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Abstract: In this paper, an analytical approach to characterize discrete Tanaka
Sugeno Kang (TSK) fuzzy systems is presented. This characterization concerns the
choice of the adequate conjunctive operator between input variables of discrete TSK
fuzzy models, t-norm, and its impact on stability domain estimation. This new ap-
proach is based on stability conditions issued from vector norms corresponding to a
vector-Lyapunov function. In particular, second order discrete TSK models are con-
sidered and this work concludes that Zadeh’s t-norm, logic product min, gives the
largest estimation of stability domain.
Keywords: Discrete nonlinear systems, discrete TSK fuzzy model, t-norm, stability
domain, vector norm, arrow form matrix.

1 Introduction

Fuzzy control of systems presents a major interest in several applications including industrial ones.
However, closed loop system properties are not easily understood and the design of the fuzzy system is
generally based on intuitive approaches.

Different fuzzy control strategies exist. In particular, TSK fuzzy approach permits the description
and the control of a system by defining different models related via a rule base.

The stability of TSK systems has been one of the central issues and is subject of many works either
in the continuous case or in the discrete one. To do this, different approaches are considered mainly
based on Lyapunov functions [5, 10, 12]. In particular, the Linear Matrix Inequality (LMI) formulation
is used [11] and, according to the considered system, permits the stability problem resolution. In our
previous work [1], the used approach is led through the convergence of a regular vector norm [3]. The
vector norm approach, based on the comparison and overevaluating principle, has a major advantage that
it deals with a very large class of systems, since no restrictive assumption is made on the matrices of
state equations. So, in [1], the approach estimates the stability domain of continuous TSK fuzzy systems
and its dependence on the choice of the conjunctive operator between inputs.

In this way, many authors have presented and analyzed several of these operators defined by t-norms
and so said t-operators [4, 6, 7]. In particular, in [6], six t-norms are used to represent this connective
operator in the inverse pendulum control. In another work [9], are used the same t-norms to study their
impact on fuzzy control performances of a second order process by defining a performance criterion
based on error measurement of the closed loop system. However, then exist other operators to represent
this connective such as mean operators developed in [14].

Except [1], all these studies don’t treat the influence of the choice of the conjunctive operator be-
tween inputs on the stability conditions obtained and often onlyprod or min operators are used without
theoretical argumentation and just for simplification reasons.

Therefore, in this way the study will be considered and constitutes a generalization of [1] in the
discrete case seeing the soft implementation nature of this control strategy.

By exploiting conditions or hypothesis obtained from stability analysis of discrete TSK fuzzy systems
based on vector norms approach, the influence of the choice of t-norm is studied. Similarly to [1], only
second order TSK fuzzy models are considered for simplification reason.

In the next section, is presented the structure of discrete TSK fuzzy models. In section 3, several
definitions dealing with t-norm notion as well as its properties are given. In section 4, sufficient stability
conditions of these TSK systems based on vector norms approach are presented. Then, the study of the
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impact of the choice of t-norm on the proposed stability conditions will be considered in section 5. In
particular, second order TSK fuzzy models are considered. A DC motor is studied in section 6 as an
application example validating this study. Finally, some concluding remarks are pointed out.

2 TSK discrete models description

An r-order TSK discrete fuzzy model of ann-order nonlinear system to be controlled is given by a
rule base where theith rule is in the form:

Ri : IF x1 is Gi
1 AND x2 is Gi

2 AND· · ·AND xn is Gi
n

THEN

{
x(k+1) = Aix(k)+Biu(k)
y(k) = Cix(k)

i = 1,2, ..., r
(1)

whereGi
j , j=1,2,...,n, is theith fuzzy set of the state vectorx j .

The state vectorx ∈ ℜn, the control inputu ∈ ℜ and the matricesAi , Bi andCi are of appropriate
dimensions.

According to the Parallel Distributed Compensation (PDC) concept [13], the rule baseR′i of the fuzzy
controller stabilizing the former system is in the form:

R′i : IF x1 is Gi
1 AND x2 is Gi

2 AND· · ·AND xn is Gi
n

THEN u(k) =−Kix(k) i = 1,2, ..., r
(2)

with Ki = [k1
i ,k2

i ,...,kn
i ].

By substitutingu in the equation (1) above, it comes:

x(k+1) =
r

∑
i=1

r

∑
j=1

hih j (Ai−BiK j )x(k) (3)

with:

hi = wi/
r

∑
i=1

wi (4)

wi = T(Gi
1(x1), Gi

2(x2), ...,Gi
n(xn)) (5)

andT a t-norm.
When linear models of the system to be controlled are considered in the controllable form given by:

Ai =




0 1 · · · 0
...

... ...
...

0 · · · 0 1
−a1

i · · · −an−1
i −an

i


 andBi = B =




0
...
0
1


 (6)

relation (3) becomes:

x(k+1) =
r
∑

i=1

r
∑
j=1

hih j (Ai−BiK j )x(k)

=
r
∑

i=1

r
∑
j=1

hih j (Ai−BKj )x(k)

=
r
∑

i=1

r
∑
j=1

hih jAix(k)−
r
∑

i=1

r
∑
j=1

hih jBKjx(k)

=
r
∑

i=1
hi

r
∑
j=1

h jAix(k)−
r
∑
j=1

h j

r
∑

i=1
hiBKjx(k)

=
r
∑

i=1
hiAix(k)−

r
∑
j=1

h jBKjx(k)
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then finally:

x(k+1) =
r

∑
i=1

hi(Ai−BKi)x(k) (7)

3 T-norms

An important task to be performed in the design of TSK fuzzy systems is the choice of the conjunctive
operator materializing the connectiveANDbetween input variables in the rule base and so corresponding
to the intersection operation between fuzzy subsets relatively to different inputs.

Often, this operator is defined by a t-normT, whose definition and proprieties are presented as
follows.

Definition 1. A triangular norm (t-norm) is a functionT:[0,1]× [0,1]→ [0,1] verifying for everyu, v, w
andt of [0,1] :

i) T(u,v) = T(v,u) (commutativity)
ii) T(u,T(v,w)) = T(T(u,v),w) (associativity)
iii ) T(u,v)≤ T(w,t) si u≤ w etv≤ t (monotonicity)
iv) T(u,1) = u (oneidentity)

(8)

minoperator is the largest of all possible t-norms,T(u,v)≤min(u,v).
The intersection operation between fuzzy subsets is defined by a t-normT such as:

C = A∩B, then∀ x∈ XµC(x) = T(µA(x),µB(x)) (9)

The commonly encountered t-norms are given in table 1.

Table 1: Main t-norms

t-norm Name
min(u,v) Zadeh (logical operators)
uv Bandler (probabilistic operators)
max(u+v−1,0) Lukasiewicz (bounded operators)





u if v = 1
v if u = 1
0 otherwise

Weber (drastic operators)

Definition 2. A t-norm T is said archimedean if and only ifT(u,v) is continuous andT(u,u) < u for
eachu of ]0,1[. Moreover,T is said strict archimedean if and only ifT(u,v) < T(w, t) as soon asu < w
andv < t.

Any functionT:[0,1]× [0,1]→ [0,1] is an archimedean t-norm if and only if it exists a continuous
decreasing functionf : [0,1]→[0,+∞[ such thatf (1)=0 satisfying :

T(u,v) = f−1∗( f (u)+ f (v)) (10)

where f−1∗ is the pseudo-inverse off such asf−1∗ =
(

f−1(w) if w ∈ [0, f (0)[
0 if w ∈ [ f (0),+∞[

.
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Besides,T is strict if and only if f (0)= +∞.
f is said the additive generator of the t-normT.

The additive generators associated to main parameterized archimedean t-norms are presented in table
2 [14].

Table 2: Main parametrized t-norms and their additive generators

t-norm Generatorf (u) Parameter Name

uv
γ +(1− γ)(u+v−uv) 1

γ
Log

[
γ + (1− γ)u

u

]

Strict Archimedean

γ > 0 Hamacher

1
[(

1
u

)p +
(

1
v

)p−1
] 1

p

1

(1+u)
1
p

Strict Archimedean

p > 0 Schweizer & Sklar

1

1+
[
(1

u −1)λ + (1
v −1)λ

]1
λ

1

1+u
1
λ

Strict Archimedean

λ > 0 Dombi

1−min[1,((1−u)ω +(1−v)ω)
1
ω ]

(1−u)ω

Archimedean no strict
ω > 0

Yager

uv
max(u,v,α) No archimedean α ∈ [0,1] Dubois & Prade

4 New stability conditions

In [2], a change of base of (6) under the arrow form give:

x(k+1) =
r

∑
i=1

hiMix(k) (11)

whereMi is a matrix in the arrow form andP is the corresponding passage matrix:

Mi = P−1(Ai−BKi)P (12)
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Mi =




α1 0 · · · 0 β1

0
... ...

...
...

...
... ... 0

...
0 · · · 0 αn−1 βn−1

γ1
i · · · · · · γn−1

i γn
i




andP =




1 1 · · · 1 0
α1 α2 · · · αn−1 0

α2
1 α2

2 · · · α2
n−1

...
...

... · · · ... 0
αn−1

1 αn−1
2 · · · αn−1

n−1 1




(13)

with:

β j =
n−1
∏

q = 1
q 6= j

(α j −αq)−1 ∀ j = 1,2,...,n−1





γ j
i =−Pi(α j ) ∀ j = 1,2,...,n−1

Pi(λ ) = λ n +
n−1
∑

q=0
(aq+1

i +kq+1
i )λ q

γn
i =−(an

i +kn
i )−

n−1
∑
j=1

α j

(14)

The application of the classical Borne-Gentina criterion [3] leads to the following theorem.

Theorem 3. The discrete system described by (7) is asymptotically stable if there exist
0 < α j < 1, α j 6= αk, ∀ j 6= k, such as∀x∈ S:

i) 1−
∣∣α j

∣∣ > 0∀ j = 1,2, ...,n−1

ii) 1−
∣∣∣∣

r
∑

i=1
hiγn

i

∣∣∣∣−
n−1
∑
j=1

∣∣∣∣
r
∑

i=1
hiγ j

i β j

∣∣∣∣(1−
∣∣α j

∣∣ )−1 > 0
(15)

If S= ℜn, the stability is global.

Furthermore, if there existα j , j = 1,2, ...,n−1, such as :

i) 0 < α j < 1 j = 1,2, ...,n−1

ii)
r
∑

i=1
hiγn

i > 0

iii)
r
∑

i=1
hiγ j

i β j > 0 j = 1,2, ...,n−1

(16)

then the previous theorem can be simplified to the following corollary.

Corollary 4. The discrete system described by (7) is asymptotically stable if there exist0 < α j < 1,
α j 6= αk, ∀ j 6= k, such as∀x∈ S:

BPH < 0 (17)

where matricesB∈ℜn×n, P∈ℜn×r and H∈ℜr×1 are such as :

B =




β1 0 · · · 0

0
... ...

...
... · · · βn−1 0
0 · · · 0 −1




, P =




P1(α1) · · · Pr(α1)
... · · · ...

P1(αn−1) · · · Pr(αn−1)
P1(1) · · · Pr(1)


 andH =




h1
...

hr


 (18)

If S= ℜn, the stability is global.

According to the choice of the coefficientsα j , different conditions on the parametershi can be
obtained.
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5 T-norm influence on the proposed stability conditions

Let us consider the following classical fuzzy partition of a second order TSK model given by figure
1, with:

µi = G1
i (xi) i = 1,2, . . .,n (19)

and:

G1
i (xi) = min(1,max(0,

Li−xi

2Li
)) andG2

i (xi) = 1−G1
i (xi) (20)

-

µ

Figure 1: Fuzzy partition of state variables forr=2

Then, the whole fuzzy state space considered is the open subset
Ω =]−L1,L1[×]−L2,L2[×. . .×]−Ln,Ln[. So, the notion of global stability, whenever used in
the literature on fuzzy control, refers to local stability within a such domain [8].

For second order TSK model, i.e.r=2, thenh2 = 1−h1 and:

h1 =
w1

w1 +w2
=

T(µ1,µ2, ...,µn)
T(µ1,µ2,...,µn)+T(1−µ1,1−µ2,...,1−µn)

(21)

whereT is a t-norm.Propositions[1]

1. Let µ1, µ2, . . ., µn andµmax∈ [0,1] such asµ1 ≤ µmax, µ2 ≤ µmax, ..., andµn ≤ µmax.

Then, we obtain:
h1(µ1,µ2,...,µn)≤ h1(µmax,µmax,...,µmax) (22)

This proposition allows the determination of the domainSby its characteristic pointM in figure 2.

 

x
1

S

x
2

x
1max

0
1

1

0.5

0.5 max

x
2max

L
1

L
2

M

Ω

µ

1

2

µµ

Figure 2: Correspondence between the state space variables domain and the membership values domain
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2. Let us noteϕn(µ) = T(µ1,µ2, ...,µn) whenµ1=µ2 =. . .=µn=µ. ϕn is an increasing function on
[0,1] with ϕn(0) = 0 andϕn(1) = 1.

If the following conditions are satisfied :

i) ϕn is continuous
ii) ∀ µ > 0 , ϕn(µ) 6= 0

iii) ∀ µ1, µ2 ∈ ]0,1] with µ2 > µ1 , ϕn(µ2)
µ2

≥ ϕn(µ1)
µ1

(23)

then we have: {
h1(µ,µ,...,µ)≥ µ if µ ≥ 0.5
h1(µ,µ,...,µ)≤ µ if µ ≤ 0.5

(24)

This proposition means that for a givenµ, the smallest coefficienth1 is obtained with the t-norm
of Zadeh, the logic productmin; and so for the condition (22) we obtain the largest rectangular
form domainSwith this t-norm by takingµmax= c.

3. Conditions (23) of the proposition 2 are satisfied for each strict archimedean t-norm such asϕn(µ)
is derivable on ]0,1].

The proposed approach is illustrated by considering the following parameterized t-norms:

• the Hamacher one:T(µ1,µ2) = µ1µ2

γ+(1−γ)(µ1+µ2−µ1µ2)
for γ>0,

• the Yager one:T(µ1,µ2) = 1−min(1,((1−µ1)ω + (1−µ2)ω )
1
ω ) for ω>0,

• and the Dubois one:T(µ1,µ2) = µ1µ2

max(µ1,µ2,α) for α ∈ [0,1].

6 Application example

As an example, let consider in figure 3 the case of a DC motor with two linear modelsG1(p) and
G2(p) with δ 1=0.5 andδ 2=1.

 

)(

1
)(

i

i
pp

pG
δ+

=

u x

i=1,2)(0 pB

Figure 3: DC motor discrete models

B0(p) = 1−e−Tep

p is a zero order holder andTe=0.2s is the sampling time.
The discrete models of the DC motor are given by the following z-transmittances:

Gi(z) =
Ni(z)

(z−1)(z−ψi)
i = 1,2

with ψi = e−δiTe andNi(z) = δiTe+e−δi Te−1
δ 2

i
z+ 1−e−δi Te(1+δiTe)

δ 2
i

.

The two discrete DC linear models are considered in the following controllable form:

A1 =
[

0 1
−0.905 1.905

]
, A2 =

[
0 1

−0.819 1.819

]
and B =

[
0
1

]

We suppose that for particular constraints the choice ofKi is imposed such that the pole placement is
different for the two models by taking:
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K1 =
[ −0.7 1.2

]
andK2 =

[ −1.1 1.2
]

According to [3], the minimal overvaluing matrix relatively to the regular vector normp:

p(x) = [|x1| ,|x2|]T

is such as:

M(.) =
[ |α| 1
|γ1| |γ2|

]

with
γ1 = (0.486−0.086α)h1 +α2−0.619α−0.281
γ2 = 0.086h1 +0.619−α

Then, stability conditions deduced from the corollary are:

i) 0 < α < 1
ii) 0.086h1 +0.619−α > 0
iii ) (0.486−0.086α)h1 +α2−0.619α−0.281< 0
iv) 0.4h1 +0.1 > 0

When i) is satisfied, relations ii) and iv) are too. Then condition iii) leads to the following inequality

h1 <−α2−0.619α−0.281
0.486−0.086α

= c

When 0.5 < c < 1 , let S a neighborhood of the equilibrium point 0, included inΩ,
Ω =]−1,1[×]−1,1[, that verifies a such condition.S is an overvaluing domain of the fuzzy system
and an estimation of a symmetrical domainSwith respect to 0 imposes:

1−c < h1 < c.

Now, consider the study of the impact of the t-normT on the width of the neighborhoodSof the equi-
librium point 0, and then the determination of the largest stability domainD included inSverifying the
previous condition.

For α = 0.345, we obtain the maximal value of c,c=0.82. Thus, the overvaluing matrixM(·) is
constant:

M( · ) = M =
[

α 1
0 α

]

whitch is triangular and not irreductible. However, forc = 0.80, this irreductibility is skirted and for
α = 0.345, its comes the following overvaluing matrix

M =
[

0.345 1
0.01 0.343

]

whitch is irreductible, whose principal eigenvalue isλm = 0.446, the corresponding vector is:

um = [9.881]T

and the largest estimated stability domainD is such as

D =
{

x∈ S/pT(x)um = 9.88|x1|+ |x2| ≤ xmax
}

whereS is the square form domain andxmax is its width.Sdepends on the conditionh1 < c with c = 0.8
and so on the t-normT.
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Table 3:µmax andxmax corresponding to different t-norms

t-norm µmax xmax

Zadeh 0.80 0.60

Bandler 0.67 0.34

Hamacher (γ = 0) 0.75 0.50

Hamacher (γ = ∞) 0.58 0.16

Yager (ω = 2) 0.62 0.24

Dubois (α = 0.5) 0.70 0.40

Forn= 2, table 3 givesµmax, corresponding to the membership values domain, andxmax, correspond-
ing to the square form domainS, with respect to different t-norms.

The results obtained in table 3 shows that forn = 2, the greatest value ofµmax and so the largest
domainS is obtained specifically for the logic productmin.

Figure 4 presents an estimation of the largest stability domainD respectively for Zadeh and Bandler
t-norms.

 

x
1

x
2

1−1

1

-1

S

0.6−0.6

0.6

−0.6

0.06−0.06
D

Ω

 

x
1

x
2

1−1

1

-1

0.34

S

0.34−0.34

−0.34

0.03−0.03
D

Ω

a) Zadeh’s t-norm (min) b) Bandler’s t-norm (prod)

Figure 4: Stability domains obtained for two different t-norms

7 Conclusion

In this paper, we are interested in the stability study of discrete TSK fuzzy systems and the corre-
spondent domain estimation relatively to the used conjunctive operator, materialized by a t-norm. The
stability approach is based on vector norms. When second order TSK models are considered, a mathe-
matical study permits to conclude that Zadeh’s t-norm,minoperator, yields to the largest stability domain.
A DC motor with two discrete models is considered as an illustrative example and the estimated stability
domains for different t-norms confirm the former result.

However, it suits to remark that this study can be generalized forr-order TSK models, in the two
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cases continuous and discrete, withr greater than 2 and then we must distinguish between the two cases,
r odd or even. For two cases, the stability study can be leaded in different symmetrical rectangular zones
surrounding the equilibrium point, from the smallest to the largest.
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