
International Journal of Computers, Communications & Control
Vol. II (2007), No. 3, pp. 288-298

Optimization of Queries with Conjunction of Predicates

Nicoleta Livia Tudor

Abstract:
A method to optimize the access at the objects of a relational database is through
the optimization of the queries. This article presents an approach of the cost model
used in optimization of Select-Project-Join (SPJ) queries with conjunction of predi-
cates and proposes a join optimization algorithm named System RO-H (System Rank
Ordering Heuristic). The System RO-H algorithm for optimizing SPJ queries with
conjunction of predicates is a System R Dynamic Programming algorithm that ex-
tends optimal linear join subplans using a rank-ordering heuristic method as follows:
choosing a predicate in ascending order according to the h-metric, where the h-metric
depends on the selectivity and the cost per tuple of the predicate, using an expression
with heuristic constants.
The System Rank-Ordering Heuristic algorithm finds an optimal plan in the space
of linear left deep join trees. The System RO-H algorithm saves not a single plan,
but multiple optimal plans for every subset, one for each distinct such order, termed
interesting order. In order to build an optimal execution plan for a set S of i relations,
the optimal plan for each subset of S, consisting of i-1 relations is extended, using the
Lemma based on a h-metric for predicates. Optimal plans for subsets are stored and
reused. The optimization algorithm chooses a plan of least cost from the execution
space.
Keywords: optimal join subplans, cost function, query tree, join optimization algo-
rithm, h-metric, heuristic method

1 Introduction

This article proposes a Select-Project-Join query optimization algorithm, based on a heuristic func-
tion and suggests an approach of the cost model used in optimization of queries with conjunction of
predicates.

The paper is organized as follows:

• the section Prior work presents the improved alternatives of join optimization algorithms

• the section System Rank Ordering Heuristic Algorithm: Algorithm shows a different improved
System R Dynamic Programming algorithm based on utilization of a heuristic function and the
mathematical expression of the System Rank Ordering Heuristic algorithm

• the section Performance Evaluation presents the performance results and implementation details.

2 Prior Work

There are known many improved alternatives for optimizing queries with user defined predicates:
System R dynamic programming algorithm [1] illustrates the System R dynamic programming algo-

rithm that finds an optimal plan in the space of linear (left-deep) join trees [2]. The algorithm proceeds
by building optimal execution plans for increasingly larger subsets of the set of all relations in the join.
In order to build an optimal plan for a set S of i+1 relations, the optimal plan for each subset of S, consist-
ing of i relations is extended, and the cheapest of the extended plans is chosen. The System-R algorithm

Copyright © 2006-2007 by CCC Publications

Optimization of Queries with Conjunction of Predicates 289

saves not a single plan, but multiple optimal plans for every subset S, one for each distinct such order,
termed interesting order. The enumeration complexity of the algorithm is O(n2n−1), where R1, R2,. . . ,
Rn - relations.

The optimization algorithm for the space of bushy join trees is similar to the System-R algorithm,
except that the both inputs of a join operator can be an intermediate result. The number of optimal
subplans that must be stored for a join with n tables is 2n times the number of interesting orders. The
complexity is O(3n).

LDL algorithm was used in the LDL project at MCC [3] and subsequently at the Papyrus project
at HP Laboratories [4]. The LDL algorithm treats expensive predicates and relations alike and may
produce plans that are significantly worse than plans produced by the traditional optimization algorithm
where all selections are evaluated as early as possible. LDL algorithm cannot consider all plans in
the space of unconstrained linear execution trees. Hellerstein [5] shows that the LDL algorithm fails
to consider plans that evaluate expensive predicates on operands of a join prior to taking the join. In
order to optimize a query that consists of a join of n relations and k expensive predicates, the dynamic
programming algorithm will need to construct 2n+k optimal subplans.

The predicate migration algorithm improves on the LDL approach. Predicate migration approach,
which given a linear join tree, chooses a way of interleaving the join and the user-defined predicates
and is integrated with a System R style optimizer [5]. The algorithm places the user-defined predicates
in their optimal position relative to the join nodes. This approach has serious drawbacks that limit its
applicability [6]: it cannot guarantee an optimal plan because it uses a heuristic to estimate the rank of
join predicates that influence the choice of the plan.

The naive optimization algorithm for the space of unconstrained linear join trees behaves exactly like
the System R algorithm. The total number of stored plans per each distinct set of relations increases to 2k,
and the number of plans that need to be stored increases to 2k+n, where k is the number of user-defined
predicates. The complexity of this algorithm is exponential in the number of user-defined predicates and
in the number of relations in the query.

Optimization algorithms with complete rank-ordering [7] use the ability to order the execution of
predicates (called ranks or rank-order), that were applied prior to application of any other operators.
When the join methods are regular, the algorithm restricts the sequence in which the user-defined predi-
cates may be applied and reduces the complexity of enumeration from exponential to polynomial in the
number of user-defined predicates.

Optimization algorithm with pruning [7] compares and prunes plans that have different tags. The
"udp-pushdown" rule provides a sufficient condition for a predicate to be pushed down and it can be
used to pin the selections as soon as they are evaluable and helps avoid constructing plans where the
predicates are pulled up. The "udp-pullover" rule allows avoid generating alternative plans that push
down user-defined predicates and are suboptimal.

The conservative local heuristic algorithm can choose among plans that result from application of
a sequence of udp-pushdown and udp-pullover rules. The two plans picked by the conservative local
heuristic complement each other, and the heuristic can guard against the choice of a plan resulting from
greedily pushing down a predicate by the Pull-Rank algorithm. Thus, conservative local heuristic can
find optimal plans that Pull-Rank and other global heuristics fail to find due to their greedy approach, but
incurs only low computational overhead. As the following lemma states, the conservative local heuristic
algorithm produces an optimal plan in several important special cases [7].

In the next section, we present a different improved System R Dynamic Programming algorithm for
optimizing Select-Project-Join queries with conjunction of predicates, based on a heuristic method. We
implement the optimization algorithm by extending a System R style optimizer.

290 Nicoleta Livia Tudor

3 System Rank Ordering Heuristic Algorithm

In this section, we discuss an approache proposed for optimizing Select-Project-Join (SPJ) queries
with conjunction of predicates, using an algorithm System RO-H (System Rank Ordering Heuristic),
based on a heuristic method.

This algorithm extends optimal linear join subplans by choosing one predicate in ascending order
according to the h-metric (heuristic metric). H-metric determines minimum value between the rank of
the predicate and the ratio between selectivity minus 1 and cost per tuple.

To define the heuristic method for extending optimal linear join subplans, the following shall be
considered.

3.1 Regular Join Methods

Let us consider a class of SPJ queries on relations R1, R2, . . . , Rn, n ∈N* and an implementation of
the JOIN operator with conjunction of k predicates p1, . . ., pk, k∈N*.

Definition 1. A join method is called regular if the cost f(R1, R2) of joining two relations of sizes R1
and R2 depends on the sizes of the relations as follows: f (R1,R2) = a + bR1 + cR2 + dR1R2 where the
constants a, b, c, d are independent of the sizes of relations R1 and R2 [7].

If join operators follow the assumption of being regular joins, we can restrict enumeration to execu-
tion trees where all predicates are ordered by rank order heuristic.

3.2 Tags for Plan Representation

The following definition states formally how we associate a tag with a join tree [7]:

Definition 2. Let T be an unconstrained linear join tree that consists of a join among a set R of relations
and evaluation of a set U ⊆ S of user defined predicates where S is the set of all user defined predicates
in the query that can be evaluated over the subexpression of the query that consists of the join among
relations in R. Then, the tag associated with the tree T is the ordered set of predicates S−U, sorted by
rank order.

Figure 1 illustrates the execution plans that need to be considered when there are three relations R1,
R2, R3 and two selection predicates p1, p2 on R1. T and T’ are possible plans for R1 ./ R2 ./ R3 (each
with differing tags). The tags for T and T’ are < > and < p1> respectively.

Figure 1: The execution plans

3.3 Predicate Order in Optimal Plans

Let us consider a class of SPJ queries on relations R1, R2, . . . , Rn and an implementation of the
JOIN operator with conjunction of k predicates p1, . . ., pk. The problem of join ordering, addressed in
[8], [9], [10] and [11] utilizes the notion of a rank. The rank of a predicate pi, (i = 1, . . ., n), rank(pi) =
costpertuple(pi) / (1− selectivity(pi)). Chaudhuri and Shim refer to such execution trees as rank ordered
[7], as defined below:

Optimization of Queries with Conjunction of Predicates 291

Definition 3. The user-defined predicates in an unconstrained execution tree T are rank ordered if for
any two user-defined predicates p and p’ in T such that rank(p) < rank(p’), either p precedes p’ in the
tree T, or p is not evaluable in the tree T’ obtained by exchanging the positions of p and p’ in T.

Hellerstein et al. [12] consider expensive predicates, i.e., where the computation needed for evaluat-
ing whether the predicate is true or false dominates the overall cost [12]. In that context, it is shown that
predicates should be ranked in ascending order according to the metric (selectivity−1)/(cost pertuple).
Hellerstein et al. consider that the processor is perfect in its prediction, and it predicts the branch to the
next iteration of the query will be taken when the selectivity≤ 0.5, and will not be taken when selectivity
> 0.5.

In System Rank Ordering Heuristic algorithm, we refer to such execution trees as rank ordered,
according to the h-metric based on a heuristic method.

Definition 4. We call the h-metric (heuristic metric) of predicate pi, i = 1, . . . ,k having selectivity si, the
pair (

si,
c1 ∗ si + c2 ∗ (1− si)

cost pertuple(pi)

)
,

where c1 and c2 are heuristic constants, defined as follows: c1 = 0, c2 = -1, if 0.5 < si ≤ 1 and c2 = 0, c1
= -1, if 0 ≤ si ≤ 0.5.

Observations:

1. The utility of the h-metric is that we avoid generating a large number of intermediate-quality plans,
that improve on the currently computed best cost, without being optimal.

2. The heuristic method is not guaranteed to find the optimal solution, but we will demonstrate that
it finds good solutions.

Lemma 5. Let T be an unconstrained linear join tree that consists of a join among a set of n relations
and let si and s j be the selectivities for pi and p j respectively. The plan of the execution tree T cannot be
optimal if si ≥ s j and

c1 ∗ si + c2 ∗ (1− si)
cost pertuple(pi)

>
c1 ∗ s j + c2 ∗ (1− s j)

cost pertuple(p j)
,

where c1 and c2 are heuristic constants, defined as follows: c1 = 0, c2 = -1, if 0.5 < si ≤ 1 and c2 = 0,
c1 = -1, if 0 ≤ si ≤ 0.5.

Proof:
Let T be an unconstrained linear join tree that consists of a join among a set R of n relations, two

predicates p1, p2 with s1 ≥ s2 and let τ be a subexpression among execution tree T and let us refer to this
subexpression by τ(R), where the parameter R refers to the input relation of τ . Then:

τ(R) = τ(σp1(R1))

We can relate the execution trees in Figure 2 and the following correspondence holds:

T = σp2(τ)

The following parameters shall be defined:

• cost(p1) = cost of predicate τ per tuple

• |R1| = number of tuples in relation R1

292 Nicoleta Livia Tudor

Figure 2: τ: subexpression of execution tree T

• cost(τ) = cost of execution tree τ

• size(τ) = size of the output of execution tree τ

• si = selectivity of the predicate pi

• τ0 = τ (R1)

We now estimate the cost of the execution tree T as follows:

Cost(T) = cost(p1)|R1|+ cost(τ)+ cost(p2)size(τ),

where size(τ) = size(τ0) s1, then Cost(T) = cost(p1) |R1| + cost(τ) + cost(p2) size(τ0) s1
We can represent that the cost of an expression τ (R1) to be the sum of the following three compo-

nents:

1. Cost of evaluating predicates in the expression τ (R1): the sum of all such costs is

∑
i

costisizei(R1)

where costi is the cost of applying the predicate per tuple and sizei is the size of the relation
preceding the i-th application of a predicate.

2. Cost of evaluating join nodes in the expression τ (R1) that are ancestors of R1: the sum of all such
costs is

∑
j

cost(Join) j(R1)

3. Cost of evaluating all other operators that are not affected by the input relation R1: We denote this
cost by cost0. Then the cost of an expression τ (R1) can be computed as follows:

Cost(τ(R1)) = ∑
i

costisizei(R1)+∑
j

cost(Join) j(R1)+ cost0

Cost(T) = cost(p1) |R1|+∑
i

costisizei(R1)+∑
j

cost(Join) j(R1)+ cost0 + cost(p2)size(τ0)s1

If s1 ≥ s2 and cost(p1) = cost(p2), then

c1 ∗ s1 + c2 ∗ (1− s1)
cost pertuple(p1)

>
c1 ∗ s2 + c2 ∗ (1− s2)

cost pertuple(p2)

Optimization of Queries with Conjunction of Predicates 293

If we change p1 with p2, let T’ be a join tree that consists of a join among a set R of n relations, two
predicates p1, p2 with s1 ≥ s2, then

Cost(T ′) = cost(p2) |R1|+∑
i

costisizei(R1)+∑
j

cost(Join) j(R1)+ cost0 + cost(p1)size(τ0)s2

cost (T) > cost (T’) ⇒ the plan of the execution tree T cannot be optimal
A corollary of this lemma is that whenever two consecutive terms appear anywhere as conjunctions

in an optimal plan, then the one with lower selectivity must appear first if it has the same h-metric.
We use Lemma 5. in the System Rank-Ordering Heuristic algorithm below.

3.4 System Rank-Ordering Heuristic Algorithm

The System Rank-Ordering Heuristic algorithm finds an optimal plan in the space of linear (left-
deep) join trees. The cost function assigns a real number to any given plan in the execution space and
satisfies the principle of optimality [13]. An optimal plan for a set of relations must be an extension of
an optimal plan for some subset of the set. The optimization algorithm chooses a plan of least cost from
the execution space.

Definition 6. The System Rank-Ordering Heuristic algorithm for optimizing SPJ queries with conjunc-
tion of predicates is a System R Dynamic Programming algorithm that extends optimal linear join sub-
plans using a rank-ordering heuristic method as follows:

• choosing a predicate in ascending order according to the h-metric

• h-metric depends on the selectivity and the cost per tuple of the predicate, using an expression with
heuristic constants.

The System Rank-Ordering Heuristic algorithm saves not a single plan, but multiple optimal plans
for every subset, one for each distinct such order, termed interesting order [14]. In order to build an
optimal execution plan for a set S of i relations, the optimal plan for each subset of S, consisting of i - 1
relations is extended, using the Lemma 1 based on a h-metric for k predicates. Optimal plans for subsets
are stored in the OptPlan() array and are reused.

The System Rank-Ordering Heuristic algorithm is presented as follows:

Procedure System Rank-Ordering Heuristic
for i = 2 to n do

for all S from {R1, ..., Rn} with | S | = i
BestPlan = a plan with infinite cost
for all Rj, Sj, where S =

union ({Rj}, Sj),intersect({Rj},Sj) = null
for all P from OptPlan(Sj, t) with all different tag t

nr1 = |P|; nr2 = | Rj |
r1 = array with evaluable predicates on P
r2 = array with evaluable predicates on Rj
EuristicOrder(r1); EuristicOrder(r2)
// ascending ordering of predicates
// in the P, Rj according to the h-metric
for i = 0 to nr1
for j = 0 to nr2

p’ = ExtendJoinPlan(P, Rj, r1[i], r2[j])
if cost (p’) < cost(BestPlan[tag(p’)])

294 Nicoleta Livia Tudor

BestPlan[tag(p’)] = p’
endif

repeat
repeat

repeat
repeat
OptPlan(S) = BestPlan

repeat
repeat
finalPlan = a plan with infinite cost
for all plan P from OptPlan({R1, Ě, Rn})

if complete_cost(P) < cost(finalPlan)
finalPlan = completed plan of P

endif
repeat
return(finalPlan)
end

Function ExtendJoinPlan(P, Rj, r1[i], r2[j])
let r1[i] be a predicate applied to the plan P for Sj, t
r2[j] = a predicate for the relation Rj
p’ = the join plan between Sj, t and Rj,
for the subset of predicates (r1[i], r2[j])

extend OptPlan(Sj, t) with the plan p’
return

Procedure EuristicOrder(r1)
for i = 0 to nr1 - 1
for j = i + 1 to nr1
// si = selectivity for r1[i]
// cost (pi) = cost of the predicate r1[i]
if r1[i] > r1[j] and
(c1*si + c2*(1-si)) / cost(pi) > (c1*sj + c2*(1-sj)) / cost(pj)
change r1[i] with r1[j]

endif
repeat
repeat

return

Observation: Arrays r1 and r2 are useful for ascending ordering of the predicates according to the
h-metric.

When the join methods are regular, the System Rank-Ordering Heuristic algorithm enables us to
further restrict the sequence in which the predicates may be applied and reduces the complexity of enu-
meration in the number of predicates.

4 Performance Evaluation

In this section we present the results of performance evaluations on our implementation.

Optimization of Queries with Conjunction of Predicates 295

4.1 Experimental Framework

We used an experimental framework similar to that in [15] and [16] and [7]. We performed experi-
ments using an AMD Athlon(tm)XP 1600+ machine with 256 MB of RAM and running Windows XP
Professional version 2002.

The algorithms were run on queries consisting of equijoins. Relation cardinalities ranged from a
hundred to a thousand tuples, and the numbers of unique values in join columns varied from 25o/o to
100o/o of the corresponding relation cardinality. The selectivities of predicates were randomly chosen
from 10−4 to 1.0 and the cost per tuple of predicates was represented by the number of I/O accesses and
selected randomly from 1 to 1000.

We considered nested-loop, merge-scan, and simple and hybrid hash joins as join methods [17]. In
our experiments, only the cost for number of I/O accesses was accounted for. For our experiments, we
generated 3 join (join among four relations) queries, 5 join queries, and 7 join queries.

We performed two sets of experiments. In the first set, we varied the number of selection predicates
that apply on one relation. In the second set, we varied the distribution of the selection predicates among
multiple relations in the query, i.e., we kept the number of selection predicates fixed, but varied how
these predicates are distributed among the relations in a query.

4.2 Candidate Algorithms

For each query instance, we ran the following optimization algorithms:

• System R Dynamic Programming algorithm: The system R style optimization algorithm that eval-
uates all predicates as early as possible

• Optimization Algorithms With Complete Rank-Ordering: It compares plans that have the same tag
over the same set of relations

• Opt-rank-conservative algorithm: This algorithm uses conservative local heuristic with complete
rank-ordering

• System Rank-Ordering Heuristic algorithm that extends optimal linear join subplans using a rank-
ordering heuristic method.

4.3 Effect of Number of Predicates

In this set of experiments, the number of predicates was varied from 1 to 5 and the number of
join queries was varied from 3 to 7 (7 joins for 8 relations). The results presented for each data point
represents an average over 100 queries. These queries were generated by randomly choosing one relation
on which all the predicates apply and then randomly picking the cost and selectivities of the predicates
as well.

Table 1 shows the average number of enumerated plans for the algorithms: System R Dynamic
Programming, Optimization With Complete Rank-Ordering, Opt-rank-conservative and System Rank-
Ordering Heuristic algorithm.

Figures 3, 4 and 5 show a comparison of the performances (average number of enumerated plans)
for the 4 algorithms (System R Dynamic Programming, Optimization With Complete Rank-Ordering,
Opt-rank-conservative and System Rank-Ordering Heuristic algorithm).

The results obtained for queries with 3, 5 or 7 joins show a similar trend:

• the enumerations necessary in the System R Dynamic Programming algorithm is independent of
the number of predicates

296 Nicoleta Livia Tudor

Table 1. Worst-Case Estimates for Enumerated Plans (3 Join Query)

Figure 3: 3 Join Query

Figure 4: 5 Join Query

Figure 5: Performance on a varying number of predicates

Optimization of Queries with Conjunction of Predicates 297

• the Optimization Algorithms With Complete Rank-Ordering generated more plans than the Opt-
rank-conservative algorithm and System Rank-Ordering Heuristic algorithm

• the average number of enumerated plans for the System Rank-Ordering Heuristic algorithm is
approximately linear

• the gap in the number of enumerated plans between the Complete Rank-Ordering algorithm and
System Rank-Ordering Heuristic algorithm increases significantly as the number of predicates
grows

5 Conclusion

This article presents an approach of the cost model used in optimization of Select-Project-Join (SPJ)
queries with conjunction of predicates and proposes a join optimization algorithm named System RO-H
(System Rank Ordering Heuristic). The System RO-H algorithm is a System R Dynamic Programming
algorithm that extends optimal linear join subplans using a rank ordering heuristic method. The com-
parison of the performances of algorithms shows that our proposed System Rank-Ordering Heuristic
techniques are extremely effective and are guaranteed to generate optimal plans.

Bibliography

[1] S. Ganguly, W. Hasan, R. Krishnamurthy, Query optimization for parallel execution, In Proceedings
of the ACM SIGMOD International Conference on Management of Data SIGMOD, Ed. ACM Press,
New York, pp. 9-18, 1992.

[2] P. G. Selinger, M. M. Astrahan, R. A. Lorie, T. G. Price, Access path selection in a relational database
management system, In Proceedings of ACM SIGMOD International Conference on Management of
Data SIGMOD, Boston, MA, ACM Press, New York, pp. 23-34, 1979.

[3] D. Chimenti, R. Gamboa, R. Krishnamurthy, Towards an open architecture for LDL, In Proceedings
of the 15th International Conference on Very Large Data Bases, VLDB, Netherlands, Ed. Morgan
Kaufmann Publishers Inc., San Francisco, CA, pp. 195-203, 1989.

[4] S. Chaudhuri, K. Shim, Query optimization in the presence of foreign functions, In Proceedings of
the 19th International Conference on Very Large Data Bases, Ireland, Morgan Kaufmann Publishers
Inc., San Francisco, CA, pp. 526-541, 1993.

[5] J. M. Hellerstein, Practical predicate placement, In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Minneapolis, ACM Press, New York, pp. 325-335, 1994.

[6] J. M. Hellerstein, M. Stonebraker, Predicate migration: Optimizing queries with expensive pred-
icates, In Proceedings of the ACM SIGMOD International Conference on Management of Data,
Washington, ACM Press, New York, pp. 267-276, 1993.

[7] S. Chaudhuri, K. Shim, Optimization of Queries with User-Defined Predicates, ACM Transactions
on Database Systems, Vol. 24, No. 2, pp. 177-228, 1999.

[8] J. M. Hellerstein, J. M., M. Stonebraker, Predicate migration: Optimizing queries with expensive
predicates, In Proceedings of the ACM SIGMOD International Conference onManagement of Data,
Washington, DC, Eds. ACM Press, New York, NY, pp. 267-276, 1993.

298 Nicoleta Livia Tudor

[9] R. Krishnamurthy, H. Boral, C. Zaniolo, Optimization of nonrecursive queries, In Proceedings of
the 12th International Conference on Very Large Data Bases, Kyoto, Japan, VLDB Endowment,
Berkeley, CA, pp. 128-137, 1986.

[10] C. L. Monma, J. Sidney, Sequencing with series-parallel precedence constraints, Math. Oper. Res.
4, pp. 215-224, 1979.

[11] K. Y. Whang, R. Krishnamurthy, Query optimization in a memory-resident domain relational cal-
culus database system, ACM Trans. Database Syst. 15, pp. 67-95, 1990.

[12] J. M. Hellerstein, M. Stonebraker, Predicate migration: Optimizing queries with expensive predi-
cates, In Proceedings of the ACM SIGMOD Conference, 1993.

[13] T. H. Cormen, C. E. Leiserson, R. L. Rivest, Introduction to Algorithms, MIT Press, Cambridge,
MA, 1990.

[14] P. G. Selinger, M. M. Astrahan, R. A. Lorie, T. G. Price, Access path selection in a relational
database management system, In Proceedings of ACM SIGMOD International Conference on Man-
agement of Data, Boston, MA, ACM Press, New York, pp. 23-34, 1979.

[15] Y. E. Ioannidis, Y. C. Kang, Randomized algorithms for optimizing large join queries, In Proceed-
ings of the 1990 ACM SIGMOD International Conference on Management of Data, Ed. ACM Press,
New York, NY, pp. 312-321, 1990.

[16] S. Chaudhuri, K. Shim, Including group-by in query optimization, In Proceedings of the 20th In-
ternational Conference on Very Large Data Bases, VLDB Endowment, Berkeley, CA, 1994.

[17] L. D. Shapiro, Join processing in database systems with large main memories, ACM Trans.
Database Syst. 11, pp. 239-264, 1986.

Tudor Nicoleta Liviana
Petroleum-Gas University of Ploiesti

Department of Computer Science
39 Bucuresti Avenue, 100680, Ploiesti, Romania

E-mail: tudorl@upg-ploiesti.ro
Received: January 25, 2007

Revised: June 13, 2007

Nicoleta Liviana Tudor (born on July 15, 1968) graduated the
Faculty of Mathematics of the Bucharest University in 1992. She
has 15 years experience of teaching in the field of computer sci-
ence both in Petroleum-Gas University of Ploiesti, and in other
educational institutions of Romania. Since 2006 she is Lecturer
in the Computer Science Department at Petroleum-Gas Univer-
sity of Ploiesti, Romania. She is a PhD student at the Petroleum-
Gas University of Ploiesti, Control Engineering and Computers
Department. Her main research fields are middle-tier business
objects, XML web services, data processing, relational databases.
She has authored 2 books and more than 14 research papers in
the area of relational databases, data structure, and published in
international journals, and in the proceedings of prestigious inter-
national conferences.

