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Abstract: In order to capture the compartmentation and behaviour of membrane
systems for modelling of parallel computing, we introduce the descriptive dynamic
rewriting Descriptive Membrane Timed Petri Nets (DM-nets) that can at in run-time
modify their own structure by rewriting some of their descriptive expression compo-
nents. Furthermore, this descriptive approach facilitates the understanding of com-
plex models and their component-based construction as well as the application of
modern computer engineering concepts.
Keywords: Descriptive Petri nets, membrane systems, modelling, parallel comput-
ing.

1 Introduction

Recent technological achievements require advances beyond the existing computational models in
order to be used effectively. Pragmatic aspects of current and future computer systems will be modelled
so that realistic estimates of efficiency can be given for algorithms in these new settings.

Petri nets (PN) are very popular formalism for the analysis and representation of parallel and dis-
tributed computing in concurrent systems that has draw much attention to modelling and verification of
this type of systems [1].

P systems, also referred to as membrane systems, are a class of parallel and distributed computing
models [6]. The interest of relating P systems with the PN model of computation lead to several important
results on simulation and decidability issues. Some efforts have been made to simulate P systems with
Petri nets [2, 5, 7] to verifying the many useful behavioral properties such as reachability, boundedness,
liveness, terminating, etc.

In this paper we propose a new approach to express the components of continuous-time P systems
[6] throughout components of escriptive Petri Nets (PN) using descriptive expressions (DE) [3] for mod-
elling of parallel computing. The DE are used for analytical representation and compositional con-
struction of PN models. To model specific rules of P-systems within the framework of the descriptive
Rewriting Timed PN (RTN) [4] we introduce a new extensionsŰ the descriptive Membrane RTN, called
DM-nets, that can modify dynamically their own structures by rewriting rules some of their components.

2 Labeled Extended Petri Nets

In this section, we define a variant of PN called labeled extended PN. LetL be a set of labelsL =
LP]LT . Each placepi labeledl(pi) ∈ P a local state and transitiont j has action labeled asl(t j) ∈ LT .

A labeled extended PN is structure as aΓ =< P,T,Pre,Post,Test, Inh,G,Pri,Kp, l >, where:P is the
finite set of places andT is a finite set of transitions thatP∩T = /0. In the graphical representation, the
place is drawn as a circle and the transition is drawn as a black bar; ThePre, TestandInh : P×T×N|P|→
N+ respectively is a forward flow, test and inhibition functions and is a backward flow function in the
multi-sets ofP, where defined the set of arcsA and describes the marking-dependent cardinality of arcs
connecting transitions and places. The setA is partitioned into tree subsets:Ad, Ah, andAt . The subset
Ad contains the directed arcs which can be seen asAd: ((P×T)∪ (T×P))×N|P|→N+ and are drawn
as single arrows. The inhibitory arcsAh : (P×T)×N|P| → N+are drawn with a small circle at the
end. The test arcsAt : (P×T)×N|P|→ N+are directed from a place to a transition, and are drawn as
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dotted single arrows. It does not consume the content of the source place. The arc of net is drawn if
the cardinality is not identically zero and this is labeled next to the arc and by a default value being 1;
G : E×N|P|→ {true, f alse} is the guard function transitions. Fort ∈ T a guard functiong(t,M) that
will be evaluated in each marking, and if it evaluates totrue, the transitiont may be enabled, otherwise
t is disabled (the default value istrue); Pri : T →N+ defines the priority functions for the firing of each
transition that maps transitions onto natural numbers representing their priority level. The enabling of a
transition with higher priority disables all the lower priority transitions;Kp : P→ N+ is the capacity of
places, and by default being infinite value; Thel : T ∪P→ L, is a labeling function that assigns a label
to a transition and places. In this way that maps transition name into action names thatl(t j) = l(tk) = α
but t j 6= tk andl(pi) = l(pn) = β but pi 6= pn.

A marked labeled extended PN net is a pairN =< Γ,M0 >, whereΓ is a labeled PN structure and
M0 is the initial marking of the net.M : P→ N+ is the current marking of net which is described by
a symbolic vector-columnM = (mi pi),mi ≥ 0,∀pi ∈ P, where the(mi pi) is the numbermi of tokens in
placepi . TheM is the state of net that assigns to each place tokens, represented by black dots.

The details concerning on enabling and firing rules, and evolution for ofN =< Γ,M0 > can be found
in [3] as they require a great deal of space.

3 Descriptive expressions of Petri nets

Due to the space restrictions we will only give a brief overview to this topic and refer the reader to
[3, 4] and the references therein. In following for abuse of notation, labels and name of transitions/places
are the same. We use the concept of a basic descriptive element (bDE) for a basic PN (bPN) introduced
in [2] as following: bDE = |α j

t j
m0

i pi [W+
i ,W−

i ]|αk
tk . The translation of thisbPN is shown in figure 1a,

where respectively is input transition (action typeα j ) andtk = p•i is the output transition (action type
αk ) of place pi ∈ P with initial marking m0

i , and the flow type relation functionsW+
i = Pre(t j , pi)

andW−
i = Post(t j , pi), respectively which return the multiplicity of input and output arcs of the place

pi ∈ P. The derivative elements ofbDE are forp•i = /0,W−
i = 0 is |α j

t j
m0

i [Wi ] with final placepi of t j and
•pi = /0,W+

i = 0 is m0
i pi [Wi ]|αk

tk with entry placepi of tk. If the initial markingm0
i of place is a zero tokens

we can omitm0
i in bDE. By default, if the type of actionα is not mentioned this to match the name of

a transitiont. From abDE we can build more complex DE of PN components by using composition
operations. Also by default,ifW+

i = W−
i = 1, we presentbDE and it derivatives as following:|α j

t j
m0

i pi |αk
tk ,

|α j
t j

m0pi or m0
i pi |αk

tk .
A descriptive expression (DE) of a labeled PN is eitherbDE or a composition ofDE a N: DE ::=

bDE|DE ∗DE| ◦DE, where∗ represents any binary composition operation and◦ any unary operation.
Descriptive Compositional Operations.In the following by default the labels ofN are encoded in

the name of the transitions and places. The composition operations are reflected at the level of theDE
components ofN models by fusion of places, fusion of transitions with same type and same name (label)
or sharing of as subnets.

Place-Sequential Operation.This binary operation, denoted by the “ | “sequential operator, de-
termines the logic of a interaction between two local statespi (pre-condition) andpk (post-condition)
by t j action that are in precedence and succeeding (causality-consequence) relation relative of this ac-
tion. Sequential operator is thebasic mechanismto build DE of N models. This operation is an
associative, reflexiveand transitive property, but isnot commutativeoperation. The means the fact
DE1 = m0

i pi [Wi ]|α j
t j

m0
k pk[Wk] 6= m0

k pk[Wk]|α j
t j

m0
i pi [Wi ] that the specified conditions (local state) associ-

ated with place-symbolpi are fulfilled always happens before then the occurrence of the conditions
associated with place-symbolpk by means of the actiont j . Also, the PN modelling of theiteration
operation is obtained by the fusion of head (entry) place with the tail (final) place that are the same
name (closing operation) inDE which describes this net. The self-loop ofN2 net described by an:
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DE2 = m0
i pi [Wi ]|α j

t j
pi [Wi ] = m0

i p̃i [Wi ]|α j
t j

, it is the test operator "̃p", i.e. represent thetestarc. The trans-
lation ofDE2 in N2 is shows in figure 2b.

Inhibition Operation. This unary operation is represented by inhibitory operator "- " (place-symbol
with overbar) and itDE3 = m0

i p̄i [Wi ]|α j
t j

describe the inhibitor arc with a weightWi = Inh(pi , t j).
Synchronization Operation.This binary operation is represented by the "•" or " ∧” join operator

describe the rendez-vous synchronization (by transitiontt j ) of a two or more conditions represented
respectively by symbol-placepi ∈• t j , i = 1,n, i.e. it indicate that all preceding conditions of occurrence
actions must have been completed. This operation is a commutative, associative and reflexive.

Split Operation. This binary operation represented by the "♦" split operator and it describe the
causal relations between activityt jand its post-conditions: after completion of the preceding action oft j

concomitantly several other post-condition can take occurs in parallel ("message sending"). Property of
split operation is a commutative, associative and reflexive.

Competing Parallelism Operation. This compositional binary operation is represented by the "∨"
competing parallelism operator, and it can be applied over twoNA with DEA = A andNB with DEB = B
or internally into resultingNR with DER = R, between the places of a singleNR which the symbol-places
with the same name are fused, respectively. We can represent the resultingDER = A∨B as a set of
ordered pairs of places with the same name to be fused, with the first element belonging toA the second
to B. The fused places will inherit the arcs of the place inA andB . Also, this compositional binary
operation is acommutative, associativeandreflexiveproperty.

Precedence Relations between the Operations.We introduce the following precedence relation be-
tween the compositional operations in theDE: a) the evaluation of operations in DE are applied left-to-
right; b) an unary operation binds stronger than a binary one; c) the "• "operation is superior to"|" and "
♦", in turn, its are superior the "∨ " operation. Further details on definitions, enabling and firing rules,
and evolution for ofN can be found in [3] as they require a great deal of space.

4 Dynamic Rewriting Petri Nets

In this section we introduce the model ofdescriptive dynamic net rewritingPN system. LetXρY is
a binary relation. Thedomainof is theDom(ρ) = ρYand thecodomainof ρ is theCod(ρ) = Xρ. Let
A =< Pre,Post,Test, Inh > is a set of arcs belong to netΓ .

A descriptive dynamic rewritingPN system is a structureRN=< Γ,R,φ ,Gtr ,Gr ,M >,
where:=< P,T,Pre,Post,Test, Inh,G,Pri,Kp, l >; R= r1, ..., rk is a finite set of rewriting rules about the
runtime structural modification of net thatP∩T ∩R= /0. In the graphical representation, the rewriting
rule is drawn as a two embedded empty rectangle. We letE = T ∪R denote the set of events of the net;
φ : E→ T,R is a function indicate for every rewriting rule the type of event can occur;Gtr : R×N|P|→
{true, f alse} and Gr : R×N|P| → {true, f alse} is the transition rule guard functionassociated with
r ∈ R and the rewriting rule guard function defined for each rule ofr ∈ R , respectively. For∀r ∈ R, the
gtr ∈ Gtr andgr ∈ Grwill be evaluated in each marking and if its are evaluates totrue, the rewriting rule
r may beenabled, otherwise it is disabled. Default value ofgtr ∈ Gtr is true and forgr ∈ Gr is false.
Let RN=< RΓ,M > andRΓ =< Γ,R,φ ,Gtr ,Gr > described with the descriptive expressionDERΓ and
DERN, respectively. A dynamic rewriting structure modifying ruler ∈ Rof RN is a mapr : DEL ¤DEW,
where whosecodomainof the rewriting operator¤ is a fixed descriptive expressionDEL of a subnetRNL

of current netRN, whereRNL ⊆RN,with PL ⊆P, EL ⊆Eand set of arcsAL ⊆A and whosedomainof the
¤ is a descriptive expressionDEW of a newRNW subnet withPW ⊆P, EW ⊆E and set of arcsAW. The¤

rewriting operator represent binary operation which produce astructure changein theDERN and the net
RN by replacing (rewriting) of the fixed currentDEL of subnetRNL (DEL andRNL are dissolved) by the
newDEW of subnetRNW now belong to the new modified resultingDERN′ of netRN

′
= (RN\RNL)∪RNW

with P
′
= (P\PL)∪PW andE

′
= (E\EL)∪EW, whereA

′
= (P\PL)∪AW the meaning of\ (and∪) is



36 Emilian Guţuleac

operation to removing (adding)RNL from (RNWto) netRN. In this new netRN
′
, obtained by execution

(fires) of enabled rewriting ruler ∈ R , the places and events with the same attributes which belongRN
′

are fused, respectively. By default the rewriting rulesr : DEL ¤ /0 andr : /0¤DEW describe the rewriting
rule which fooling holdsRN

′
= (RN\RNL) andRN

′
= (RN∪RNW), respectively. A state of a netRN is

a pair (RΓ,M), whereRΓ is the configuration of net together with a current markingM. Also, the pair
(RΓ0,M0) with P0 ⊆ P, E0 ⊆ E and markingM0 is called the initial state of the net.

Enabling and Firing of Events. The enabling of events depends on the marking of all places. We
say that a transitiont j of eventej is enabled in current markingM if the following enabling condition
ec(t j ,M) is verified:

ec(t j ,M) = (∧∀pi∈•t j (mi ≥ Pre(pi , t j))∧ (∧∀pk∈◦t j (mk < Inh(pi , t j)))∧ (∧∀pl∈∗t j (ml ≥ Test(pl , t j)))∧
(∧∀pn∈t•j ((Kpn−mi)≥ Post(pn, t j))))∧g(t j ,M)).

Similarly, the rewriting ruler j ∈ R is enabled in current markingM if the following enabling condi-
tion ectr(r j ,M)is verified:

ectr(r j ,M)= (∧∀pi∈•r j (mi ≥Pre(pi , r j))∧(∧∀pk∈◦r j (mk < Inh(pi , r j)))∧(∧∀pl∈∗r j (ml ≥Test(pl , r j)))∧
(∧∀pn∈r•j ((Kpn−mi)≥ Post(pn, r j))))∧g(r j ,M)).

Let theT(M) andR(M) is respectively the set of enabled transitions and rewriting rule in current
markingM. Let theE(M) = T(M)]R(M), is the set of enabled events in a current markingM. The
eventej ∈ E(M) fire if no other eventek ∈ E(M) with higher priority has enabled. Hence, forej event
i f ((φ j = t j)∨ (φ j = r j)∧ (gtr(r j ,M) = f alse)) then(the firing of transitiont j ∈ T(M) or rewriting rule

r j ∈ R(M) change only the current marking:(RΓ,M)
ej→ (RΓ,M

′
)⇔ (RΓ = RΓ′

andM[ej > M
′
)). Also,

for ej eventi f ((φ j = r j)∧ (gr(r j ,M) = true) then(the eventej occur to firing of rewriting ruler j and it

occurrence change configuration and marking of current net:(RΓ,M)
r j→ (RΓ′

,M
′
), M[r j > M

′
).

The accessible state graph of a netRN=< Γ,M > is the labeled directed graph whose nodes are the
states and whose arcs which is labeled with events ofRN are of two kinds: a) firing of a enabled event
ej ∈ E(M): arcs from state(RΓ,M) to state(RΓ,M

′
) labeled with eventej then this event can fire in the

net configurationRΓ at markingM and leads to new markingM
′
: (RΓ,M)

ej→ (RΓ′
,M

′
)⇔ (RΓ = RΓ′

andM[ej > M
′
in RΓ); b) change configuration: arcs from state (RΓ,M) to state(RΓ′

,M
′
) labeled with

rewriting ruler j :(RΓL,ML)¤ (RΓW,MW) which represent the change configuration of currentRN net:

(RΓ,M)
ej→ (RΓ′

,M
′
) andM[r j > M

′
.

Figure 1: Translation of (a)DERΓ1in RN1 and (b)DERΓ2 in RN2

Let we consider theRN1 given by the following descriptive expression:DERΓ1 = p1|r1 p2∨DE
′
RΓ1,

DE
′
RΓ1 =(p2 ·p5)|t1 p3|t2 p4|t3(p1♦p5), M0 =(5p1,1p5), gr(r1,M)= (m1 = 3)&(m5 = 0) andr1 : DERΓ1¤

DERΓ2. Also, for r j is required to identify ifRNL belong theRΓ. Upon firing, the enabled events or
rewriting rule modify the current marking and/or and modify the structure and current marking of net
RN1 in RN2 given by: DERΓ2 = p1|t1 p2∨DE

′
RΓ2, DE

′
RΓ2 = (p2 · p6)|t2 p3(|t3 p4|t4 p5∨ |t5 p5|r2(p1♦p6)),

M = (1p1,3p2,1p3), gr(r2,M) = (m1 = 4)&(m5 = 1), r2 = r−1
1 : DERΓ2 ¤DERΓ1.

Figure 1 show the translation ofDERΓ1 in RN1 andDERΓ2 in RN2, respectively.
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5 Dynamic Rewriting Timed Petri Nets

Systems are described in timed PN (TPN) as interactions of components that can performed a set of
activities associated with events. An evente= (α,θ), whereα ∈ E is the type of the activity (action
name), andθ is the firing delay.

A descriptive dynamic rewriting TPN as aRTN=< RN,θ >, where:RN=< Γ,R,φ ,Gtr ,Gr ,M >,
Γ =< P,T,Pre,Post,Test, Inh,G,Pri,Kp, l > (see Definition 2 and 3) with set of eventsE which can be
partitioned into a setE0 of immediateevents and a setEτ of timedeventsE = E0]Eτ . The immediate
event is drawn as a thin bar and timed event is drawn as a black rectangle for transition or a two embedded
empty rectangle for rewriting rules, andPri(E0) > Pri(Eτ) ; θ : E×N|P|→R+ is the weight function that
maps events onto real numbersR+ (delays or weight speeds). Its can be marking dependent. The delays
θ(ek,M) = dk(M)defining the events firing parameters governing its duration for each timed events of
Eτ . If several timed events are enabled concurrentlyej ∈ E(M) for ej ∈ •pi = ∀ej ∈ E : Pre(pi ,ej) > 0 ,
either in competition or independently, we assume that a race race competition condition exists between
them. The evolution of the model will determine whether the other timed events have been aborted or
simply interrupted by the resulting state change. Theθ(ej ,M) = w j(M) is weight speeds of immediate
eventsej∈E0. If several enabled immediate events are scheduled to fire at the same time invanishing
markingM with the weight speeds, and the probability to enabled immediate eventej canfire is: qi(M) =
w(ej ,M)/∑el∈(E(M)&•pi) w(ej ,M) ,whereE(M) is the set of enabled events inM. An immediate events
ej ∈ T0 has a zero firing time.

6 P Systems and Descriptive Timed Membrane Petri Nets

Here we give a brief review of P systems and its encoding with DM-nets. The main components of P
systems are membrane structures consisting of membranes hierarchically embedded in the outermost skin
membrane. A full guide for P systems can be referred to [3]. In general, a basic evolution-communication
P system withactive membranes(of degreen≥ 0) is Π = (O,H,µ,Ω,(ρ,π)), where:O is the alphabets
of objects;H is a finite set of labels for membranes;µ is a membrane structure consisting ofn membranes
labeled with elementsh in H;Ω is the configuration, that is a mapping from membranes ofΠ(nodes in
µ) to multisets of objectsωk ∈ Ω,k = 1, , |Ω|, from O;ρ andπ is respectively the set off developmental
rulesρh andπhits priorities ,h = 0,1, ,n−1. Thus the can be of two forms of rules: a) theobject rules
(OR), i.e., evolving and communication rules concerning the objects; b) the membranes rules (MR), i.e.,
the rules about the structural modification of membranes.

Here we define DM-Nets for encoding of P systems mentioned above into descriptive dynamic rewrit-
ing TPN as aRTN. The basis for DM-Nets is a membraneRTNthat is DE net structure comprise: places;
transitions; weighed directed arcs from places to transitions and vice-versa; a capacity for each place;
weighed inhibitory and test arcs; priority and guard function of transitions.

The DM− netsof degreen≥ 0 is a constructDM = ∨n−1
h=0[hDEh]h , whereDEh is the descriptive

expression ofRTNh that represent the configuration of membrane[h ]h in a P systemΠ.
Consider the P systemΠ.The encoding ofΠ into RTNΠ is decomposed into two separate steps. First,

for every membrane[h ]h we associate: to each objectωi ∈Ω one placeph,i = [hm0
i pi ]h labeled asωi with

the initial markingm0
i , and to each ruleρh, j ∈ ρ one eventeh, j = [hej ]h labeled asρh, j that acts on the

this membrane. Second, for every membrane[h ]h we define theDEh of RTNh that it correspond to the
initial configuration of the P systemΠ as[hDEh]h.

Let u,v , andu′ ,v′ , is a multiset of objects. Theevolvingobject ruleρh′ , j : [h[h′u→ v]h′ ]h with
multiset of objectsu,v , which will be kept in membrane[h]h is encoded as[h[h′ pu|t j pv]h′ ]h . The antiport
rule ρh′ , j : [hu[h′v]h′ ]h → [hv

′
[h′u

′
]h′ ]h , that realize a synchronized wich objectc the exchange of objects,

is encoded as[h[h′ (pu · pv · p̃c)|t j (pu′♦pv′ )]h′ ]h. Also, the symport ruleρh′ ,k : [hu[h′ ]h′ ]h → [h[h′u
′
]h′ ]h that
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move objects from inside to outside a membrane, or vice-versa is encoded as[h[h′ (pu · p̃c)|tk pu′ ]h′ ]h.
Because a configuration mean both a membrane structure and the associated multisets, we need rules

for processing membranes and multisets of objects as:
MR= Change,Dissolve,Create,Divide,Merge,Separate,Move.
The above membrane rewriting rules (realized by the rewriting events inDE) are defined as follows:
Changerewriting rule[h[h′ (DEh′ ,Mh′ )]h′ ]h ¤ [h[h′ (DE

′
h′ ,M

′
h′ )]h′ ]h that in runtime the current structure

and the multisets of objects to membraneh, encoded by descriptive expressionDEh′ and markingMh′ is
changed in a new structureDE

′
h′ with new markingM

′
h′ ;

Dissolverewriting rule[h(DEh,Mh)[h′ (DEh′ ,Mh′ )]h′ ]h¤[h(DEh,M
′
h)]h that the objects and sub-membranes

of membraneh
′
now belong to its parent membraneh , the skin membrane cannot be dissolved;

Createrewriting rule [h(DEh,Mh)]h ¤ [h(DE
′
h,M

′
h)[h′ (DE

′′
h′ ,M

′′
h′ )]h′ ]h with Mh = M

′
h + M

′′
h′ that the

new membraneh
′

is created andM
′′
h′

are added into membraneh
′

, the rest remain in the parent mem-
braneh; Divide rewriting rule[h(DEh,Mh)]h¤ [h[h′ (DEh,Mh)]h′ [h′′ (DEh,Mh)]h′′ ]hthat the objects and sub-
membranes are reproduced and added into membraneh

′
and membraneh

′′
, respectively;

Mergerewriting rule that the objects of membraneh
′
andh

′′
are added to a new membraneh is:

[h[h′ (DE
′
h′
,Mh′ )]h′ [h′′ (DE

′′
h′′

,M
′′
h′′

)]h′′ ]h ¤ [h(DE
′
h′
∨DE

′′
h′′

,Mh′ +M
′′
h′′

)]h;

Separaterewriting rule is the counterpart ofMergeis done by a rewriting rule of the form¤[h(DE
′
h′ ∨

DE
′′
h′′

,Mh′ + M
′′
h′′

)]h ¤ [h[h′ (DE
′
h′
,Mh′ )]h′ [h′′ (DE

′′
h′′

,M
′′
h′′

)]h′′ ]h with the meaning that the content of mem-

braneh is split into two membranes, with labelsh
′
andh

′′
.

Moverewriting rule where a membraneh
′′

can be moved out or moved into a membraneh
′
as a whole

is: [h[h′ (DEh′ ,Mh′ )[h′′ (DE
′′
h′′ ,M

′′
h′′ )]h′′ ]h′ ]h ¤ [h[h′ (DEh′ ,Mh′ )]h′ [h′′ (DE

′′
h′′ ,M

′′
h′′ )]h′′ ]h or

[h[h′ (DEh′ ,Mh′ )]h′ [h′′ (DE
′′
h′′

,M
′′
h′′

)]h′′ ]h ¤ [h[h′ (DEh′ ,Mh′ )[h′′ (DE
′′
h′′

,M
′′
h′′

)]h′′ ]h′ ]h.
Thus, using theDM−Netsfacilitates a compact and flexible specification to visual simulate of P

systems with dynamic rewriting TPN nets that permit the verification of the its many useful behavioral
properties such as reachability, boundedness, liveness, terminating, etc., and the performance evaluation
of parallel computing models.

7 Summary and Conclusions

In this paper we have proposed an approach to the performance modeling of the behaviour of P-
systems through a class of Petri nets, called Descriptive Membrane Timed PN (DM-nets). Based upon
the introduction of a set of descriptive composition operation and rewriting rules attached with transitions
for the creation of dynamic rewriting TPN, the membrane structure can be successfully encoded as
a membrane descriptive rewriting timed Petri nets models which permit the description the behavioral
state based process run-time structure change of P systems. We are currently developing a software visual
simulator with a friendly interface for verifying and performance evaluation of descriptive rewriting TPN
models and DM-nets.
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Chişin̆au, Republic of Moldova
E-mail: egutuleac@mail.utm.md


