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Fault Detection for Large Scale Systems Using Dynamic Principal
Components Analysis with Adaptation

Jesús Mina, Cristina Verde

Abstract: The Dynamic Principal Component Analysis is an adequate tool for the
monitoring of large scale systems based on the model of multivariate historical data
under the assumption of stationarity, however, false alarms occur for non-stationary
new observations during the monitoring phase. In order to reduce the false alarms
rate, this paper extends the DPCA based monitoring for non-stationary data of
linear dynamic systems, including an on-line means estimator to standardize new
observations according to the estimated means. The effectiveness of the proposed
methodology is evaluated for fault detection in a interconnected tanks system.
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1 Introduction

The on-line process monitoring for fault detection and isolation, FDI, is an important task to ensure
plant safety and product quality. One of the most consolidated FDI techniques of the last twenty years
is the analytical approach, which is based on explicit modeling, this is, models obtained from primary
physical principles, some of the analytical approaches are very well revised e.g. [1]. In the case of large
scale processes whose analytical models are not available or are difficult to obtain the FDI techniques
based on data-driven can help to overcome the problem of modeling, these techniques are based on
implicit modeling through multivariate statistical methods, some of these methods are resumed in [2].

Principal Component Analysis (PCA) is a multivariate statistical method which models the linear
correlation structure of a multivariate process from nominal historical data. PCA transforms a set of
multivariate observations to a lower dimension orthogonal space, retaining the most variability of the
original data [3]. Because of the simplification and the orthogonal property obtained with PCA, this has
been used with success for fault diagnosis issues as in [4] and [5].

It is important to note that like other multivariate statistical methods, PCA works under three
assumptions: the data follows a multivariate normal distribution; there exist no auto-correlation among
observations; and the variables are stationary, this is, the variables should keep constant mean and
standard deviation over time [6], [7]. In the case of data with non normal distribution it is possible
to carry out an appropriate transformation like square root or logarithm [8], in order to improve the
distribution of data. In the case of dynamic systems the auto-correlation in variables is taking into
account incorporating time lags of the time series during the modeling stage, this extension is called
dynamic principal component analysis, DPCA [9].

Since PCA and DPCA assume stationarity during modeling process, high rate of false alarms are
generated in the diagnosis stage if the test data are non-stationary. The non stationary problem has been
tackled with adaptive versions of PCA like in [10] and [11]. Although these algorithms adapt means,
covariance, and the PCA model, however, they can not be used for FDI tasks since the adaptation is
based in the variations of actual multivariate observations without distinguish the real causes of changes
in the variables.
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A non-stationary condition has many possible causes e.g. due to components aging, to faults, even
to normal changes in the operating point of the plant, this problem motivated the development of a fault
detection algorithm which is robust to changes in the operating point but sensitive to faults.

The proposal is based in the fact that the correlation structure between system signals is invariant
under nominal conditions, i.e. the relations between variables is the same despite the nominal changes
in the mean of the signals, this is a result of the affinity property of nominal signals in linear systems
[12]; therefore this work proposes: in the modeling stage, obtain a nominal DPCA model from nominal
historical data and identify a set of nominal inputs-output relations; in the diagnosis stage, keep the
nominal DPCA model but estimate actual means of input variables through exponentially weighted
moving average (EWMA) and estimate means of the output variables from input means through the
identified nominal inputs-output relations in order to carry out an appropriate standardization with
respect to the estimated means.

In the following sections the recursive means estimation process is summarized; next, the proposed
extension of DPCA based fault detection for changes in the operating point will be described. Finally
the methodology will be evaluated for faults detection in a three interconnected tanks system.

2 Backgrounds

2.1 Identification of the Inputs-Output Relations

It is proposed the recursive mean estimation of the input signals using EWMA and the outputs mean
estimation from inputs estimated means and through inputs-output nominal relations. Here is proposed
to identify the inputs-output relations with moving average models, MA(), for each one of the output
variables.

Lets consider the case of a MIMO linear system with r inputs and s outputs

y = Au (1)

u = un +η
y = yn +ν (2)

where η and ν are stationary white noise vectors added to the inputs and to the outputs, with zero mean
and variances σ2

η and σ2
ν , respectively.

Each one of the output variables can be expressed as a linear combination of the inputs with corre-
sponding time lag orders q1i,q2i, · · · ,qri

yni (t) =
q1i

∑
k=0

ak1iu1 (t− k)+ · · ·+
qri

∑
k=0

akriur (t− k) (3)

for i = 1, · · · ,s. The ak1i, · · · ,akri parameters are obtained through correlation analysis [13].

The identified input-output relations can be expressed in compact form as follows

ŷni (t) = âi
−→u i (t) (4)

where
âi =

[
â01i ... âq1i1i ... â0ri ... âqriri

]
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and
−→u i (t) =

[
u1 (t) · · · u1 (t−q1i) · · · ur (t) · · · ur (t−qri)

]T

The orders q ji of the model (4) is selected through a validation procedure taking the minimal value
of the sum of square error as a function of q ji.

Finally, from (4) for all of the outputs, the relations in matrix notation are given by

ŷn (t) = Â−→u (t) (5)

where

ŷn (t) =
[

ŷn1 (t) · · · ŷns (t)
]T
(s×1)

−→u (t) =
[

u1 (t) · · · u1 (t−L) · · · ur (t) · · · ur (t−L)
]T
(o×1)

and Â ∈ℜs×o is made up by the coefficients

âk ji =
{

âk ji , k ≤ q ji f or j = 1, ...,r
0 , q ji < k ≤ L i = 1, ...,s

L = Max{q11, ...,qr1, ...,q1s, ...,qrs} and o = r (L+1).

2.2 Means Recursive Estimation

Once the identification of MA models (5), for the system (1), are obtained, the recursive means
estimation is carried out in the following way.

The inputs mean recursive estimation can be computed as follows

µ̂−→u (t) = β µ̂−→u (t−1) +(1−β )−→u (t) (6)

with (0 < β ≤ 1) the forgetting factor of EWMA.

By the other side, the outputs means at time instant t are estimated from the input means given in (6)
and through (5) according with

µ̂y(t) = µ̂yn(t) = Âµ̂−→u (t) (7)

3 DPCA Based Fault Detection with Mean Parameter Estimation

The DPCA statistical tool is used to obtain an implicit model of a dynamic system from nominal
historical data, and use this implicit model to carry out fault detection tasks. The proposed algorithm
is illustrated in Fig. 1. The idea is not only to obtain a DPCA based statistical model but also identify
nominal inputs-output relations. So, estimating actual means of input variables through EWMA and
estimating means of the output variables from input means using the nominal inputs-output relations, an
appropriate standardization can be carried out.



188 Jesús Mina, Cristina Verde

Figure 1: Proposed fault detection algorithm. (a) Modeling stage carried out off-line, (b) Detection stage
carried out on-line

3.1 DPCA based Statistical Modeling

Let matrix X be a set of historical data made up of nt observations of r input variables and s output
variables, taken from a dynamic system working under nominal conditions and around an operating point

X =
[

u1 · · · ur y1 · · · ys
]
(nt×p) (8)

Each column in X represents an auto-correlated time series. In DPCA the serial correlation is included
constructing the named trajectory matrix applying w time lags on each time series, this is

−→
X =

[ −→
U 1 · · · −→

U r
−→
Y 1 · · · −→

Y s

]
(n×m)

(9)

where e.g.
−→
U 1 = [u1 (t) u1 (t−1) ... u1 (t−w)]; n = nt −w and m = p(w+1).

To avoid that some particular variables dominate the modeling process, it is convenient to carry out
a data standardization in matrix

−→
X in relation to its means and standard deviations. Thus, the means of−→

X are given by

µ̂−→X =
[

1
n
−→
X T 1

]T

=
[

µ̂−→U µ̂−→Y
]
(1×m) (10)

where 1 =[1,1, ...,1]T ∈ℜn. By the other side, the covariance matrix of
−→
X is given by

S =
1

n−1

(−→
X −1µ̂−→X

)T (−→
X −1µ̂−→X

)

from which the standard deviations can be obtained

σ̂−→X =
√

diag(S) =
[

σ̂−→U σ̂−→Y
]
(1×m) (11)

Thus, the data standardization is computed in the following way

X̃(i, j) =
−→
X (i, j)− µ̂−→X ( j)

σ̂−→X ( j)

for i = 1, . . . ,n and j = 1, . . . ,m.
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The uncorrelated principal components Z of dimension n× l are obtained through the following
transformation

Z = X̃Vt (12)

where the orthonormal transformation matrix Vt ∈ ℜm×l is composed of an appropriate selection of l
eigenvectors, called loading vectors, associated to the correlation matrix R = 1

n−1 X̃T X̃.

The data matrix X̃ can be expressed as

X̃ = ̂̃X+E = ZVT
t +E

where ̂̃X is the information captured by the l-principal components and E is the information in the
neglected m− l-components. So, for the detection purpose it is possible to use the Hotelling statistic,
T 2

Zi
from Z and/or the squared prediction error (SPE) from E. In this paper the Hotelling statistic is used

for fault detection because our interest is not the evaluation of these two statistical parameters but the
illustration of reduction of false alarms.

For each l-variate observation in Z the Hotelling univariate statistic T 2
Zi

is given by

T 2
Zi

= ZiS−1
Z ZT

i (13)

where SZ is the covariance matrix of Z. Finally, a threshold of normal condition from the probability den-
sity function of the set of parameters T 2

Zi
is calculated. [6] propose, among others, for a beta distribution

of the data set T 2
Zi

the threshold UCL as

UCL =
(n−1)2 ( l

n−l−1

)
F

(α
2 ; l,n− l−1

)

n
(
1+

( l
n−l−1

)
F

(α
2 ; l,n− l−1

)) (14)

where n and l are the dimensions of Z and α is a level of significance.

In a DPCA based modeling conventional approach the implicit model consist of the means and
standard deviations vectors (10), (11); the loading vectors in Vt ; the variance in the principal components
given by SZ; and the nominal threshold UCL. However, according with the proposal it is just considered
σ̂−→X ,Vt , SZ and UCL, since µ̂−→X will be estimated recursively. Additionally to the statistical modeling it
is carried out the identification of the inputs-output relations (5).

3.2 Fault Detection

DPCA detects a deviation of vector of actual observation−→x a from the nominal reference in terms of
its mean and its standard deviation. However, it is important to note that the modeling process is based
in the data set

−→
X which was obtained in a particular operating point of the system, so any change in the

nominal values of the signals is interpreted by DPCA as a fault, even when the process is healthy, this
misinterpretation is because of the time variant behavior of components in (10).

For linear systems, a change in the operating point means a new assignment in the input variables
with consequent variations in the output variables, this is, changes in the mean values of input and output
variables but no changes in their correlation structure. However, faults in the system produce changes
in the mean values and in the correlation structure between variables. Thus, here it is proposed during
the detection stage, the on line estimation of the statistical set (10) using nominal linear inputs-output
relations in order to adapt the standardization procedure.
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So, according to the proposed extension to DPCA based fault detection algorithm, the procedure
to evaluate and classify an actual observation −→x a ∈ ℜ1×m is summarized as follows. Be the actual
observation vector, with input and output variables, expressed in w time lags

−→x a =
[ −→u a1 · · · −→u ar

−→y a1 · · · −→y as
]

(15)

1. Estimate through (6) the means of the actual input data, µ̂−→u a
, and through (7) the nominal means

of the output variables, µ̂−→y ; next construct the vector

µ̂−→x a
=

[
µ̂−→u a

µ̂−→y
]
(1×m) (16)

2. Standardize the m terms in (15) using the means estimated given in (16) and the historical standard
deviations (11), this is

x̃a ( j) =
−→x a ( j)− µ̂−→x a

( j)
σ̂−→X ( j)

for j = 1, . . . ,m.

3. Transform the x̃a vector to the principal components subspace za through Vt

za = x̃aVt

4. Map za in the behaviour symptom T 2
za

through

T 2
za

= zaS−1
Z zT

a

5. If the resulting value deviates from the normal condition threshold UCL then a fault is present in
the system.

The key of the proposed methodology is in the continuous estimation of nominal means (16) using
the nominal linear inputs-output relations (5) in order to carry out an appropriate standardization.

In the following section the proposed fault detection algorithm is applied to detect faults in a three
interconnected tanks system considering simple relations for the means estimation.

4 Three Tanks System

The tanks system is composed of three cylindrical tanks, interconnected at the bottom by pipes and
with valves V1 in the link between tanks 2 and 3, and V2 in the link between tank 2 and the outside,
which aperture can be manipulated in order to emulate faults (e.g. pipe blockage), see Fig. 2. The tank
dimensions are: hT = 0.63m, AT = 0.01539m2. The system is feed by two inputs Q1 to the tank 1 and
Q2 to the tank 2 which are measured just as the output variables h1, h2 and h3 which correspond to tanks
levels. The mathematical model is the following

AT
dh1
dt = Q1 +Q31−Q10

AT
dh3
dt = Q23−Q31

AT
dh2
dt = Q2−Q23−Q20

;

Q10 = K1
√

h1
Q31 = K31ρ (h3−h1)
Q23 = K23ρ (h2−h3)
Q20 = K2

√
h2

(17)

where ρ (x) , sgn(x)
√
|x|.
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Q1 Q2
AT

h1 h3 h2

Q10 Q31 Q23 Q20

V1 V2

Figure 2: Three Tanks System

For the experiments the system was simulated under the following operation point:
Q0

1 = 4.75e− 5m3/s,
(

σ2
Q1

= 1.07e−10
)

; Q0
2 = 7.35e− 5m3/s,

(
σ2

Q2
= 1.05e−10

)
; h0

1 = 0.147m,
(
σ2

h1
= 1.96e−4

)
; h0

2 = 0.276m,
(
σ2

h2
= 4.81e−4

)
; h0

3 = 0.195m,
(

σ 2
h3

= 2.65e−4
)

; K1 = 1.816e−4,

K31 = 1.005e−4, K0
2 = 9.804e−5 and K0

23 = 7.804e−5.

Taking a set of 400 nominal observations measured every 10s it was obtained a DPCA based principal
components space of dimensions 301×68, so, for an α = 0.01 the resulting threshold is UCL = 95.886.
By the other side, the inputs-output relations identified were h1 = f (Q1,Q2,q1), h2 = f (Q1,Q2,q2) and
h3 = f (Q1,Q2,q3) with time lags of order q1 = 61, q2 = 61 and q3 = 60, respectively.

4.1 Detection Results

Using a forgetting factor of β = 0.95 for the recursive inputs means estimation (6) the fault detection
algorithm is evaluated considering the following cases:

1. Fault condition, blockage in the pipe which links tanks 2 and 3, the fault occurrence is at 8000s.

2. Normal operation of the system during 15000s, with changes in the means of U1 of +20% in
3000s < t < 6000s; −20% in 9000s < t < 12000s and in U2 of +20% in 4500s < t < 7500s;
−20% in 10500s < t < 13500s.

3. Change in the mean of U1 of +20% from 4000s and fault condition, blockage in the pipe between
tank 2 and 3, at 8000s.

The first test is to compare the performance of the DPCA based conventional fault detection and the
fault detection based in the proposed algorithm, under fault conditions. The monitoring results are given
in Fig. 3 which shows that both algorithms are able to detect the fault.

The second test evaluate the performance of both algorithms before changes in the operation point,
the monitoring results are given in Fig. 4, where it is cleared observed that the traditional DPCA-based
fault detection (Mon1) interprets the normal changes in the operation point as faults, however, the
proposed algorithm (Mon2) is robust before these changes, which reduces the false alarm rate.

Finally, the third test shows the capability of the proposed fault detection algorithm to distinguish
between normal variations in the operating point and the presence of faults, see Fig. 5.

5 Conclusions

Here, a modification to the DPCA algorithm for fault detection has been proposed, in which an ap-
propriate standardization with respect to on-line estimated statistical parameters is carried out if simple
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Figure 3: Fault condition: UCL - Threshold of normal condition; Mon1 - DPCA-based monitoring;
Mon2 - DPCA with adaptation
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Figure 4: Normal condition: UCL - Threshold of normal condition; Mon1 - DPCA-based monitoring;
Mon2 - DPCA with adaptation
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Figure 5: Normal and Fault condition: UCL - Threshold of normal condition; Mon1 - DPCA-based
monitoring; Mon2 - DPCA with adaptation
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healthy relations between variables can be obtained. This idea allows to deal with non-stationary signals
and to reduce significatively the rate of false alarms. It was shown through a series of tests the effective-
ness of the proposed fault detection algorithm to distinguish between normal changes in signals and the
variations due to the presence of faults.
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