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Robust Predictive Control using a GOBF Model for MISO Systems
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Abstract: In this paper we develop a new method for robust predictive control for
MISO systems represented on the Generalized Orthonormal Basis Functions. Un-
known But Bounded Error approaches are used to update the uncertainty domain of
the resultant model coefficients. This method uses a worst case strategy solved by a
min-max optimization problem taking into account the constraints relative to param-
eter uncertainties and to measurement signals.
Keywords: Predictive Control, Robust, Generalized Orthonormal Basis Functions,
MISO, UBBE.

1 Introduction

There has been interest in the use of orthogonal basis functions for the purposes of Robust Model
Predictive Control (RMPC) [1, 2, 3, 4]. The most common model structure employing these bases is the
well known FIR one. However, the number of terms in the series expansion is high, and this may lead
to poor accuracy in the estimated uncertainty domain parameter as well as the control strategy. Another
approach is to use Laguerre or Kautz models that are more suitable to represent systems having near or
oscillating dynamics [5, 6]. Moreover, using the popular ARMAX model structure [7] involves a small
number of parameters but the criterion to be minimized is not convex which may complicate the opti-
mization problem. This paper is a contribution overlapping these methods by developing a new RMPC
algorithm for a MISO system represented on the Generalized Orthonormal Basis Functions (GOBF)
[8, 9]. However, the main features of using GOBF model in RMPC methods is that the common FIR,
Laguerre and Kautz model structures are special cases of this complete construction [10, 11, 12], it is not
sensitive to sampling interval choice, it doesn’t requires a prior knowledge of the system delay and it op-
erates on a small number of parameters. Furthermore, the criterion is convex on the uncertainty domain
of the GOBF model coefficients. The uncertainty domain is determined with Unknown But Bounded
Error approaches (UBBE) that updates polytopes, orthotopes, parallelotopes, ellipsoids or limited com-
plexity polytopes [13, 14, 15]. The optimal poles of these basis functions are estimated using a new
technique of poles estimation [16, 17].

The paper is organized as follows: In section 2 we present the state space model for the MISO system
represented on the GOBF. The predictor output is expressed in section 3. In section 4, robust predictive
control method is detailed and the main results are developed. Simulation examples are in section 5 and
finally, some conclusions are given in section 6.

2 State-Space Model

This paper considers a MISO system having m input sequences {u1(k),u2(k), · · · ,um(k)} and an
output sequence {y(k)} that are related according to:

y(k) =
m

∑
j=1

G j(q−1)u j(k)+ e(k) (1)

where q−1 is the backward shift (q−1u j(k) = u j(k− 1) ).
{

G j(q−1)
}

describe the unknown system
dynamics (assumed stable) and e(k) is the model uncertainty.
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The discrete time state-space model for a MISO system represented on the GOBF is defined by:
{

x(k +1) = Ax(k)+Bu(k)
ŷ(k) = θ T x(k)

(2)

with:
u(k)∈ℜm and ŷ(k) are the input signal vector and the model output respectively. x(k) is an N dimensional

state vector of elements
{

x j
n(k)

} j=1,2,··· ,m

n=0,1,··· ,N j
defined by:

x j
n(k) = Z−1

{
B j

n(z,ξ j)
}

u j(k) (3)

where Z−1 is the inverse transform of z. N j and ξ j are the truncating order and the poles vector respec-

tively for the j-network of the GOBF. N =
m
∑
j=1

(N j +1) is the number of the GOBF model parameter for

the MISO system and
{

B
j
n(z,ξ j)

} j=1,2,··· ,m

n=0,1,··· ,N j
is the GOBF expression given by:

B j
n(z) =

√
1−

∣∣∣ξ j
n

∣∣∣
2

z−ξ j
n

n−1

∏
k=0

(
1− ξ̄ j

k z

z−ξ j
k

)
(4)

where ξ j
k and its conjugate ξ̄ j

k are the poles for the k-filter of the GOBF.
θ ∈ ℜN is the parameter vector. A and B are (N×N) and (N×m) dimensional matrices respectively
defined by:

A = diag(A j) j=1,2,··· ,m , B = diag(B j) j=1,2,··· ,m (5)

where the (1 + N j)× (1 + N j) dimensional matrix A j and the (1 + N j) dimensional vector B j are given
by:

A j(a,b) =





ξ j
a−1 if a = b,

Fj(a,b) if aÂ b,

0 if a≺ b.

(6)

Fj(a,b) = (−1)a+b+1α j
a−1(1−ξ j

b−1ξ̄ j
b−1)

a−1

∏
`=b+1

α j
`−1ξ̄ j

`−1 (7)

B j(b) = (−1)b+1α j
b−1

b−1

∏̀
=1

α j
`−1ξ̄ j

`−1 (b = 1, · · · ,N j +1) (8)

And we assume:

α j
` =

√
1−

∣∣∣ξ j
`

∣∣∣
2

√
1−

∣∣∣ξ j
`−1

∣∣∣
2
, α j

0 =

√
1−

∣∣∣ξ j
0

∣∣∣
2

(9)

3 Step-Ahead Predictor

Equation system (2) can be written in incremental form as:

δx(k +1) = Aδx(k)+Bδu(k) (10)

ŷ(k) = ŷ(k−1)+θ T δx(k) (11)
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where:
δu(k) = u(k)−u(k−1), δx(k) = x(k)− x(k−1) (12)

When the error on the GOBF model is unknown but bounded, the Fourier coefficients are defined by
uncertainty intervals. Equation (11) can be then rewritten as:

ŷ(k) = ŷ(k−1)+θ T (ε)δx(k) (13)

where ε ∈ Ω is the vector of parameter uncertainties and Ω the parameter uncertainty domain. From
(13), the p-step ahead predictor can be written as:

ŷ(k + p/k) = ŷ(k + p−1/k)+θ T (ε)δx(k + p); p≥ 1 (14)

Using (10) and by successive substitutions we can write:

δx(k + p) = Apδx(k)+
p

∑
q=1

Ap−qBδu(k + p−1) (15)

Thus, by successive substitution of (15) into (14) we finally have:

ŷ(k + p/k) = ŷ(k)+θ T (ε) [Kp− IN ]δx(k)+θ T (ε)
p
∑

q=1
Kp−qBδu(k +q−1) (16)

where IN is the identity matrix and Kp is an (N×N) dimensional matrix defined by:

Kp =





p
∑

q=0
Aq for p≥ 0

0 for p≺ 0
(17)

The p-step ahead predictor can be written as a sum of two components: the free part and the forced part:

ŷ(k + p/k) = ŷl(k + p/k)+ ŷ f (k + p/k) (18)

with:
ŷl(k + p/k) = ŷ(k)+θ T (ε) [Kp− IN ]δx(k) (19)

ŷ f (k + p/k) = θ T (ε)
p

∑
q=1

Kp−qBδu(k +q−1) (20)

We note by h1,h2 and hu (hu ≺ h2) the output prediction horizons and the control horizon successively.
We assume that h1 = 1. On the prediction horizon [k +1,k +h2], (18) can be written in matrix form as:

Ŷ (k,ε) = Ŷf (k,ε)+ Ŷl(k,ε) (21)

where Ŷ (k,ε) is the predictor vector of dimension h2 defined by:

Ŷ (k,ε) =




ŷ(k +1/k,ε)
...

ŷ(k +h2/k,ε)


 (22)

The vectors Ŷl(k) and Ŷf (k) can be computed using (19) and (20) respectively for (p = 1,2, · · · ,h2).
Thus, we can write:

Ŷf (k,ε) = G(ε)δU(k) (23)
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with:
δU(k) is the control increment vector of dimension (mhu) defined by:

δU(k) =




δu(k)
δu(k +1)

...
δu(k +hu−1)


 (24)

where δu(k + p) represent the control increment vector defined by:

δu(k + p) = u(k + p)−u(k + p−1) ∀ p ∈ [0,hu−1] (25)

u(k + p) =
p

∑
q=0

δu(k + p−q)+u(k−1) (26)

G(ε) is an h2× (mhu) dimensional matrix that represents the impulse response coefficients and defined
by:

G(ε) =




G1(ε) 0 · · · 0

G2(ε) G1(ε) · · · ...
...

...
. . .

...
Ghu(ε) · · · · · · G1(ε)

...
...

. . .
...

Gh2(ε) · · · · · · Gh2−hu+1(ε)




(27)

with GT
p (ε) is a vector of dimension m given by:

Gp(ε) = θ T (ε)Kp−1B =
p

∑
q=1

θ T (ε)Aq−1B (p = 1,2, · · · ,h2) (28)

4 Robust Predictive Control Algorithm

4.1 Constraints

The constraints are resulting from uncertainties on the GOBF model coefficients and bounds on
control signals and control increments over the control horizon hu.

umin ≤ u(k + p)≤ umax ∀ p ∈ [0,hu−1] (29)

δumin ≤ δu(k + p)≤ δumax ∀ p ∈ [0,hu−1] (30)

where:

umax =




u1max
...

ummax


 , umin =




u1min
...

ummin


 (31)

δumax =




δu1max
...

δummax


 , δumin =




δu1min
...

δummin


 (32)

Using (26), (29) and (30) we define the set δΨ of constraints on control signals as follows:

δΨ = {δU/ΓδU ≤V} (33)
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with Γ is an (4mhu)× (mhu) dimensional matrix and V a vector of dimension (4mhu).

Γ =




Imhu

−Imhu

∆
−∆


 , V =




δUMax

−δUMin

UMax−ϕ
−UMin +ϕ


 (34)

where Imhu is the (mhu) dimensional identity matrix.
The matrix ∆ of dimension (mhu)× (mhu) and the vector ϕ of dimension (mhu) are given by:

∆ =




1 0 · · · 0

1 1
. . .

...
...

. . . . . . 0
1 · · · 1 1




, ϕ(k−1) =




u(k−1)
...

u(k−1)


 (35)

UMax, UMin, δUMax and δUMin are (mhu) dimensional vectors defined as:

UMax =




umax
...
umax


 , UMin =




umin
...
umin


 (36)

δUMax =




δumax
...

δumax


 , δUMin =




δumin
...

δumin


 (37)

4.2 Optimization Criterion

The robust predictive control algorithm using an uncertainty model, is based on a worst case strategy
that consists to resolve a min-max optimization problem given by:

min
δU∈δΨ

max
ε∈Ω

J(δU,ε) (38)

The quadratic criterion to be minimized is defined by:

J(δU,ε) =
h2

∑
p=1

(ŷ(k + p)− r(k + p))2 +
m
∑
j=1

{
hu−1
∑

p=0
λ p

j δu2
j(k + p)

}
(39)

with:
δu(k + p) = 0 for p≥ hu (40)

where λ p
j Â 0 ( j = 1,2, · · · ,m) is a weighting factor generally considered constant and equals to λ j.

r(k + p) represent the reference signal defined on the prediction horizon [k +1,k +h2].
The quadratic criterion J(δU,ε) can be written in matrix form as:

J(δU,ε) =
∥∥Ŷ (k,ε)−R(k)

∥∥2 +
∥∥∥Λ1/2δU(k)

∥∥∥
2

(41)

>From (41), we can write:

J(δU,ε) =
(
Ŷ (k,ε)−R(k)

)T (
Ŷ (k,ε)−R(k)

)
+δUT (k)ΛδU(k) (42)
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where R(k) is an h2 dimensional reference vector defined by:

R(k) =




r(k +1)
...

r(k +h2)


 (43)

Λ is an (mhu×mhu) dimensional weighting diagonal matrix defined by:

Λ = diag(Λ0,Λ1, · · · ,Λhu−1)
Λp = diag(λ1,λ2, · · · ,λm); p = 0, · · · ,hu−1

(44)

Using (21), the matrix form (42) can be rewritten as:

J(δU,ε) = δUT φ(ε)δU +2ρT (ε)δU +β (ε) (45)

where φ is an (mhu×mhu) dimensional positive definite matrix:

φ(ε) = GT (ε)G(ε)+Λ (46)

ρ is a vector of dimension (mhu):

ρ(ε) = GT (ε)
[
Ŷl(k,ε)−R(k)

]
(47)

β is a scalar defined as follows:

β (ε) =
[
Ŷl(k,ε)−R(k)

]T [
Ŷl(k,ε)−R(k)

]
(48)

Since the criterion is convex over the parameter uncertainty set, the maximization problem over this
set can be reduced to the maximization over its vertices. When the parameter set is an ellipsoid, it is
approximated by the orthotope containing it. Therefore the optimization problem (38) becomes:

min
δU∈δΨ

max
ε∈S

J(δU,ε) (49)

where S is the set of vertices of the orthotope. The number of constraints is given by:

L = 2N +4mhu (50)

where 2N is the number of the vertices of the domain S for the MISO system.
The RMPC algorithm using a GOBF model for a MISO system can be summarized as follow:

– compute the matrices A and B from (5),

– determine the set of vertices,

– select the parameters h2 and hu,

– select the weighting matrix coefficients,

– compute the matrices Kp (p = 1, · · · ,h2) from (17),

– compute the coefficients Gp (p = 1, · · · ,h2) from (28),

– compute the references.

Computation at each sampling period:

– compute the free component Ŷl(k) using (19),

– compute the quadratic criterion using (45),

– determine the control increment vector using (49).
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5 Simulation Examples

In this section we will illustrate the utility of the robust predictive control method by presenting some
simulation examples. To begin with, suppose we have a MISO system with m = 2 input sequences and a
number of H = 300 point data record generated by the following model:

y(k) =
0.102z−1−0.751z−2

1−0.745z−1 u1(k)+
−(0.152z−1 +0.255z−2)

(1+0.7047z−1)(1−0.3547z−1)
u2(k)+ e(k) (51)

where u1(k),u2(k), y(k) and e(k) are the inputs, the output and the model error respectively. The model
error is assumed to be bounded such |e(k)| ≤ 4.51 and the input signals are uniformly distributed se-
quences. In this simulation we approximate this model by the GOBF model where the truncating order
and the optimal poles are: Nopt = 4; ξopt = (0.7450 0 0.3547 −0.7047). The process output and the
GOBF model output are illustrated in figure 1.

0 100 200 300

−20

−10

0

10

20

25
Process output
GOBF model output

Figure 1: Process output and GOBF model output

The center and uncertainty intervals (UI) of the ellipsoid are given in table 1. The tuning parameters
used in this simulation are: h2 = 8,hu = 2,λ1 = 1 and λ2 = 1.

Table 1: Ellipsoid Performances
Ellipsoidal center -0.6326 -0.9135 -0.2266 -0.1260
Uncertainty intervals 0.3797 0.9320 0.7085 1.9076

To validate the control method we plot in figure 2 the GOBF model output and the reference signal.
The control signals and the control increment signals are illustrated in figure 3 and 4 successively. The
picks of the control signals as well as the control increment signals are due to the changed reference
signal from -40 to +40 at the iterations 100 and 200. Therefore, we notice the rapid convergence of the
model output to the reference signal. This is predictable since we optimize a tracking criterion. Other
simulation examples with different GOBF models and reference signals have been studied and yielded
the same results.
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Figure 2: Reference signal and GOBF model output
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Figure 3: Control signals
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Figure 4: Control increment signals
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On the other hand, the influence of the error bounds on the GOBF model output in the case of an
ellipsoid domain is studied by considering 3 different SNR (signal to noise ratio). The table 2 gives the
centers and the uncertainly intervals where the figure 5 illustrates the model outputs and the reference
signal fixed arbitrary. This figure shows the similar convergence of the model outputs to the reference
signal. Thus, we conclude that for different error bounds, we obtain the same GOBF model output. The
control method has been tested with different reference signals and error bounds that yielded the same
results.

Finally we study the influence of different uncertainty domains such an ellipsoid, an orthotope and
a polytope. The table 3 regroups the centers and the uncertainty intervals of these domains. The model
outputs correspondent are shown in figure 6. By examining this figure we notice that the model outputs
converge simultaneously to the reference signal. So, we conclude that the type of the parameter domain
has no influence on this control method. Other experiences with different reference signals and domain
parameter have been realized and yielded the same results.

Table 2: Ellipsoid performances for different error bounds
SNR=5 Center -0.5698 -1.0975 -0.2557 -0.0844

UI 0.7915 1.9507 1.4634 3.9237
SNR=10 Center -0.6071 -0.9886 -0.2377 -0.1086

UI 0.5517 1.3550 1.0246 2.7549
SNR=20 Center -0.6326 -0.9135 -0.2266 -0.1260

UI 0.3797 0.9320 0.7085 1.9076

Table 3: Domain performances (SNR=20)
Ellipsoid Center -0.6326 -0.9135 -0.2266 -0.1260

UI 0.3797 0.9320 0.7085 1.9076
Orthotope Center -0.6950 -0.7551 0.1082 -0.1356

UI 0.6403 1.6896 1.7069 4.2133
Polytope Center -0.6924 -0.7556 -0.1968 -0.1754

UI 0.0236 0.0307 0.0472 0.1095

0 100 200 300
−60

−50

0

50

60

GOBF model output (SNR=20)
GOBF model output (SNR=10)
GOBF model output (SNR=5)
Reference signal

Figure 5: Model outputs for 3 different SNR of an ellipsoid domain
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Figure 6: Model outputs for different uncertainty domains

6 Conclusion

This paper has presented a new robust predictive control method based on the GOBF model for a
MISO system. A min-max problem is solved taking into account the uncertainties on the model coeffi-
cients and the constraints on the control signals. The uncertainty parameter domain can be an ellipsoid,
an orthotope or a polytope and the performance criterion is optimized with respect to constraints relative
to parameter uncertainties and measurement constraints. The implication of these results in the context of
system controls is that the GOBF can be used to deliver state space models suitable to synthesize a robust
predictive control without affecting the computational complexity and the performance of the method.
Finally, it should also be noted that this control method provides best results and may be synthesized for
a MIMO system represented on the GOBF.
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