal solution

The main criteria for determining data structures were access speed and simplicity of implementation. The
amount of used memory was not considered because of relatively small graph dimensions of target instances. The
logical choice were static structures (vectors and matrices). The realized structures enabled fast data access and
mapping between graph structure (realized through neighborhood matrix) and vector of edges with all correspond-
ing attributes.

The algorithm was implemented in C language and it is compiled and tested on Linux operation system (with
gcc - GNU C Compiler) on PC with Pentiumr III processor on 600 MHz and 384 MB of RAM. The implemented
program supports so calledSTP format [15] of Steiner tree problems, and it is compatible with the library of
standard Steiner tree problems [14].

4 Experimental results

The developed program was tested on different problem instances. A characteristic of the Steiner tree problem
is that the complexity of a procedure for its solving depends on three attributes: number of nodes (n), number of
edges and number of terminal nodes (t). The largest dimensions of instances successfully solved by the program
were [n/t]: 20/10, 32/8 and 50/5, with the average node degree 7. The solving procedures lasted between 2 seconds
and 2 minutes for the most of the instances. These dimensions may look modest in comparison with those with
several thousands nodes which were successfully solved as it was reported in papers [2] and [7]. However, compar-
ing the procedure complexity, simplicity of implementation and the fact that in many real-life telecommunication
planning processes, even smaller size problems may appear, the proposed implementation could be very useful.

To get a more precise insight in the behavior of the algorithm, experiments were performed with instances
where some parameters were varied. In the following table, results (mean values and standard deviation) obtained
by experiments where every dimension was tested on 15 randomly generated instances are given. In the columns
named “No. of rows” the number of constraints needed to obtain an optimal solution (the optimization in the last
iteration) is given. The columns named “No. of iterations” represent a number of iterations of Algorithm 1 when

An Exact Algorithm for Steiner Tree Problem on Graphs 45

passing through Steps 2-4, i.e. the total number of solved binary subproblems (in Step 2). The columns “Time”
represent CPU time spent to solve the problem. The column “ANCAI” shows the average number of constraints
added per iteration. It’s obtained by formula:No.rows−t

No.iterations wheret represents the number of terminal nodes, i.e. the
number of constraints added in initial mathematical model in Step 1.

Table 1: The complexity analysis of the algorithm

Instance dimensions No. of rows No. of iterations Time [sec.] AN-
[n/t] x σ x σ x σ CAI

1 2 3 4 5 6 7 8

1 20/5 25 8.9 7.5 3.0 0.2 0.3 2.7
2 32/5 38 22.1 12.3 8.0 3.0 9.7 2.7
3 50/5 60 28.3 20.0 11.3 7.2 13.3 2.8
4 20/8 65 20.3 19.5 8.5 11.5 27.5 2.9
5 32/8 88 31.9 26.3 12.0 34.5 46.7 3.0
6 20/10 83 15.5 23.6 5.2 13.4 9.9 3.1

On the basis of data given in Table 1, some conclusions can be made. The fact that complexity of STP grows
with the number of nodes is obvious from the first three rows. Although the speed of the growth cannot be
determined exactly on the basis of so small sample, it is obviously nonlinear – probably exponential. The more
interesting conclusion is that the growth of complexity is faster by changing the number of terminal nodes than
the total number of nodes in graph. Comparing rows 1, 4 and 6, a kind of “explosion” of complexity can be seen:
when the number of terminals was increased two times, execution time was increased 67 times. Similar conclusion
can be made observing rows 2 and 5: addition of three terminals resulted in execution time increase of more than
11 times.

The most important analysis here concerns the number of constraints needed to get an optimal solution. Ac-
cording the Column 2, that growth is almost linear in problem size. We cannot be certain if it is linear, but it is
definitely not exponential. Finally, we can conclude that, although the number of constraints in model (1) grows
exponentially, the number of constraints necessary to obtain an optimal solution grows much slowlier. The number
of iterations grows even less. The parameter in Column 8 is also interesting. The average number of constraints
added in each iteration also represents the average number of subtrees obtained in each sub solution. It seems that
the relatively small values in Column 8 doesn’t depend much on the number of terminal nodes. The explanation
could be that the current solution of the solving procedure relatively quickly forms a structure which consists of
a few subtrees each containing several terminals. This may contradict to the previous statement that complexity
depends more on the number of terminals than on the total number of nodes, because, what influences the number
of iterations is the number of unconnected subtrees, and not the number of terminals. One possible explanation
is that the structure of subtrees changes, so subtrees contain different terminals in different iterations. It is also
important to have in mind that every iteration lasts more than the previous one because every mathematical model
has more rows (constraints) than the previous one.

Yet another interesting thing from Table 1 is relatively big dispersion (represented by standard deviation) of
data obtained by different randomly generated instances with same characteristics. This is a consequence of a
nature of the algorithm (which is nondeterministic polynomial). It is impossible to predict the number of iterations
necessary to obtain final solution. In the worst case it can be exponential.

5 Conclusion

The first impressions and experiment conclusions indicate that the proposed algorithm can be efficiently used
when there is a need for rapid development of an algorithm for solving smaller size Steiner tree problems. Al-
though the worst case number of constraints needed to obtain a final solution remains exponential, the algorithm
have shown a kind of “good behavior” – in all solved examples the number stayed relatively low. Although the ex-
ponential complexity of the branch and bound method (Step 2 of the algorithm) remains, instances with acceptable
dimensions can be solved in real time.

46 Milan Stanojevíc, Mirko Vujoševíc

The idea of successive adding violated constraints could be also applied to some other problems whose math-
ematical models have an exponential number of constraints. Concerning that, some new researches have been
planed, where the idea would be applied to the traveling salesman problem (TSP). Namely, the so called DFJ
formulation of TSP [3] also has exponential number of constraints, but it has shown a good behavior in relaxation
based algorithms.

References

[1] M. Berkelaar, K. Eikland, P. Notebaert, Lp_solve, Files and Discussion Group,
ftp://ftp.es.ele.tue.nl/pub/lp_solve, http://groups.yahoo.com/group/lp_solve/, 1994-2006.

[2] S. Chopra, E. Gorres, M. R. Rao, “Solving a Steiner tree problem on a graph using branch and cut”,ORSA
Journal on Computing, Vol. 4, pp. 320-335, 1992.

[3] G. B. Dantzig, D. R. Fulkerson, S. M. Johnson, “Solution of a large-scale traveling-salesman problem”,Oper-
ations Research, Vol. 2, pp. 393-410, 1954.

[4] F. K. Hwang, D. S. Richards, “Steiner tree problems”,Networks, Vol. 22, pp. 55-89, 1992.

[5] F. K. Hwang, D. S. Richards, P. Winter,The Steiner tree problem, North-Holland, Amsterdam, 1992.

[6] R. M. Karp, “Reducibility among combinatorial problems”, R. E. Miller, J. W. Thatcher (Ed.),Complexity of
Computer Computations, pp. 85-103, Plenum Press, New York, 1972.

[7] T. Koch, A. Martin, “Solving Steiner tree problems in graphs to optimality”,Networks, Vol. 32, pp. 207-232,
1998.

[8] A. Lucena, J.E. Beasley, “A branch and cut algorithm for the Steiner problem in graphs”,Networks, Vol. 31,
pp. 39-59, 1998.

[9] N. Maculan, “The Steiner tree problem in graphs”, Surveys in Combinatorial Optimization, S. Martello, G.
Laporte, M. Minoux, C. C. Ribeiro (Ed.),Annals of Discrete Mathematics, Vol. 31, pp. 185-212, 1987.

[10] M. Stanojevíc, M. Vujoševíc, “A new algorithm for solving Steiner tree problem on graph” (in Serbian),
12th Telecommunications Forum TELFOR 2004, Belgrade, http://www.telfor.org.yu/telfor2004/e-index.html
(http://www.telfor.org.yu/telfor2004/radovi/TM-2-4.pdf), 2004.

[11] P. Winter, “Steiner problem in networks: A survey”,Networks, Vol. 17, pp. 129-167, 1987.

[12] GNU Lesser General Public License, http://www.gnu.org/copyleft/lesser.html

[13] Lp_solve Reference Guide, http://www.geocities.com/lpsolve/

[14] SteinLib TestSets – The Library of Standard Steiner Problems, http://elib.zib.de/steinlib/testset.php

[15] STP – Description of the STP Data Format, http://elib.zib.de/steinlib/format.php

Milan Stanojevíc, Mirko Vujoševíc
University of Belgrade

Faculty of Organizational Sciences
Address: Jove Ilíca 154, Belgrade, Serbia and Montenegro

E-mail: {milans,mirkov}@fon.bg.ac.yu

