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Abstract: We study two very simple variants of P colonies: systems with only one
object inside the cells, and systems with insertion-deletion programs, so called P
colonies with senders and consumers. We show that both of these extremely simple
types of systems are able to compute any recursively enumerable set of vectors of
non-negative integers.
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1 Introduction

P colonies form a class of abstract computing devices modeling a community of simple agents acting
and evolving in a shared environment. They were introduced in [5] as very simple membrane systems,
similar in simplicity and architecture to so called colonies of formal grammars. (See [7] for more infor-
mation on membrane systems and [2, 4] for details on grammar systems theory.)

A P colony consists of a collection of cells, each having a number of objects inside and an associated
set of rules through which it can process these objects. Communication between the cells is only possible
indirectly through the environment which is common to all of them.

The capabilities of the computing agents are very restricted, and the number of objects present inside
a cell during the functioning of the system is previously fixed: it is usually one, two or three. The rules
are also of a very simple form. As we will see, they allow the transformation of objects inside the cells
and the transportation of objects between the cells and the environment. The rules are grouped into
programs. A program contains exactly as many rules, as the number of objects allowed to be present
inside the cell. The rules of the programs are applied to the objects inside the associated cells in parallel,
and this also affects the objects which are in the environment.

The P colony executes a computation by synchronously applying the programs to the objects inside
the cells and outside in the environment until a halting configuration is reached. The result of the com-
putation is obtained as the vector of copies of certain “final” objects present in the environment after the
system halts.
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In the following, after providing the formal definitions, we first give a short overview of results on the
computational completeness of the different P colony variants. Then we present new results about two
types of systems: first about the simplest possible P colonies, those which only have one object inside
every cell, and then about a new type called P colonies with senders and consumers, which have special
rules for insertion-deletion. We show that both kinds of these very simple devices are able to compute
any recursively enumerable set of vectors of non-negative integers.

2 Preliminaries

Let V be an alphabet, let V ∗ be the set of all words over V , and let ε denote the empty word. We
denote the number of occurrences of a symbol a ∈ V in w by |w|a. The set of non-negative integers is
denoted by N.

A multiset over an arbitrary (not necessarily finite) set V is a mapping M : V → N which assigns to
each object a ∈ V its multiplicity M(a) in M. The support of M is the set supp(M) = {a | M(a) ≥ }.
If V is a finite set, then M is called a finite multiset. A multiset M is empty if its support is empty,
supp(M) = /0. We will represent a finite multiset M over V by a string w over the alphabet V with
|w|a = M(a), a ∈V , and ε will represent the empty multiset.

We will also need the notion of a register machine which consists of a finite number of registers each
of which can hold an arbitrarily large non-negative integer (we say that the register is empty if it holds
zero), and a set of labeled instructions which specify how the numbers stored in the registers can be
changed.

Formally, a register machine is a construct M = (m,H, l, lh,R), where m is the number of registers,
H is the set of instruction labels, l is the start label, lh is the halting label, and R is the set of instructions.
Each label from H labels only one instruction from R. There are several types of instructions which can
be used. For li, l j, lk ∈ H and r ∈ {, . . . ,m} we have

• li : (ADD(r), l j, lk) - nondeterministic add: Add one to register r and then go to one of the instruc-
tions with labels l j or lk, non-deterministically chosen.

• li : (SUB(r), l j, lk) - subtract: If register r is non-empty, then subtract one from it and go to the
instruction with label l j, if the value of register r is zero, go to instruction lk.

• lh : HALT - halt: Stop the machine.

A register machine M computes a set N(M) of numbers in the following way: It starts with empty
registers by executing the instruction with label l and proceeds by applying instructions as indicated by
the labels (and made possible by the contents of the registers). If the halt instruction is reached, then the
number stored at that time in register 1 is said to be computed by M. Because of the non-determinism in
choosing the continuation of the computation in the case of ADD instructions, N(M) can be an infinite
set.

It is known (see, e.g., [6]) that in this way we can compute all sets of numbers which are Turing
computable.

If a set of output registers i, . . . , ir,  ≤ r ≤ m, i j ∈ {, . . . ,m} is specified, then M computes a set of
vectors of non-negative integers as follows. If the halt instruction is reached, then (v, . . . ,vr), where vk

is the number stored in register ik,  ≤ k ≤ r, is the vector of numbers computed by M, i.e., the result of
that computation.

Now we recall the definition of a P colony from [5]. A P colony is a construct Π =(V,e,F,C, . . . ,Cn),
n ≥ , where V is an alphabet (its elements are called objects). There are two kinds of distinguished ob-
jects: e ∈ V (the environmental object), and the objects in F ⊆ V (the set of final objects). The cells of
the colony are denoted by C, . . . ,Cn. Each cell is a pair Ci = (Oi,Pi), where Oi is a multiset over {e}
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having the same cardinality called capacity (here we only consider |Oi| ∈ {,}) for all i,  ≤ i ≤ n (the
initial state of the cell), and Pi is a finite set of programs. Each program consists of rules of the following
forms:

• a → b (internal point mutation), specifying that an object a ∈V inside the cell is changed to b ∈V .

• c −→ d (one object exchange with the environment), specifying that if c ∈ V is contained inside
the cell and d ∈ V is present in the environment, then c is sent out of the cell while d is brought
inside.

• c −→ d/c −→ d ′ (checking rule for one object exchange with the environment), specifying that if
c ∈ V is inside the cell then it is exchanged with d ∈ V from the environment, or if there is no d

outside but d ′ ∈V is present, then c is exchanged with d ′.

• c −→ d/c → d ′ (checking rule for one object exchange with the environment or internal point
mutation), specifying that if the exchange of c ∈V inside and d ∈V outside is not possible, then c

is changed to d ′ ∈V .

The programs contain one rule for each element of Oi, thus, the number of rules of a program coincides
with the cardinality of Oi,  ≤ i ≤ n.

In addition, P colonies with capacity of two may have programs of the form

• 〈a, in;bc → d〉 with a,b,c,d ∈V (deletion programs), specifying that if bc is present inside the cell
and a is present in the environment, then the objects inside are changed to d and a is brought in (a
is “deleted” from the environment).

• 〈a,out ;b → cd〉 with a,b,c,d ∈V (insertion programs), specifying that if ab is inside the cell, then
a is sent out (a is “inserted” into the environment) and b is changed to cd.

The programs of the cells are used in the non-deterministic maximally parallel manner: in each time
unit, each cell which is able to use one of its programs should use one. The use of a program means the
application of the rule(s) of the program to the object(s) in the cell.

This way, transitions among the configurations of the colony are obtained. A sequence of transitions
is a computation which is halting if it reaches a configuration where no cell can use any program. The
result of a halting computation is obtained from the number of copies of objects from F present in the
environment in the halting configuration. Because of the non-determinism in choosing the programs,
several computations can be obtained from a given initial configuration, hence with a P colony Π we can
associate a set of vectors of non-negative integers computed by all possible halting computations of Π .

Initially, the environment contains arbitrarily many copies of the environmental object e, and the cells
also contain one or two copies of e inside, depending on the capacity of the P colony.

For a P colony Π = (V,e,F,C, . . . ,Cn) as above, a configuration can be formally written as an (n+)-
tuple

(w, . . . ,wn;wE),

where wi ∈V ∗ represents the multiset of objects from cell Ci,  ≤ i ≤ n, and wE ∈ (V − {e})∗ represents
the multiset of objects from the environment different from the environmental object e. The initial
configuration is (ei, . . . ,ei;ε) where i ∈ {,} is the capacity of the cells.

A transition from a configuration to another is denoted as

(w, . . . ,wn;wE) ⇒ (w ′
, . . . ,w

′
n;w

′
E)

where w ′
E and each w ′

i is obtained from wi,  ≤ i ≤ n, and wE by executing one of the programs of Pi.
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The set of vectors in Nm, m = |F |, F = {o, . . . ,om}, computed by a P colony Π is defined as

N(Π) = {(|vE |o , . . . , |vE |om
) | (ei, . . . ,ei;ε) ⇒∗ (v, . . . ,vn,vE)}

where (ei, . . . ,ei,ε), i ∈ {,}, is the initial configuration, (v, . . . ,vn,vE) is a halting configuration, and
⇒∗ denotes the reflexive and transitive closure of ⇒.

Let us denote by PCOL(i, j,k,check) and PCOL(i, j,k,no-check) the classes of sets of vectors gener-
ated by P colonies with at most j ≥  cells of capacity i∈ {,}, having at most k ≥  programs associated
to a cell which contain or do not contain checking rules, respectively. If a numerical parameter is un-
bounded, we denote it by a ∗.

P colonies can simulate register machines with a rather limited number of programs per cell. In [3],
it was shown that

PCOL(,∗,,check) = PCOL(,∗,,check) = NRE

where NRE denotes the class of recursively enumerable sets of integer vectors. Even one cell is enough,
if it may have an arbitrarily large number of programs, that is,

PCOL(,,∗,check) = NRE.

Similar results were also obtained without the use of checking rules. In this case we have

PCOL(,∗,,no-check) = PCOL(,∗,,no-check) = NRE.

3 P colonies with one object

In [1] it was shown that if checking rules are allowed to be used, then all recursively enumerable sets
of vectors can even be generated by P colonies with capacity one, that is,

PCOL(,,∗,check) = NRE.

In the following we show that P colonies with six components generate all vectors even if checking
rules are not used.

Theorem 1. PCOL(,,∗,no-check) = NRE.

Proof. We construct a P colony simulating the computations of a register machine. Let us consider an m-
register machine M = (m,H, l, lh,P) and represent the content of the register i by the number of copies
of a specific object ai in the environment. We construct the P colony Π = (V,e,F,C, . . . ,C) with:

V = {e, li, l
′
i , l

′′
i , l̄i,Ki,Li,L

′
i ,L

′′
i ,L ′′′

i ,Ei,Fi,$i | for each li ∈ H}∪

{ai,ai, j |  ≤ i ≤ m,  ≤ j ≤ |H |}∪ {D,D ′,T },

F = {ai | register i is an output register}, and

Ci = (e,Pi), for  ≤ i ≤ .

Because initially there are only copies of e in the environment and inside the cells, we have to initialize
the simulation of the computation of M by generating the initial the label l, and an arbitrary number of
l ′i , l

′′
i for all li ∈ H. These symbols are generated by C and C with the following programs:

P ⊃ {〈e → l ′r〉,〈l
′
r −→ e〉,〈e → l ′′r 〉,〈l

′′
r −→ e〉 | lr ∈ H}∪

{〈e −→ D ′〉,〈D ′ → l〉,〈l −→ D〉},

P ⊃ {〈e → D ′〉,〈D ′ → D ′〉,〈D ′ −→ l ′〉,〈l
′
 → D〉,〈D −→ l ′′ 〉}.
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With these programs, from the configuration (e,e,e,e,e,e;ε), we obtain (D, l ′′ ,e,e,e,e; lw) where the
environment contains the label of the initial instruction, l, and w, a multiset of primed and double primed
instruction labels.

To simulate the instruction li : (ADD(r), l j, lk), cells C and C cooperate to add one copy of object ar

and object l j or lk to the environment.

P P

i : 〈D −→ ar,i〉 i : 〈Kk → lk〉 i : 〈e −→ li〉 i : 〈l ′i → Kk〉
i : 〈ar,i → ar〉 i : 〈l j −→ D〉 i : 〈li → ar,i〉 i : 〈K j −→ e〉
i : 〈ar −→ K j〉 i : 〈lk −→ D〉 i : 〈ar,i −→ l ′i 〉 i : 〈Kk −→ e〉
i : 〈ar −→ Kk〉 i : 〈ar,i → t〉 i : 〈t → t〉
i : 〈K j → l j〉 i : 〈l ′i → K j〉

It is not difficult to follow how the interplay of these two cells produce the configuration
(D, l ′′ ,e,e,e,e; l jarw

′) or (D, l ′′ ,e,e,e,e; lkarw
′) from a configuration (D, l ′′ ,e,e,e,e; liw) where w,w ′ are

multisets of l ′i , l
′′
i for li ∈ H and ar,  ≤ r ≤ m. If there is no l ′i present in the environment when

the program i of cell C should be used, then the programs i and i do not allow the halting of the
computation.

For each subtract instruction l f : (SUB(r), lg, ln) there are the following programs in P, P, P and
in P:

P P P P

f : 〈D ↔ L f 〉 f : 〈e −→ l f 〉 f : 〈L f → t〉 f : 〈e ↔ L ′
f 〉 f : 〈e ↔ L ′′

f 〉

f : 〈L f → E f 〉 f : 〈l f → L f 〉 f : 〈L ′
f → t〉 f : 〈L ′

f → l ′f 〉 f : 〈L ′′
f → l ′f 〉

f : 〈E f → Ff 〉 f : 〈L f ↔ l ′f 〉 f : 〈t → t〉 f : 〈l ′f ↔ ar〉 f : 〈l ′f −→ $ f 〉

f : 〈Ff → $ f 〉 f : 〈l ′f → L ′
f 〉 f : 〈l ′f ↔ $ f 〉 f : 〈$ f → lg〉

f : 〈$ f ↔ D〉 f : 〈L ′
f −→ l ′′f 〉 f : 〈$ f → l̄n〉 f : 〈lg ↔ e〉

f : 〈l ′′f → L ′′′
f 〉 f : 〈ar → e〉 f : 〈l ′f −→ l̄n〉

f : 〈L ′′′
f → L ′′

f 〉 f : 〈l̄n ↔ e〉 f : 〈l̄n → ln〉

f : 〈L ′′
f −→ e〉 f : 〈ln −→ e〉

In the following table we show how a subtract instruction can be simulated by the programs above.
Since C and C cannot apply any of their rules in any step of the following simulation, we omit them
from the table. The multiset of objects in the environment is denoted by [. . .], and for now we assume
that it always contains a sufficient amount of l ′i , l

′′
i objects for any li ∈ H.

First we consider the case when there is at least one object ar in the environment, that is, if the
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simulation starts in a configuration (D, l ′′ ,e,e,e,e; l f ar[. . .]).

configuration of Π programs to be applied
C C C C Env P P P P

. D e e e l f ar[. . .] − f − −

. D l f e e ar[. . .] − f − −

. D L f e e ar[. . .] − f − −

. D l ′f e e L f ar[. . .] f f − −

. L f L ′
f e e Dar[. . .] f f − −

. E f l ′′f e e L ′
f Dar[. . .] f f f −

. Ff L ′′′
f L ′

f e Dar[. . .] f f f −

. $ f L ′′
f l ′f e Dar[. . .] f f f −

. D e ar e $ f L
′′
f [. . .] − − f f

. D e e L ′′
f $ f [. . .] − − − f

. D e e l ′f $ f [. . .] − − − f

. D e e $ f [. . .] − − − f
. D e e lg [. . .] − − − f

. D e e e lg[. . .] − g − −

In 13 steps, from a configuration (D, l ′′ ,e,e,e,e; l f ar[. . .]) we obtain (D, l ′′ ,e,e,e,e; lg[. . .]) where lg
is the label of the instruction which should follow the successful decrease of the value of the nonempty
register r, and the environment contains a multiset of objects l ′i , l

′′
i for li ∈ H.

Now we consider the case when register r, which is the register to be decremented, stores zero, that is,
if the simulation starts in a configuration (D, l ′′ ,e,e,e,e; l f [. . .]) where the environment does not contain
any object ar.

configuration of Π programs to be applied
C C C C Env P P P P

. D e e e l f [. . .] − f − −

. D l f e e [. . .] − f − −

. D L f e e [. . .] − f − −

. D l ′f e e L f [. . .] f f − −

. L f L ′
f e e D[. . .] f f − −

. E f l ′′f e e L ′
f D[. . .] f f f −

. Ff L ′′′
f L ′

f e D[. . .] f f f −

. $ f L ′′
f l ′f e D[. . .] f f − −

. D e l ′f e $ f L
′′
f [. . .] − − f f

. D e $ f L ′′
f [. . .] − − f f

. D e l̄n l ′f [. . .] − − f −

. D e e l ′f l̄n[. . .] − − − f

. D e e l̄n [. . .] − − − f
. D e e ln [. . .] − − − f

. D e e e ln[. . .] − n − −

Similarly to the previous case, in 14 steps we obtain a configuration (D, l ′′ ,e,e,e,e; ln[. . .]) where ln
is the label of the instruction which should follow l f if register r is empty, that is, if the decrease of its
value is not possible.

Consider now what happens if there is an insufficient amount of objects l ′i , l
′′
i for li ∈ H is present

in the environment. Notice that such symbols are needed in step 3 and 5 by cell C. If there is no more
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available (not enough of them were produced in the initial phase by C and C), then the programs f,
f, and f do not allow the halting of the computation.

From these considerations we can see that after the initialization phase, all instructions of the register
machine M can be simulated by the P colony. If the label of the halt instruction, lh is produced, the
computation halts since there is no program for processing the object lh. The reader can immediately see
that Π computes the same set of vectors as M.

4 P colonies with senders and consumers

Now we continue with the investigation of two object P colonies with insertion-deletion programs. It
is not too difficult to see that if we allow a cell to contain both types of programs, then we can simulate
the other types of programs in two steps, thus, it is more interesting to consider P colonies having cells
which contain either insertion or deletion programs, but not both types at the same time. We call these
systems P colonies with senders and consumers. A sender is a cell with only insertion programs, a
consumer is a cell with only deletion programs.

Let us denote by PCOL(i, j,s-c) the class of sets of numbers generated by P colonies with senders
and consumers having at most i ≥  cells with at most j ≥  program each.

Example 2. (a) A P colony with one sender cell can generate the Parikh set of a regular language

L ⊆ T ∗. Let G = (N,T,P,S) be a regular grammar such that L(G) = L.

For generating the Parikh vectors of the words in L, we use, for each S → aB of P, the programs

〈e,out ;e → eS〉, 〈e,out ;S → aB〉 and then 〈x,out ;A → aB〉,x ∈ T for every A → aB in P. Finally, for

every rule of the form A → a we need 〈x,out ;A → aF〉,x ∈ T, 〈a,out ;F → FF〉, where F /∈ T ∪N.

(b) A P colony with one consumer cell can “consume” the Parikh set of a regular language L. To see

this, let M = (Q,T,δ ,q,F) be a deterministic finite automaton such that L(M) = L.

We need the program 〈e, in;ee → q〉, and to every transition δ (qi,a) = q j in M, we introduce

〈a, in;xqi → q j〉,x ∈ T ∪ {e}. If q j ∈ F in δ (qi,a) = q j we have to add the programs 〈a, in;xqi → F〉,x ∈ T,
where F /∈ Q∪T .

Now we show that three cells, one sender and two consumers are sufficient to generate all recursively
enumerable sets of integer vectors.

Theorem 3. PCOL(,∗,s-c) = NRE.

Proof. Consider an m-register machine M = (m,H, l, lh,P), m ≥ . We simulate M by representing
the content of the register i by the number of copies of a specific object ai in the environment. We
construct the P colony Π = (V,e,F,C,C,C) with:

V = {e, l, l ′, l ′′, l ′′′, liv, lv, l̄, ¯̄l | l ∈ H}∪ {ai |  ≤ i ≤ m}∪ {K,T,T,T,T,T},

F = {ai | register i is an output register}, and

Ci = (ee,Pi) for  ≤ i ≤ .

The P colony Π starts its computation in the initial configuration (ee,ee,ee;ε). We initialize the com-
putation by generating the initial label l with a program from P, 〈e,out ;e → ll〉 ∈ P obtaining
(ll,ee,ee;ε).

The simulation of an instruction with label li starts from a configuration (lili,ee,ee;w) where w ∈V ∗,
the multiset of objects in the environment, represents the counter contents of M.

To simulate an ADD instruction, we use the programs of P and P. For each li, l j, lk ∈ H with li being
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the label of an instruction li : (ADD(r), l j, lk), we have the following programs:

P P

i : 〈li,out ; li → arl j〉 i : 〈li, in;ee → T〉
i : 〈li,out ; li → arlk〉 i : 〈e, in; liT → e〉

i : 〈ar,out ; l j → l jl j〉 i : 〈li, in; ¯̄liT → T〉
i : 〈ar,out ; lk → lklk〉

Using these programs, we obtain a sequence of configurations

(lili,ee,ee;w) ⇒ (arl,ee,ee; liw) ⇒ (ll,ee, liT;arw)

where l is the label of the next instruction, that is, we either have (l jl j,ee, liT;arw), or the configuration
(lklk,ee, liT;arw). The contents of cell C, liT, will change in the next step to ee independently of the
several ways of the continuation of the computation, as we shall see later.

The program labeled with i is used if the instruction simulated before li was a SUB instruction (see
below). In this case, the configuration in which the simulation of li starts is (lili,ee, l̄iT;

¯̄liw) and we
need the steps (lili,ee, l̄iT;

¯̄liw) ⇒ (arl,ee, ¯̄liT; liw) ⇒ (ll,ee, liT;arw) and program i to obtain the same
configuration as before.

Now we show how to simulate a SUB instruction. For each l j, lk, ll ∈ H with l j being the label of an
instruction l j : (SUB(r), lk, ll), and for all labels ls ∈ H, we have the following programs.

P P P

j : 〈l j,out ; l j → l ′jl
′
j〉 j : 〈l j, in;ee → e〉 j : 〈l ′j, in;ee → T〉

j : 〈l ′j,out ; l ′j → l ′′j l ′′j 〉 j : 〈ar, in;el j → e〉 j : 〈e, in; l ′jT → T〉

j : 〈l ′′j ,out ; l ′′j → l ′′′j liv
j 〉 j : 〈l ′′j , in;el j → e〉 j : 〈l ′′j , in;eT → T〉

j : 〈l ′′′j ,out ; liv
j → l̄k l̄k〉 j : 〈l ′′′j , in;are → e〉 j,s : 〈l̄s, in; l ′′j T → T〉

j : 〈liv
j ,out ; l ′′′j → l̄l l̄l〉 j : 〈e, in; l ′′′j e → e〉 j,s : 〈l̄s, in;eT → T〉

j : 〈l̄k,out ; l̄k → ¯̄lk ¯̄lk〉 j : 〈liv
j , in;are → K〉 j,s : 〈 ¯̄ls, in; l̄sT → T〉

j : 〈 ¯̄lk,out ; ¯̄lk → lklk〉 j : 〈e, in; liv
j K → K〉 j,s : 〈e, in; ¯̄lsT → e〉

j : 〈l̄l,out ; l̄l → ¯̄ll ¯̄ll〉 j : 〈e, in;eK → K〉

j : 〈 ¯̄ll,out ; ¯̄lk → llll〉 j : 〈l ′′′j , in; l ′′j e → K〉

j : 〈e, in; l ′′′j K → K〉

j : 〈liv
j , in; l ′′j e → e〉

j : 〈e, in; liv
j e → e〉

In the following tables we show how the programs above simulate the execution of the instruction l j :

(SUB(r), lk, ll). To save space, we use the sign “/” to separate the different possible multisets which
might appear in the same row of the table.

First we consider the case when register r is not empty, that is, when there is at least one object
ar present in the environment. We see that starting with a configuration where C contains the objects
l jl j and the environment contains ar, in six steps we obtain a configuration where the object ar is re-
moved from the environment, and C either contains the label of the next instruction lk, or because of the
presence of program j, in P, the computation will never be able to halt.
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configuration of Π programs to be applied
C C C Env P P P

. l jl j ee ? arw
′ j − ?

. l ′jl
′
j ee ? l jarw

′′ j j ?

. l ′′j l ′′j l je ee l ′jarw j j j

. l ′′′j liv
j are l ′jT l ′′j w j/ j − j

. l̄k l̄k/l̄l l̄l are eT (l ′′′j /liv
j )l ′′j w j/ j j/ j j

. ¯̄lk ¯̄lk/ ¯̄ll ¯̄ll l ′′′j e/liv
j K l ′′j T (l̄k/l̄l)w j/ j j/ j j,k/ j,l

. lklk/llll ee/eK (l̄k/l̄l)T ( ¯̄lk/ ¯̄ll)w k/l −/ j j,k/ j,l

. l ′kl ′k/l ′l l ′l ee/eK ( ¯̄lk/ ¯̄ll)T (lk/ll)w k/l k/ j j,k/ j,l

. l ′′k l ′′k /l ′′l l ′′l (lk/ll)e/eK ee (l ′k/l ′l )w k/l k/ j j

Now we show the simulation of the l j : (SUB(r), lk, ll) instruction when there is no object ar is present
in the environment, that is, when register r is empty. In this case, similarly to the previous one, we either
get the objects lklk in the cell C, or the computation will not be able to halt.

configuration of Π rules to be applied
C C C Env P P P

. l jl j ee ? w j − ?

. l ′jl
′
j ee ? l jw j j ?

. l ′′j l ′′j l je ee l ′jw j − j

. l ′′′j liv
j l je l ′jT l ′′j w j/ j j j

. l̄k l̄k/l̄l l̄l l ′′j e eT (l ′′′j /liv
j )w j/ j j/ j −

. ¯̄lk ¯̄lk/ ¯̄ll ¯̄ll l ′′′j K/liv
j e eT (l̄k/l̄l)w j/ j j/ j j,k/ j,l

. lklk/llll eK/ee (l̄k/l̄l)T ( ¯̄lk/ ¯̄ll)w k/l j/− j,k/ j,l

. l ′kl ′k/l ′l l ′l eK/ee ( ¯̄lk/ ¯̄ll)T (lk/ll)w k/l j/k j,k/ j,l

. l ′′k l ′′k /l ′′l l ′′l eK/(lk/ll)e ee (l ′k/l ′l )w k/l j/k j

The rules to be applied and the objects contained by the cell C in row 1. and row 2. of the tables
above depend on the instruction li which was simulated before l j. If li is an ADD instruction, then we
have liT in the first row, and applying the program i from P we get ee in the second row, where no
program is applied until the next step. Also, w = w ′ = w ′′ in this case.

If li is a SUB instruction, then (as we can also see from row 7. and row 8.) the contents of the cell C

is l̄ jT and ¯̄l jT in the first two rows where the programs i, j and i, j are applied. In this case w ′′ = ¯̄l jw,
and w ′ = w.

As we have seen above, the P colony successfully simulates each instruction of M and since there
is no program to process lh, the label of the halt instruction, it also halts when the computation of M is
finished. It is also easy to see that M and Π compute the same set of vectors of non-negative integers.

5 Conclusion

We have examined extremely simplified variants of P colonies: P colonies of capacity one with no
checking rules, and P colonies with capacity two, but only with senders and consumers. We have shown
that even these very simple variants are able to simulate arbitrary register machines, that is, to compute
all Turing computable sets of vectors.
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[7] Gh. Păun. Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.

Lucie Ciencialová has received her PhD. in 2008 and she works as an assistant professor at the
Institute of Computer Science, Silesian University in Opava. Her interests include theoretical informatics
and natural computing.

Erzsébet Csuhaj-Varjú D.Sc, dr. Habil., is head of the Theoretical Computer Science Research
Group at the Computer and Automaton Research Institute of the Hungarian Academy of Sciences. She
has also been affiliated with the Department of Algorithms and Applications of the Eötvös Loránd
University, Budapest, Hungary, as science advisor. Her main research interests are formal languages,
distributed systems, and nature-motivated computing. In these areas she has more than 150 papers, a
monograph, and eleven edited volumes published in international publication forums.

Alica Kelemenová is an associated professor at the Institute of Computer Science, Silesian Uni-
versity in Opava, Czech republic and at the Department of Computer Science Catholic University in
Ružomberok, Slovakia. Her main research interest is theoretical computer science, especially formal
language theory and biologically motivated generative devices like L systems and P systems.

György Vaszil, PhD. is a senior research fellow at the Theoretical Computer Science Research Group
of the Computer and Automation Research Institute of the Hungarian Academy of Sciences. His research
interests are formal language and automata theory, nature motivated computational models.


