
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844

Vol. III (2008), No. 4, pp. 353-365

Quality of Service Scheduling in Real-Time Systems

Audrey Marchand, Maryline Chetto

Abstract: In this paper, we deal with dynamic scheduling components integrating
new Quality of Service (QoS) functionalities into a Linux-based real-time operat-
ing system. In our approach, periodic tasks allow occasional deadline violations
within given bounds specified according to the Skip-Over task model. Hence, ev-
ery task has a minimal QoS guarantee which is expressed by the ratio of periodic
task instances which must complete before their deadline. The work stated here pro-
vides two on-line scheduling algorithms, namely RLP and RLP/T, which enhance
the existing Skip-Over algorithms. More specifically, the proposed algorithms aim
at improving the actual QoS observed for periodic tasks (which is always greater or
equal to the QoS guarantee). These novel scheduling techniques rely on the EDL
(Earliest Deadline as Late as possible) scheduling strategy. Simulation results show
the performance of RLP and RLP/T with respect to basic Skip-Over algorithms. Fi-
nally, we present the integration of these QoS scheduling services into CLEOPATRE
open-source component library, a patch to Linux/RTAI.
Keywords: real-time, dynamic scheduling, quality of service, periodic tasks,
component-based systems, Linux-based systems

1 Introduction

Software environments, and more precisely operating systems have still difficulties to meet the spe-
cial demands of multimedia applications. In particular, multimedia applications have real-time con-
straints which are not handled properly by general-purpose operating systems. In order to meet the re-
quirements imposed by multimedia applications on processor scheduling, we have to turn to the temporal
stringency of real-time systems. Real-time systems are those in which the time at which the results are
produced is important. The correctness of the result of a task is not only related to its logic correctness,
but also to when the results occur.

Traditional classification of real-time systems stands for three classes to characterize the real-time
requirement of such systems : hard, soft and firm. In hard real-time systems, all instances must be
guaranteed to complete within their deadlines. In those critical control applications, missing a deadline
may cause catastrophic consequences on the controlled system. For soft systems, it is acceptable to miss
some of the deadlines occasionally. It is still valuable for the system to finish the task, even if it is late. In
firm systems, tasks are also allowed to miss some of their deadlines, but, there is no associated value if
they finish after the deadline. Typical illustrating examples of systems with firm real-time requirements
are multimedia systems in which it is not necessary to meet all the task deadlines as long as the deadline
violations are adequately spaced.

A prominent strategy for performing resource management for multimedia systems is QoS-driven
management, in which quality requirements such as resolution and frame rate are translated into resource
requirements such as computation burst frequencies and durations. This resource information is then
used for admission testing and resource reservation. The motivation for this translation from application
level requirements to resource requirements is to guarantee a given QoS. The complexity of both the
QoS space and the resource space suggests that perfect characterization is hard to achieve, so it would be
desirable to have a scheduling policy that would adapt to changes in user QoS requirements. Such policy
should strive to achieve the desired QoS, in an environment with variable resources, as well as complex
and variable application demands.

Copyright © 2006-2008 by CCC Publications



354 Audrey Marchand, Maryline Chetto

In this paper, we address the problem of the dynamic scheduling of periodic tasks with firm con-
straints. The scope of the paper is to maximize the actual QoS of periodic tasks by maximizing the
number of instances which complete before their deadline. The remainder of this paper is organized in
the following manner. Next section introduces existing approaches for scheduling firm real-time systems.
Then we present relevant background material about both the Skip-Over model and the EDL scheduling
algorithm. More particularly, we give the definition of RTO and BWP scheduling algorithms, which are
based on the Skip-Over model. The functioning and optimality of the EDL algorithm is also outlined.
Further, we describe the proposed algorithms, namely RLP and RLP/T, as an enhancement of the BWP
algorithm, based on the EDL scheduling mechanism. Moreover, we present a model of a real-world
problem to show the practical interest of our work. The performance analysis of both RLP and RLP/T, in
terms of task completions, is reported after. Then, we describe the integration of these QoS components
into Linux/RTAI. Finally, in section 8, we summarize our contribution.

2 Related work

There have been some previous approaches to the specification and design of real-time systems that
tolerate occasional losses of deadlines. Hamdaoui and Ramanathan in [7] introduced the concept of
(m,k)-firm deadlines to model tasks that have to meet m deadlines every k consecutive invocations. Their
algorithm uses a distance-based priority (DBP) scheme to increase the priority of a job in danger of
missing more than m deadlines over a sliding window of k requests for service. Moreover, algorithms
such as VDS [17] and DWCS [19] are provably superior to DBP in meeting (m,k) service requirements
for a number of specific and non-trivial situations.

Similar to (m,k)-firm scheduling is the work introduced by Koren and Shasha [8] with the notion of
skip factor. If a task has a skip factor of s, it will have one invocation skipped out of s. It is a particular
case of the (m,k)-firm model where m = k−1. They reduce the overload by skipping some task invoca-
tions, thus exploiting skips to increase the feasible periodic load. This approach gives a solution to the
scheduling problem of overloaded systems, while representing a system Quality of Service requirement
for real-time applications. Broadly speaking, the Skip-Over scheduling algorithms guarantee the timing
correctness of the real-time application. One interesting result is that making optimal use of skips is
a NP-hard problem. There are also examples of (m,k)-hard schedulers [1], but most such approaches
require off-line feasibility tests, to ensure predictable service.

In [3, 4], Caccamo and Buttazzo follow this work by scheduling hybrid task sets consisting of skip-
pable periodic and soft aperiodic tasks. They propose and analyze an algorithm, based on a variant
of Earliest Deadline First (EDF) scheduling, in order to exploit skips under the Total Bandwith Server
(TBS). In previous works [10, 12], we have considered the same approach but using the Earliest Deadline
as Late as possible server (EDL). These results have led us to propose a raw version of the RLP algorithm
(idle time schedule based on red tasks only) [11].

West and Poellabauer in [16] proposed a windowed lost rate, that specifies a task can tolerate x

deadlines missed over a finite range or window, among consecutive y instances. In [2], Bernat et al.

introduce a general framework for specifying tolerance of missed deadlines under the definition of weakly

hard constraints.

3 Theoretical Background

3.1 The Skip-Over model

We are here interested in the problem of scheduling periodic tasks which allow occasional deadline
violations (i.e., skippable periodic tasks), on a uniprocessor system. We assume that tasks can be pre-
empted and that they do not have precedence constraints. A task Ti is characterized by a worst-case



Quality of Service Scheduling in Real-Time Systems 355

Task T0 T1 T2 T3 T4

ci 3 4 1 7 2

pi 30 20 15 12 10

Table 1: A basic periodic task set

-

-

-

-

-6 6 6

6 6 6 6

6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T0

T1

T2

T3

T4

: processing red task

6 : release time

Figure 1: RTO scheduling algorithm (si = 2)

computation time ci, a period pi, a relative deadline equal to its period, and a skip parameter si, which
gives the tolerance of this task to missing deadlines. The distance between two consecutive skips must be
at least si periods. When si equals to infinity, no skips are allowed and Ti is equivalent to a hard periodic
task. One can view the skip parameter as a QoS metric (the higher si, the better the quality of service).

A task Ti is divided into instances where each instance occurs during a single period of the task.
Every instance of a task can be red or blue [8]. A red task instance must complete before its deadline;
a blue task instance can be aborted at any time. However, if a blue instance completes successfully, the
next task instance is still blue.

Red Tasks Only (RTO) algorithm

The first algorithm proposed by Koren and Shasha is the Red Tasks Only (RTO) algorithm. Red
instances are scheduled as soon as possible according to Earliest Deadline First (EDF) algorithm, while
blue ones are always rejected. Deadline ties are broken in favor of the task with the earliest release
time. In the deeply red model where all tasks are synchronously activated and the first si − 1 instances
of every task Ti are red, this algorithm is optimal. RTO is illustrated in Figure 1 using the task set
T = {T0,T1,T2,T3,T4} of five periodic tasks whose parameters are described in Table 1. Tasks have
uniform skip parameter si = 2 and the total processor utilization factor Up = ∑

ci

pi
is equal to 1.15.

As we can see, the distance between every two skips is exactly si periods, thus offering only the
minimal guaranteed QoS level for periodic tasks.

Blue When Possible (BWP) algorithm

The second algorithm studied is the Blue When Possible (BWP) algorithm which is an improvement
of the first one. Indeed, BWP schedules blue instances whenever their execution does not prevent the red
ones from completing within their deadlines. In that sense, it operates in a more flexible way. Deadline
ties are still broken in favor of the task with the earliest release time. Figure 2 shows an illustrative
example of BWP scheduling using the task set previously described in Table 1.

Compared with RTO, more task instances complete successfully with BWP. We observe that five
violations of deadline relative to blue task instances occur at time instants t = 24 (task T3), t = 30 (tasks
T2 and T4) and t = 60 (tasks T3 and T4), thus reducing the QoS.



356 Audrey Marchand, Maryline Chetto

-

-

-

-

-6 6 6

6 6 6 6

6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T0

T1

T2

T3

T4

: processing red task

: processing blue task

6 : release time

Figure 2: BWP scheduling algorithm (si = 2)

3.2 The EDL algorithm

The definition of the Earliest Deadline as Late as possible (EDL) algorithmmakes use of some results
presented by Chetto and Chetto in [5]. Under EDL, periodic tasks are scheduled as late as possible. An
accurate characterization of the idle times during which the processor is not occupied is necessary. The
authors introduced an availability function f X

Y defined with respect to a task set Y and a scheduling
algorithm X . f X

Y (t) = 1 if the processor is idle at t, 0 otherwise.
So, for any instants t1 and t2, value of ∫ t2

t1 f X
Y (t)dt denoted by ΩX

Y (t1, t2) gives the total idle time in
[t1, t2]. f EDL

Y can be described by means of the following two vectors:

• K, called static deadline vector, represents the times at which idle times occur and is constructed
from the distinct deadlines of periodic tasks.

• D, called static idle time vector, represents the lengths of the idle times relating to time instants of
vector K.

The complexity of the EDL algorithm is O(Kn) where n is the number of periodic tasks, and K

is equal to ⌊R
p
⌋, where R is the longest deadline, and p is the shortest period [13]. We also recall the

fundamental property relative to the optimality of EDL [5]:

Theorem 1. Let X be any preemptive scheduling algorithm and A a set of independent aperiodic tasks.

For any instant t,

ΩX
A
(0, t) ≤ ΩEDL

A
(0, t) (1)

We give now an illustrative example of the computation of the idle times performed by EDL. Con-
sider the periodic task set T = {T1,T2} consisting of two periodic tasks T1(3,10) and T2(3,6). The f EDL

T

computation produced at time zero is described in Figure 3.
The authors in [5] described how the EDL algorithm can be applied, first to the decision problem

that arises when a sporadic time critical task occurs and requires to be run at an unpredictable time and
secondly, to the scheduling problem that arises in a fault tolerant system using the Deadline Mechanism
[?] for which each task implements primary and backup copies (the processor time reserved for the
execution of the backup copies is realized with EDL and is reclaimed as soon as the primary task executes
successfully).

In next sections, we are interested in using EDL first to simulate a schedule (RLP implementation)
and then to derive a measure required for deciding whether a blue task can be accepted (RLP/T imple-
mentation).



Quality of Service Scheduling in Real-Time Systems 357

-

-

-6 6 6 6

6 6 6 6 6 6
0 10 20 30

0 6 12 18 24 30

k0 k1 k2 k3 k4 k5 k6

T1

T2

f EDL
T

: processing periodic task

: processing idle time

6 : release time

Figure 3: f EDL
T

computation produced at time zero

4 The Proposed Algorithms

4.1 Red tasks as Late as Possible (RLP)

The main drawback of BWP relies on the fact that blue task instances are executed as background
tasks. This leads to abort partially or almost completely executed blue task instances, thus wasting
processor time.

Algorithm outline

The objective of RLP algorithm is to bring forward the execution of blue task instances so as to
minimize the ratio of aborted blue instances, thus enhancing the actual QoS (i.e., the total number of task
completions) of periodic tasks. From this perspective, RLP scheduling algorithm, which is a dynamic
scheduling algorithm, is specified by the following behaviour:

1. if there are no blue task instances in the system, red task instances are scheduled as soon as possible
according to the EDF (Earliest Deadline First) algorithm.

2. if blue task instances are present in the system, these ones are scheduled as soon as possible
according to the EDF algorithm (note that it could be according to any other heuristic), while red
task instances are processed as late as possible according to the EDL algorithm.

Deadline ties are always broken in favor of the task with the earliest release time. The main idea of
this approach is to take advantage of the slack of red periodic task instances. Determination of the latest
start time for every red request of the periodic task set requires preliminary construction of the schedule
by a variant of the EDL algorithm taking skips into account [12]. In the EDL schedule established at
time τ , we assume that the instance following immediately a blue instance which is part of the current
periodic instance set at time τ , is red. Indeed, none of the blue task instances is guaranteed to complete
within its deadline. Moreover, Silly-Chetto in [13] proved that the online computation of the slack time
is required only at time instants corresponding to the arrival of a request while no other is already present
on the machine. In our case, the EDL sequence is constructed not only when a blue task is released (and
no other was already present) but also after a blue task completion if blue tasks remain in the system
(the next task instance of the completed blue task has then to be considered as a blue one). Note that
blue tasks are executed in the idle times computed by EDL and are of same importance beside red tasks
(contrary to BWP which always assigns higher priority to red tasks).

Illustrative example

Consider once again the periodic task set T defined in Table 1. The relating RLP scheduling is
illustrated in Figure 4. In this example, we can see that, thanks to RLP scheduling, the number of



358 Audrey Marchand, Maryline Chetto

-

-

-

-

-6 6 6

6 6 6 6

6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T0

T1

T2

T3

T4

: processing red task

: processing blue task

6 : release time

Figure 4: RLP scheduling algorithm (si = 2)

violations of deadline relative to blue task instances has been reduced to three. They occur at time
instants t = 40 (task T4), and t = 60 (tasks T3 and T4). Observe that T3 first blue task instance which
failed to complete within its deadline in the BWP case (see Figure 2), has enough time to succeed in the
RLP case, since the execution of T1 and T0 first red task instances is postponed. Until time t = 10, red
task instances are scheduled as soon as possible. From time t = 10 to the end of the hyperperiod (defined
as the least common multiple of task periods), red task instances do execute as late as possible in the
presence of blue task instances, thus enhancing the actual QoS of periodic tasks.

4.2 Red tasks as Late as Possible with blue acceptance test (RLP/T)

The main drawback of RLP relies on the fact that this algorithm attempts to execute blue task in-
stances as soon as possible, at the risk of aborting them before their completion, thus generating a pro-
cessor time wasting. This assessment led us to propose a novel algorithm named RLP/T (Red tasks as
Late as Possible with blue acceptance Test).

Algorithm outline

Red tasks as Late as Possible with blue acceptance test (RLP/T) algorithm is designed to maximize
the actual QoS of periodic task sets defined under skip constraints.

It acts as follows: red tasks enter straight the system at their arrival time whereas blue tasks integrate
the system upon acceptance. Once they have been accepted, blue tasks are scheduled as soon as possible
together with red tasks. Upon acceptance, blue tasks are again of same importance beside red tasks.
Deadline ties are always broken in favor of the task with the earliest release time.

Whenever a new blue task enters the system, the idle times are computed using the EDL scheduler.
In the EDL schedule established at time τ , we assume that the instance following immediately a blue
instance which is part of the current periodic instance set at time τ , is also blue. Indeed, all blue task
instances previously accepted at τ are guaranteed by the schedulability test they passed successfully. This
one checks whether there are enough idle times to accommodate the new blue task within its deadline,
as described in the following section.

Acceptance test of blue tasks under RLP/T

Now, we are ready to present the new feasibility test algorithm for the RLP scheduling scheme which,
given any occurring blue task B is capable of answering the question "Can B be accepted ?". Notice that
B will be accepted if and only if there exists a valid schedule, i.e., a schedule in which B will execute by
its deadline while red periodic tasks and blue tasks previously accepted, will still meet their deadlines.
Let τ be the current time which coincides with the arrival of a blue task B. Upon arrival, task B(r,c,d)



Quality of Service Scheduling in Real-Time Systems 359

is characterized by its release time r, its execution time c, and its deadline d, with r + c ≤ d. We assume
that the system supports several blue tasks at time τ . Each of them has been accepted before τ and has
not completed its execution at time τ . Let denote by B(τ) = {Bi(ci(τ),di), i=1 to blue(τ)} the blue
task set supported by the machine at τ . Value ci(τ) is called dynamic execution time and represents the
remaining execution time of Bi at τ . A deadline occurs at di. We assume that B(τ) is ordered such that
i < j implies di ≤ d j.

The acceptance test of blue tasks within a system involving RLP skippable tasks presented below in
Theorem 2, is based on the one established by Silly-Chetto and al. [14] for the acceptance of sporadic
requests occurring in a system consisting of basic periodic tasks (i.e., without skips).

Theorem 2. Task B is accepted if and only if, for every task Bi ∈ B(τ)∪{B} such that di ≥ d, we have

δi(τ) ≥ 0, with δi(τ) defined as:

δi(τ) = ΩEDL
T(τ)(τ ,di)−

i

∑
j=1

c j(τ) (2)

δi(τ) is called slack of task Bi at time τ which represents the maximum units of time during which
the task could not be served by the processor without missing its deadline. ΩEDL

T(τ)(τ,di) denotes the total

units of time that the processor is idle in the time interval [τ ,di]. The total computation time required by
blue tasks within [τ,di] is given by ∑

i
j=1 c j(τ)

The procedure that implements the acceptance test calls for the EDL algorithm for the computation
of the total idle times which will be used to compute the slack of blue tasks. Then, this slack is compared
to zero. Thus, the acceptance test proposed in this paper runs in O(⌊R

p
⌋n + blue(τ)) in the worst-case,

where n is the number of periodic tasks, R is the longest deadline, p is the shortest period, and blue(τ)
denotes the number of active blue tasks at time τ , whose deadline is greater or equal to the deadline of
the occurring task. Note that this acceptance test could be implemented in O(n+blue(τ)) by considering
and maintaining to update additional data structures using slack tables, as proved in [15].

Illustrative example

RLP/T scheduling is illustrated in Figure 5 with the periodic task set T defined in Table 1. It is
easy to see that RLP/T improves on both RLP and BWP. Only two violations of deadline relative to
blue task instances are observed: at time instants t = 40 (task T4) and t = 60 (task T3). The acceptance
test contributes to compensate for the time wasted in starting the execution of blue tasks which are not
able to complete within their deadline. As we can observe, in the RLP case (see Figure 4), T3 blue
instance released at time t = 48 is aborted at time t = 60 (2 units of time were indeed wasted). Note
that the rejection of this blue task instance, performed with RLP/T, contributes to save time used for the
successful completion of T4 blue instance released at time t = 50.

In section 6, we quantify more precisely the gain of performance of RLP/T upon RLP, BWP and
RTO.

5 Applying theory to real-world problems

5.1 Multimedia applications

In order to understand the importance of CPU scheduling in multimedia real-time applications, it is
useful to place the issue in context. Multimedia implies a certain amount of data to be handled within a
specified time frame and requires a tremendous amount of resources to accommodate. For multimedia
applications to function correctly, there must be a steady stream of data for the output devices to process.
For the viewer to perceive continuous media such as movies or music, the output devices have to output



360 Audrey Marchand, Maryline Chetto

-

-

-

-

-6 6 6

6 6 6 6

6 6 6 6 6

6 6 6 6 6 6

6 6 6 6 6 6 6

0 30 60

0 20 40 60

0 15 30 45 60

0 12 24 36 48 60

0 10 20 30 40 50 60

T0

T1

T2

T3

T4

: processing red task

: processing blue task

6 : release time

Figure 5: RLP/T scheduling algorithm (si = 2)

new media within strict time constraints (e.g. 30 frames per second for video applications). Given this
observation, one gets a better understanding of the crucial role of CPU scheduling in such applications.

Consider a simplified model of a real-time telesurveillance application, as represented in Figure 6.
The relevant tasks are the acquiring tasks and the display task. Video data are first captured and digitized
through video capture devices such as video cameras. Then, each video capture task “Acqi" reads the
input video buffer relative to its camera, thus periodically acquiring incoming frames. Downstream
from the chain, another task named “Display" is in charge of continuously consuming frames from an
output frame buffer and sending the acquired video frames to a final display device composed of various
telesurveillance screens.

Figure 6: Simplified architecture of a real-time telesurveillance application

One important problem part of the management of telesurveillance systems is the data refreshing rate
on the display device. Indeed, by definition, such a system must provide pictures as recent as possible
to be useful. If there is no data for the output devices to process, there is buffer underflow. The media
application will stall and wait for new data to be provided. Naturally, buffer underflow should be avoided
whenever possible.

Scheduling implies multiplexing a resource among several tasks to ensure all throughput require-
ments are met. In the present case, the problem consists in ensuring an acceptable refreshing rate (i.e. a
guaranteed QoS level).

5.2 Dynamic QoS scheduling

For multimedia applications, the CPU scheduler determines the resulting quality of service. The
more CPU cycles allocated to a task, the more data can be produced, thus providing a better quality
output. In the previous example, more CPU cycles produce more frames, thus allowing more frames per
second to be displayed on the workstation monitor. However, if several videos are executing at the same
time there may not be enough CPU cycles available to produce all the video frames requested. In this



Quality of Service Scheduling in Real-Time Systems 361

Figure 7: QoS of periodic tasks with low and high skip parameters (si = 2 and si = 6)

overloaded situation, the quality of service (i.e. frame rate) is reduced to a lower acceptable level, which
results for instance to display an image at 15 frames per second instead of 30 frames per second. The
resulting video just appears less smooth during the transient overload period.

Now, let us consider RLP or RLP/T algorithms for scheduling the application described in Figure 6.
At initialization time, the application specifies a desired average rate of execution by appropriately setting
the skip parameter si of each “Acqi" task. RLP (or RLP/T) scheduler can be viewed as an EDF priority-
based scheduler coupled with a skip-over rate regulator. That ensures every task not to be executed
below a specified rate, whatever is the CPU workload. RLP and RLP/T superiority over RTO and BWP
effectively results in a higher and guaranteed frame rate on the workstation monitors.

6 Simulation Study

In this section, we summarize the results of a simulation study which compares the performance of
the different QoS scheduling algorithms. The objective is to maximize the actual QoS level of periodic
tasks, i.e., the ratio of periodic tasks which complete before their deadline.

Experiments also evaluate the impact of the skip value for each algorithm, namely RTO, BWP, RLP
and RLP/T.

6.1 Simulation context

The simulation context includes 50 periodic task sets, each consisting of 10 tasks with a least common
multiple equal to 3360. Tasks are defined under QoS guarantees specified by uniform si. Their worst-
case execution time is randomly generated and depends on the input setting of the periodic load Up.
Deadlines are equal to the periods and greater than or equal to the computation times. Simulations have
been processed over 10 hyperperiods.

6.2 Varying the periodic load

Measurements rely on the ratio of periodic tasks which complete before their deadline. The evalua-
tion is done varying the periodic load Up. The results obtained for si = 2 (one instance every two can be
aborted) and si = 6 (one instance every six can be aborted) are described on Figure 7.

From the graphs, we can say that BWP, RLP and RLP/T outperform the RTOmodel in which the QoS
level is still constant whatever is the periodic load applied. For si = 6, the actual QoS (which corresponds
to the QoS guarantee) remains constant at a rate of 5/6=83%. The advantage of RLP over BWP is slight
for low skip parameters, and more significant for high skip parameters. We note that the performance of



362 Audrey Marchand, Maryline Chetto

Figure 8: The CLEOPATRE framework

BWP and RLP is dramatically worse than the one achieved by RLP/T. This result was expected because
both BWP and RLP attempt to schedule blue instances that have not enough time for completing within
their deadlines. This wasted time is not saved for executing other blue instances with closer deadline.
In contrast, RLP/T finds a way of saving this CPU time by implementing an acceptance test for blue
instances. We can observe that this gain of performance is all the more significant as the periodic load
Up is higher. For instance, in Figure 7, for Up ≥ 120%, RLP/T enjoys more than factor 1

4 success rate
advantage over BWP. Moreover, we observe a very low gradient for the RLP/T curve which is not the
case for other models. For Up = 150% and si = 2, actual QoS levels for RTO and RLP/T are respectively
equal to 50% and 84%, which figures the great predominance of RLP/T over RTO.

The variation of the skip parameter value shows that, for wide loads, the actual QoS of periodic tasks
is all the more improved with RLP/T that the QoS constraint is smaller. For instance, for Up = 110%,
RLP/T applied to periodic tasks with si = 2 will successfully process twice as many periodic instances
over BWP, as with periodic tasks with si = 6. As we can see, the major difference in the performance
between RLP/T and BWP appears not only for heavy loads but also for small value of si.

7 Integration into a Linux-based system

7.1 CLEOPATRE library

RTO, BWP, RLP and RLP/T algorithms have been integrated into a library of free software compo-
nents called CLEOPATRE (Software Open Components on the Shelf for Embedded Real-Time Applica-
tions) [6]. This library, part of a French National Project 1, was designed to provide more efficient and
better service to real-time applications. The purpose was to enrich the real-time facilities of real-time
Linux versions, such as RTLinux [18] or RTAI [9]. RTAI was the solution adopted for this project be-
cause we wanted the CLEOPATRE components to be distributed under the LGPL2 license which is also
the one used in the RTAI project.

The CLEOPATRE library whose framework is shown in Figure 8 offers selectable COTS (Commercial-
Off-The-Shelf) components dedicated to dynamic scheduling, aperiodic task service, resource control
access and fault-tolerance. Components are totally independent from the kernel and the hardware.
Reusability of the components with another hardware and OS is made possible by just adapting the OS
abstraction layer in the TCL component. This component hides the specific features of each platform,
so that the run-time components can be implemented in a portable fashion and adapted to the target’s
processor architecture and board.

RTO, BWP, RLP and RLP/T can be found in a new shelf called “Quality of Service"’. Final users

1work supported by the French research office, grant number 01 K 0742
2Lesser General Public License



Quality of Service Scheduling in Real-Time Systems 363

can then build their own customized applications through the flexible and easy-to-use interface provided
by the CLEOPATRE framework.

8 Conclusions

This paper pointed out the need of more flexible scheduling solutions for real-time applications deal-
ing with multimedia and active monitoring systems. Our main contribution was actually to propose and
validate new scheduling algorithms, namely RLP and RLP/T. Their purpose is to enhance the QoS of
periodic tasks that allow skips (i.e the ratio of task instances that do execute within their deadline) while
providing a QoS guarantee (i.e the ratio of task instances that must complete within their deadline).
We considered a real-world problem (i.e. a multimedia application) to bring to light how these algo-
rithms can be implemented in practice in order to provide a better QoS. Simulation results show that the
improvements with both RLP and RLP/T are quite significant compared with basic algorithms. These
new QoS functionalities are available under Linux/RTAI. Our future work includes extending these QoS
scheduling algorithms to multiprocessor systems.

Bibliography

[1] G. Bernat, A. Burns, Combining (n/m)-hard feadlines and dual priority schaduling, 18th IEEE Real-

Time Systems Symposium, pp 46-57, 1997.

[2] G. Bernat, A. Burns, A. Llamosi, Weakly-hard real-time systems, In IEEE Transactions on Comput-

ers, Vol. 50, No. 4, pp 308-321, 2001.

[3] G.-C. Buttazzo, M. Caccamo, Minimizing Aperiodic Response Times in a Firm Real-Time Environ-
ment, IEEE Trans. Software Eng., Vol. 25, No. 1, pp 22-32, 1999.

[4] M. Caccamo, G.-C. Buttazzo, Exploiting skips in periodic tasks for enhancing aperiodic respon-
sivess, 18th IEEE Real-Time Systems Symposium, 1997.

[5] H. Chetto, M. Chetto, Some Results of the Earliest Deadline Scheduling Algorithm. In Proceedings

of the IEEE Transactions on Software Engineering, Vol. 15, No. 10, pp 1261-1269, 1989.

[6] T. Garcia, A. Marchand, M. Silly-Chetto, Cleopatre: a R&D project for providing new real-time
functionalities to Linux/RTAI. 5th Real-Time Linux Workshop, 2003.

[7] M. Hamdaoui, P. Ramanathan, A Dynamic Priority Assignment Technique for Streams with (m,k)-
firm deadlines. IEEE Transactions on Computers, Vol. 44, No. 4, pp 1443-1451, 1995.

[8] G. Koren, D. Shasha, Skip-Over Algorithms and Complexity for Overloaded Systems that Allow
Skips. 16th IEEE Real-Time Systems Symposium (RTSS’95), Pisa, Italy, 1995.

[9] P. Mantegazza, E. Bianchi, L. Dozio, M. Angelo, D. Beal, DIAPM. RTAI Programming Guide 1.0,
Lineo Inc., 2000.

[10] A. Marchand, M. Silly-Chetto, QoS Scheduling Components based on Firm Real-Time Require-
ments, ACS/IEEE International Conference on Computer Systems and Applications (AICCSA’05), Le
Caire (Egypt), 2005.

[11] A. Marchand and M. Silly-Chetto, RLP: Enhanced QoS Support for Real-Time Applications, 11th

IEEE International Conference on Embedded and Real-Time Computing Systems and Applications

(RTCSA’05), Hong-Kong, 2005.



364 Audrey Marchand, Maryline Chetto

[12] A. Marchand, M. Silly-Chetto, Dynamic Real-Time Scheduling of Firm Periodic Tasks with Hard
and Soft Aperiodic Tasks. Journal of Real-Time Systems, Vol. 32, No. 1-2, pp 21-47, 2006.

[13] M. Silly-Chetto, The EDL Server for Scheduling Periodic and Soft Aperiodic Tasks with Resource
Constraints, Journal of Real-Time Systems, Vol. 17, pp 1-25, 1999.

[14] M. Silly-Chetto, H. Chetto, N. Elyounsi, An Optimal Algorithm for Guranteeing Sporadic Tasks
in Hard Real-Time Systems. IEEE Symposium on Parallel and Distributed Processing, pp 578-585,
1990.

[15] T. Tia, J. Liu, J. Sun, R. Ha, A Linear-Time Optimal Acceptance Test for Scheduling of Hard Real-
Time Tasks, Technical report, Department of Computer Science, University of Illinois at Urbana-
Champaign, IL, 1994.

[16] R. West, C. Poellabauer, Analysis of a Window-constrained scheduler for real-time and best-effort
packet streams, 21st IEEE Real-Time Systems Symposium, Orlando, USA, 2000.

[17] R. West, Y. Zhang, K. Schwan, C. Poellabauer, Dynamic window-constrained scheduling of real-
time streams in media servers, IEEE Trans. on Computers, Vol. 53, pp. 744-759, 2004.

[18] V. Yodaiken, The RTLinux Approach to Real-Time, FSMLabs Inc., 2004.

[19] Y. Zhang, R. West, X. Qi, Avirtual deadline scheduler for window-constrained service guarantees,
Tech. Rep. 2004-013, Boston University, 2004.

Audrey Marchand
University of Nantes

Laboratoire d’Informatique de Nantes Atlantique
2, rue de la Houssinière - BP 92208

44322 Nantes Cedex 03,
FRANCE

E-mail: audrey.marchand@univ-nantes.fr

Maryline Chetto
University of Nantes

Institut de Recherche en Communications et Cybernétique de Nantes
1, rue de la Noe

44321 Nantes Cedex 03
FRANCE

E-mail: maryline.chetto@univ-nantes.fr



Quality of Service Scheduling in Real-Time Systems 365

Audrey Marchand graduated in Computer Engineering at the
Ecole polytechnique of the University of Nantes (France), in
2002. After getting a Master Degree in Applied Computer Sci-
ence at Ecole Centrale de Nantes in 2003, she received the PhD
degree in October 2006 from the University of Nantes. From
October 2006 to August 2007, she hold a Post-Doc researcher
position at the Polytechnic University of Valencia, Spain. She
is currently an Associate Professor at the University of Nantes,
France. Her research interests include real-time scheduling the-
ory, OS service mechanisms, quality of service guarantees in real-
time systems, and Linux-based real-time OSes and applications.

Maryline Chetto received the degree of Docteur de 3ème cycle
in control engineering and the degree of Habilitée à Diriger des
Recherches in Computer Science from the University of Nantes,
France, in 1984 and 1993, respectively. From 1984 to 1985, she
held the position of Assistant professor of Computer Science at
the University of Rennes, while her research was with the Institut
de Recherche en Informatique et Systèmes Aléatoires, Rennes.
In 1986, she returned to Nantes and is currently a professor with
the Institute of Technology of the University of Nantes. She is
conducting her research at IRCCyN. Her main research interests
include scheduling and fault-tolerance technologies for real-time
applications. She has published more than 60 journal articles and
conference papers in the area of real-time operating systems. She
is the leader of a French national R&D project, namely Cleopatre,
supported by the French government, which aims to provide free
open source real-time solutions.


