
Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844
Vol. V (2010), No. 3, pp. 268-279

Adding Lifetime to Objects and Membranes in P Systems

B. Aman, G. Ciobanu

Bogdan Aman, Gabriel Ciobanu
Romanian Academy, Institute of Computer Science
and A.I.Cuza University of Iaşi, Romania
E-mail: baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract: Membrane systems are computing devices inspired from the cell func-
tioning. A feature of membrane systems is the fact that objects and membranes are
persistent. In fact, this is not quite true in the real world: cells and intracellular pro-
teins have a well-defined lifetime. Inspired from these biological facts, we define a
model of membrane systems in which each membrane and each object has attached
a lifetime. Some results show that this model is at least as powerful as the usual one.

1 Introduction to Membrane Computing

Membrane systems are essentially parallel and nondeterministic computing models inspired by the
compartments of eukaryotic cells and their biochemical reactions. The structure of the cell is represented
by a set of hierarchically embedded regions, each one delimited by a surrounding boundary (called
membrane), and all of them contained inside an external special membrane called skin. The molecular
species (ions, proteins, etc.) floating inside cellular compartments are represented by multisets of objects
described by means of symbols or strings over a given alphabet. The objects can be modified or commu-
nicated between adjacent compartments. Chemical reactions are represented by evolution rules which
operate on the objects, as well as on the compartmentalized structure (by dissolving, dividing, creating,
or moving membranes).

A membrane system can perform computations in the following way: starting from an initial con-
figuration which is defined by the multiset of objects initially placed inside the membranes, the system
evolves by applying the evolution rules of each membrane in a nondeterministic and maximally parallel
manner. A rule is applicable when all the objects which appear in its left hand side are available in the
region where the rule is placed. The maximally parallel way of using the rules means that in each step, in
each region of the system, a multiset of rules is chosen which is maximal and applicable, namely a multi-
set of rules such that no further rule can be added to the multiset. A halting configuration is reached when
no rule is applicable. The result is represented by the number of objects from a specified membrane.

Several variants of membrane systems are inspired by different aspects of living cells (symport and
antiport-based communication through membranes, catalytic objects, membrane charge, etc.). Their
computing power and efficiency have been investigated using the approaches of formal languages, gram-
mars, register machines and complexity theory. Membrane systems (also called P systems) are presented
together with many variants and examples in [21]. Several applications of these systems are presented
in [12]. An updated bibliography can be found at the P systems web page [22].

For an alphabet V = {a, . . . ,an}, we denote by V ∗ the set of all strings over V ; λ denotes the empty
string and V + = V ∗\{λ }. A multiset over V is represented by a string over V (together with all its
permutations), and each string precisely identifies a multiset.

A language (over V) is any subset of V ∗; a language is denoted usually by L. Given a language L, we
define the set Ps(L) = {ΨV (x) | x ∈ L} called the Parikh image of L. If FL is a family of languages, then
PsFL denotes the family of Parikh images of languages in FL.

Definition 1. A P system of degree n≥ is a construct
Π = (V,T,C,H,µ,w, . . . ,wn,(R,ρ), . . . ,(Rn,ρn), iO)

where:

Copyright c© 2006-2010 by CCC Publications

Adding Lifetime to Objects and Membranes in P Systems 269

1. V is an alphabet of symbols; its elements are called objects;

2. T ⊆V is the terminal (or output) alphabet;

3. C ⊆V , C∩T = /0 is the alphabet of catalysts;

4. H is a set of membrane labels;

5. µ ⊆ H ×H is a tree that describes the membrane structure, such that (i, j) ∈ µ denotes that the
membrane labelled by j is contained in the membrane labelled by i;

6. wi ∈V ∗, for each ≤ i≤ n, is a multiset of objects initially assigned to membrane i;

7. Ri, for all ≤ i ≤ n, is a finite set of evolution rules that is associated with membrane i; an
evolution rule is a multiset rewriting rule of the form u → v, with u ∈V +, either v = v ′ or v = v ′δ ,
v ′ ∈ ((V × {here,out})∪ (V × {in j | ≤ j ≤ n}))∗, and δ a special symbol not appearing in V ;

8. ρi, for all ≤ i≤ n, is a partial order relationship defined over the rules in Ri specifying a priority
relation between these rules;

9. iO is the label of an elementary membrane of µ that identifies the output region.

Therefore, a P systems of degree n ≥ consists of a membrane structure µ containing n ≥ mem-
branes where each membrane i gets assigned a finite multiset of objects wi and a finite set of evolution
rules Ri. An evolution rule is a multiset rewriting rule which consumes a multiset of objects from V and
produces a multiset of pairs (a, t), with a ∈ V and t ∈ {here,out}∪ {in j | ≤ j ≤ n} a target specifying
where to move the objects after the application of the rule. As well as this, an evolution rule can produce
the special object δ to specify that, after the application of the rule, the membrane containing the special
object δ has to be dissolved. After dissolving a membrane, all objects and membranes previously present
in it become elements of the immediately upper membrane, while the rules of the dissolved membrane
are removed.

We use P systems without lifetimes instead of P systems in order to make a clear distinction from the
P systems with lifetimes which are introduced in what follows.

2 P Systems with Lifetimes

The evolution of complicated real systems frequently involves various interdependence among com-
ponents. Some mathematical models of such systems combine both discrete and continuous evolutions
on multiple time scales with many orders of magnitude. For example, in nature the molecular operations
of a living cell can be thought of as such a dynamical system. The molecular operations happen on time
scales ranging from − to seconds, and proceed in ways which are dependent on populations of
molecules ranging in size from as few as approximately to approximately as many as . Molecular
biologists have used formalisms developed in computer science (e.g. hybrid Petri nets) to get simplified
models of portions of these transcription and gene regulation processes. According to molecular cell
biology [18]:

(i) “the life span of intracellular proteins varies from as short as a few minutes for mitotic cycles,
which help regulate passage through mitosis, to as long as the age of an organism for proteins in
the lens of the eye.”

(ii) “Most cells in multicellular organisms . . . carry out a specific set of functions over periods of days
to months or even the lifetime of the organism (nerve cells, for example).”

270 B. Aman, G. Ciobanu

It is obvious that lifetimes play an important role in the biological evolution. We use an example
from the immune system.

Example 1 ([18]). T-cell precursors arriving in the thymus from the bone marrow spend up to a week
differentiating there before they enter a phase of intense proliferation. In a young adult mouse the thymus
contains around to × thymocytes. About × new cells are generated each day; however,
only about to × (roughly − %) of these will leave the thymus each day as mature T cells.
Despite the disparity between the numbers of T cells generated daily in the thymus and the number
leaving, the thymus does not continue to grow in size or cell number. This is because approximately
% of the thymocytes which develop in the thymus also die within the thymus.

Inspired from these biological facts, we add lifetimes to objects and membranes. We use a global
clock to simulate the passage of time in a membrane system.

Definition 2. A P system with lifetimes of degree n≥ is a construct
Π = (Vt ,T,C,Ht ,µt ,w, . . . ,wn,(R,ρ), . . . ,(Rn,ρn), iO)

where:

1. Vt = V × (N∪∞) is a set of pairs of the form (a, ta), where a ∈V is an object (as in Definition 1)
and ta ∈ (N∪∞) is the lifetime of the object a;

2. T , C are as in Definition 1;

3. Ht = H× (N∪∞) is a set of set of pairs of the form (h, th), where a ∈ H is a membrane label (as
in Definition 1) and th ∈ (N∪∞) is the lifetime of the membrane h;

4. µt ⊆ Ht ×Ht is a tree that describes the membrane structure, such that ((i, ti),(j, t j)) ∈ µt denotes
that the membrane labelled by j, with the lifetime jt , is contained in the membrane labelled by i,
with the lifetime it ;

5. wi ⊆ (Vt)
∗ is a multiset of pairs from Vt assigned initially to membrane i;

6. Ri, for all ≤ i ≤ n, is a finite set of evolution rules that is associated with membrane i of the
following forms:

(a) u → v, with u∈V +
t , either v = v ′ or v = v ′δ , v ′ ∈ ((Vt×{here,out})∪(Vt×{in j | ≤ j≤ n}))∗;

δ is a special symbol not appearing in V ;

(b) (a, t) → (a, t −), for all a ∈V and t >

If an object a is not involved in a rule of type (a) and it has a lifetime t > , then its lifetime
is decreased.

(c) (a,) → λ , for all a ∈V
If an object a has the lifetime then the object is replaced with the empty multiset λ , thus
simulating the degradation of proteins.

(d) [](i,t) → [](i,t−), for all ≤ i≤ n
In each evolution step the lifetime of each membrane of the membrane structure is decreased
with one.

(e) [](i,) → [δ](i,), for all ≤ i≤ n
If the lifetime of a membrane reaches the membrane is dissolved.

7. ρi, for all ≤ i≤ n, is a partial order relationship defined over the rules in Ri specifying a priority
relation between these rules;

Adding Lifetime to Objects and Membranes in P Systems 271

8. iO is the label of an elementary membrane of µt that identifies the output region.

These rules are applied according to the following principles:

1. All the rules are applied in parallel: in a step, the rules are applied to all objects and to all mem-
branes; an object can be used only by one rule, non-deterministically chosen (there is no priority
among rules), but any object which can evolve by a rule of any form, should evolve.

2. If a membrane is dissolved, then all the objects in its region are left free in the region immediately
above it. Because all rules are associated with membranes, the rules of a dissolved membrane are
no longer available at the next step.

3. The skin membrane has the lifetime equal to ∞, so it can never be dissolved.

4. If a membrane or object has the lifetime equal to ∞, when applying the rules simulating the
passage of time we use the equality ∞− = ∞.

The computation stops when the membrane system contains only objects and membranes that have
the lifetime equal to ∞.

Example 2. The concentration of a molecule can be adjusted quickly only if the lifetime of the molecule
is short [1]. It is natural to think of signaling systems in terms of the changes produced when a signal is
delivered. But it is just as important to consider what happens when a signal is withdrawn. During devel-
opment transient signals often produce lasting effects: they can trigger a change that persists indefinitely,
through cell memory mechanisms. But in most cases, especially in adult tissues, when a signal ceases,
the response fades. The signal acts on a system of molecules that is undergoing continual turnover, and
when the signal is shut off, the replacement of the old molecules by new ones wipes out the traces of its
action. It follows that the speed of reaction to shutting off the signal depends on the rate of turnover of
the molecules that the signal affects. It may not be as obvious that this turnover rate also determines the
promptness of the response when the signal is turned on.

The Figure 1 shows the predicted relative rates of change in the intracellular concentrations of
molecules with differing turnover times when their rates of synthesis are increased suddenly by a factor
of 10. The concentrations of those molecules that are normally being rapidly degraded in the cell (red
lines) change quickly, whereas the concentrations of those that are normally being slowly degraded (
green lines) change proportionally more slowly. The numbers (in blue) on the right-hand side are the
half-lives assumed for each of the different molecules.

Consider, for example, two intracellular molecules X and Y , both of which are normally maintained
at a concentration of molecules per cell. Molecule X has a slow turnover rate: it is synthesized and
degraded at a rate of 10 molecules per second, so that each molecule has an average lifetime in the cell of
 seconds. Molecule Y turns over times as quickly: it is synthesized and degraded at a rate of
molecules per second, with each molecule having an average lifetime of seconds. If a signal acting
on the cell boosts the rates of synthesis of both X and Y tenfold without any change in the molecular
lifetimes, at the end of second the concentration of Y will have increased by nearly molecules per
cell (× −) while the concentration of X will have increased by only molecules per cell.
In fact, after its synthesis rate has been either increased or decreased abruptly, the time required for a
molecule to shift halfway from its old to its new equilibrium concentration is equal to its normal half-life
- that is, it is equal to the time that would be required for its concentration to fall by half if all synthesis
were stopped (Figure 1).

The same principles apply to proteins as well as to small molecules and to molecules in the extracel-
lular space as well as to those in cells. Many intracellular proteins that are rapidly degraded have short
half-lives, some surviving less than minutes; in most cases these are proteins with key regulatory roles,

272 B. Aman, G. Ciobanu

Figure 1: The importance of rapid turnover [1]

whose concentrations are rapidly regulated in the cell by changes in their rates of synthesis. Likewise,
any covalent modifications of proteins that occur as part of a rapid signaling process - most commonly
the addition of a phosphate group to an amino acid side chain - must be continuously removed at a rapid
rate to make such signaling possible.

Example 3. The scenario presented in Example 2 can be modelled using P systems with lifetimes.
Consider the membrane configuration

[(Xs,∞)(X ,) . . .(X ,)(Ys,∞)(Y,) . . .(Y,)](cell,∞)

describing the structure of the cell when in equilibrium. Xs and Ys represent the molecules from which
X and Y are synthesized, while (X , t) and (Y, t) represent the fact that there are molecules X
which have the lifetime equal to t and molecules Y which have the lifetime equal to t. The rules
describing the evolution of this system are:

1. (X ,) → λ

A molecule X which is at the end of its lifetime is degraded.

2. (Y,) → λ

A molecule Y which is at the end of its lifetime is degraded.

3. (Xs,∞) → (Xs,∞)(X ,)

Each second new X molecules are synthesized.

4. (Ys,∞) → (Ys,∞)(Y,)

Each second new Y molecules are synthesized.

5. (X , t) → (X , t −), t >

The lifetime of a molecule X which is not involved in any reaction is decreased.

6. (Y, t) → (Y, t −), t >

The lifetime of a molecule Y which is not involved in any reaction is decreased.

Adding Lifetime to Objects and Membranes in P Systems 273

After applying rules in a maximal manner after each second we reach the initial configuration
[(Xs,∞)(X ,) . . .(X ,)(Ys,∞)(Y,) . . .(Y,)](cell,∞).

If two signals enter the cell (we model the signals by the pairs (cX , tc) and (cY , tc)) then we consider
two new rules:

7. (cX , tc)(Xs,∞) → (cX , tc −)(Xs,∞)(X ,)

If an object cX is present in the cell then the rate of synthesis of X is increases times.

8. (cY , tc)(Ys,∞) → (cY , tc −)(Ys,∞)(Y,)

If an object cY is present in the cell then the rate of synthesis of Y is increases times.

When adding this rules we also add some priorities between rules, namely > and > . After
one second the concentration of Y increases by nearly molecules per cell (×−) while the
concentration of X increases by only molecules per cell.

Figure 2: A P system with lifetimes

In Figure 2 an example of a P system with lifetimes is shown. Graphically, the boxes represent
the membranes and their nesting reflects the hierarchy. Membrane represent the skin membrane. Both
membranes have a lifetime equal to ∞ meaning that no dissolving rule is not necessary. Inside membrane
 we have the initial multiset of pairs, the evolution rules and some priorities between them. In the
evolution rule we omit the subscript here for objects, in the products, that remain in the same membrane.

The defined P system with lifetimes computes the least common multiple of n and n, namely
lcm(n,n). The idea is to put a pair (a,n−) and a pair (b,n−) at the beginning of the computation,
and to produce a pair (c,∞) (which is send in membrane) each time the lifetime of the object a
is decreased. The first time the objects a and b appear together with the lifetime is exactly after
lcm(n,n) time units. At this moment in membrane are lcm(n,n) objects c, which represent the
output of the system.

3 Systems with and without Lifetimes

The following results describe certain relationships between P systems with lifetimes and P systems
without lifetimes, and between similar P systems with lifetimes.

Proposition 4. For every P system without lifetimes there exists a P system with lifetimes providing the
same output by performing an equal number of steps.

274 B. Aman, G. Ciobanu

Proof: [Proof (Sketch)] It is easy to state that the class of P systems with lifetimes includes the class of
P systems without lifetimes, since we can assign ∞ to all lifetimes appearing in the membrane structure
and evolution rules. 2

A somehow surprising result is that P systems with lifetimes can be simulated by P systems without
lifetimes.

Proposition 5. For every P system with lifetimes there exists a P system without lifetimes providing the
same output by performing an equal number of steps.

Proof: We use the notation rhs(r) to denote the multisets of pairs which appear in the right hand side of
a rule r. This notation is extended naturally to multisets of rules: given a multiset of rules R, the right
hand side of the multiset rhs(R) is obtained by adding the right hand sides of the rules in the multiset,
considered with their multiplicities.

Each object a∈V from a P system with lifetimes has a maximum lifetime (we denote it by li f etime(a)),
which can be calculated as follows:

li f etime(a) = max({t | (a, t) ∈ wi,≤ i≤ n}∪{t | (a, t)∈rhs(Ri),≤ i≤ n})

In what follows we present the steps which are required to build a P system without lifetimes starting
from a P system with lifetimes, such that both provide the same output.

1. A membrane structure from a P system with lifetimes

is translated into a membrane structure of a P system without lifetimes in the following way

The lifetimes of elements from a P system with lifetimes are simulated using the membranes , . . .,
k in the corresponding P system without lifetimes as we show at the next steps of the translation.
The value of k is the maximum from the finite lifetime of objects and surrounding membrane mem,
namely k = max({li f etime(a) | a ∈ V, li f etime(a) 6= ∞}∪ {tmem | tmem 6= ∞}). If an object or the
surrounding membrane has the lifetime equal to ∞ in the P system with lifetimes then we do not
need to count the passage of time, namely to use the membranes , . . ., k in the P system without
lifetimes for the corresponding object or membrane. The object mem placed inside the membrane
labelled is used to simulate the passage of time for the membrane. The initial multiset of objects
wt from membrane mem in the P system with lifetimes, in translated into the multiset w which is
added into membrane inside membrane mem in the corresponding P system without lifetimes
since all objects from the initial multiset are just starting their life.

2. The rules (a, t) → (a, t −), for all a ∈ V , t > and t 6= ∞ from the P system with lifetimes can
be simulated in the P system without lifetimes using the following rules:

(a) a → (aoai,out) placed inside membrane i, for all ≤ i≤ li f etime(a)−

The object oai is used to keep track of the units of time that have past from the lifetime of the
object a

Adding Lifetime to Objects and Membranes in P Systems 275

(b) aoa j → (a, in j+), placed inside membrane mem, for all ≤ j ≤ li f etime(a)− and a ∈V
This rules together with the previous ones simulate the passage of a unit of time from the
lifetime of object a in the P system with lifetimes, by moving object a from a membrane j to
a membrane j + for ≤ j ≤ li f etime(a)− in the P system without lifetimes.

3. The rules (a,) → λ , for all a ∈ V from the P system with lifetimes can be simulated in the P
system without lifetimes using the following rules:

(a) a → λ placed inside membrane li f etime(a)

If the object a reaches the membrane labelled with li f etime(a) in the P system without
lifetimes, it means that the lifetime of object a is in the corresponding P system with
lifetimes, so it is replaced by λ .

4. The rules ut → vt from the P system with lifetimes can be simulated in the P system without
lifetimes using the following rules:

(a) uou j → (v, in)

The multiset ou j contains objects of the form oa j, where a ∈ u and ≤ j ≤ li f etime(a)−.
When replacing the multiset u with the multiset v, we also remove the objects oa j that keep
track of the life of the objects appearing in u since we do not need them anymore. We send
the newly obtained multiset v in membrane since all objects from this multiset are just
starting their life.

5. The rules [](mem,t) → [](mem,t−), for all t > and t 6= ∞ from the P system with lifetimes can be
simulated in the P system without lifetimes using the following rules:

(a) mem → (mem omem i,out) placed inside membrane i, for all ≤ i≤ li f etime(mem)−

The object omem i is used to keep track of the units of time that have past from the lifetime of
the membrane mem;

(b) mem omem j → (mem, in j+), placed inside membrane mem, for all ≤ j≤ li f etime(mem)−

This rules together with the previous ones simulate the passage of a unit of time from the
lifetime of membrane mem in the P system with lifetimes, by moving object mem from a
membrane j to a membrane j + for ≤ j ≤ li f etime(mem) − in the P system without
lifetimes.

6. A rule [](mem,) → [δ](mem,) from the P system with lifetimes can be simulated in the P system
without lifetimes using the following rules:

(a) mem → (oδ ,out) placed inside membrane li f etime(mem)−

If the object mem reaches the membrane labelled with li f etime(mem) − in the P system
without lifetimes, it means that the lifetime of membrane mem is in the corresponding P
system with lifetimes, so it needs to be dissolved.

(b) oδ → δ (δ , in) . . .(δ , ink)

Once this object is created by the previous rule, an object δ is created inside membrane
mem and inside each membrane j, ≤ j ≤ k, is send an object δ . This means that all these
membranes are dissolved, all the rules are deleted, and all objects are send in the parent
membrane. The dissolving of the membranes take place after applying all other possible
rules. At the moment of the dissolution the only existing objects are found in membrane
mem. For each object a there exists an object oa j that keeps track of the life of a, thus being
able to continue the increment the life of a in the parent membrane.

276 B. Aman, G. Ciobanu

The output membrane from the P system with lifetimes, is translated in the output membrane from
the P system without lifetimes. After performing the same number of evolution steps in both systems,
the output membranes contain the same multisets of objects. 2

We are now able to prove the computational power of P systems with lifetimes. We denote by
NtPm(coo, tar) the family of sets of natural numbers generated by P systems with lifetimes of degree at
most m≥ , using cooperative rules, and communication of objects through membranes. We also denote
byNRE the family of all sets of natural numbers generated by arbitrary grammars.

Proposition 6. NtPm(coo, tar) =NRE, for all m≥ .

Proof: [Proof (Sketch)] Since the outcome of each P system with lifetimes can be obtained by an P
system without lifetimes, we cannot get more than the computability power of P systems. Therefore,
according to Theorem 3.3.3 from [21], we have that the familyNtPmof sets of natural numbers generated
by P systems with lifetimes is the same as the family NRE of sets of natural number generated by
arbitrary grammars. 2

Remark 3.1. Consider the membrane system Π = [[](,∞)(a,)(a,)](,∞) with the set of rules R =

{(a,) → (a,)((c,∞), in)
; (a,) → (a,); (a,) → λ }. Since the membranes have the lifetime ∞ it is

not necessary to consider rules for decreasing lifetimes to membranes.
If we rewrite this as Π ′ = [[](,∞)(a,)(a,)(d, t)](,∞), with R = {(a,) → (a,)((c,∞), in)

;
(a,) → (a,); (a,) → λ ;(d, i) → (d, i−); (d,) → λ } we have that after t units of time the membrane
system Π has the same evolution as the membrane system Π ′.

In automata theory the problem of optimizing a finite-state machine, meaning to find the machine
with the minimum number of states that performs the same function, was addressed by the theorem of
Myhill and Nerode; a fast algorithm doing this is the Hopcroft minimization algorithm [16].

Using a similar approach we want to optimize a given P system with lifetimes. This can be realized
with the passage of time, namely all objects and membranes which are not used in rewriting rules and
have a finite lifetime are eliminated.

Proposition 7. Let Π and Π ′ be two P systems with lifetimes such that:

1. Π = (Vt ,T,C,Ht ,µt ,w, . . . ,wn,(R,ρ), . . . ,(Rn,ρn), iO)

2. Π ′ = (Vt ,T,C,Ht ,µt ,w ′
, . . . ,w

′
n,(R,ρ),(R ′,ρ ′

), . . . ,(R
′
n,ρ ′

n), i
′
O)

3. i ′O = iO

The output membrane is the same for the two membrane systems.

4. wi ⊆ wi, for all ≤ i≤ n

The initial multiset from membrane i of Π ′ contains the same objects as the initial multiset from
membrane i of Π and some other objects together with their initial lifetimes.

5. R ′i = Ri∪ {(a, t) → (a, t −),(a,) → λ | a ∈ w ′
i\wi}

The set of rules R ′i contains all the rules of Ri and some additional rules to simulate the passage of
time for all the objects appearing in w ′

i\wi.

6. ρ ′
i = ρi, for all ≤ i≤ n

The priority orders are the same for the two membrane systems.

Then the P systems with lifetimes Π and Π ′ have the same membrane structure and evolution after
max{t | (a, t) ∈ w ′

i\wi,≤ i≤ n} units of time.

Adding Lifetime to Objects and Membranes in P Systems 277

Proof: [Proof (Sketch)] After max{t | (a, t) ∈ w ′
i\wi,≤ i ≤ n} units of time all objects which appeared

in wi\w ′
i in the description of the membrane system Π ′ are consumed. In this case we have that the

contents of the membranes of Π is the same as the contents of the membranes of Π ′, and the applicable
rules for the two membrane systems are only the rules of Ri, ≤ i≤ n. 2

4 Related Work and Conclusion

We introduce a new class of P Systems, namely the P Systems with lifetimes. Lifetimes are assigned
to each membrane and to each object. This new feature is inspired from biology where cells and intra-
cellular proteins have a well defined lifetime. In order to simulate the passage of time, we use rules of
the form (a, t) → (a, t −) for objects, and [](i,t) → [](i,t−) for membranes. If the lifetime of an object
reaches then the object is consumed by applying a rule of the form (a,) → λ , while if the lifetime
of a membrane i reaches then the membrane is marked for dissolution by applying a rule of the form
[](i,) → [δ](i,). After dissolving a membrane, all objects and membranes previously contained in it
become elements of the immediately upper membrane.

We do not obtain a more powerful formalism by adding lifetimes to objects and to membranes into
a P system. According to Proposition 4, Proposition 5 and Proposition 6, P systems with lifetimes and
P systems without lifetimes have the same computational power. However the P systems with lifetimes
are able to describe more naturally some biological phenomena involving timing, as in Example 3.

A similar idea appears in the framework of spiking P systems: considering a duration of life for
spikes, but not for cells [15]. If a spike is not used in a number of steps larger than its lifetime, then it is
removed.

There are also some papers using time in the context of membrane computing in a different manner
than in this paper. In [8] a timed P system is introduced by associating to each rule a natural number
representing the time of its execution. Then a P system which always produces the same result, inde-
pendently from the execution times of the rules, is called a time-independent P systems. The notion of
time-independent P systems tries to capture the class of systems which are robust against the environ-
ment influences over the execution time of the rules of the system. Other types of time-free systems are
considered in [7, 9].

Time can also be used to “control” the computation, for instance by appropriate changes in the execu-
tion times of the rules during a computation, and this possibility has been considered in [11]. Moreover,
timed P automata have been proposed and investigated in [5], where ideas from timed automata have
been incorporated into timed P systems.

Frequency P systems has been introduced and investigated in [19]. In frequency P systems each
membrane is clocked independently from the others, and each membrane operates at a certain frequency
which could change during the execution. Dynamics of such systems have been investigated.

If one supposes the existence of two scales of time (an external time of the user, and an internal
time of the device), then it is possible to implement accelerated computing devices which can have more
computational power than Turing machines. This approach has been used to construct accelerated P
systems where acceleration is obtained by either decreasing the size of the reactors or by speeding-up
the communication channels [6].

In [10, 17] the time of occurrence of certain events is used to compute numbers. If specific events
(such as the use of certain rules, the entering/exit of certain objects into/from the system) can be freely
chosen, then it is easy to obtain computational completeness results. However, if the length (number
of steps) are considered as result of the computation, non-universal systems can be obtained. Time is
considered in [17,20] as the result of the computation by using special “observable” configurations taken
in regular sets (with the time elapsed between such configurations considered as output).

The authors of the current paper have also considered time to “control” the computation in two
other formalisms: mobile ambients [2–4] and distributed π-calculus [13, 14]. Timers define timeouts for

278 B. Aman, G. Ciobanu

various resources, making them available only for a determined period of time. The passage of time is
given by a discrete global time progress function.

Acknowledgments

This work was partially supported by CNCSIS research grants IDEI 402/2007 and CNMP PARTENE-
RIATE D1/1052/2007.

Bibliography

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell -
Fifth Edition. Garland Science, Taylor & Francis Group, 2008.

[2] B. Aman, G.Ciobanu. Timers and Proximities for Mobile Ambients. Lecture Notes in Computer
Science, vol.4649, 33–43, 2007.

[3] B. Aman, G.Ciobanu. Mobile Ambients with Timers and Types. Lecture Notes in Computer
Science, vol.4711, 50–63, 2007.

[4] B. Aman, G.Ciobanu. Timed Mobile Ambients for Network Protocols. Lecture Notes in Computer
Science, vol.5048, 234–250, 2008.

[5] R. Barbuti, A. Maggiolo-Schettini, P. Milazzo, L. Tesei. Timed P Automata. Electronic Notes in
Theoretical Computer Science, vol.227, 21–36, 2009.

[6] C.S. Calude, Gh. Păun. Bio-Steps Beyond Turing. Biosystems, vol.77, 175–194, 2004.

[7] M. Cavaliere, V. Deufemia. Further Results on Time-Free P Systems. International Journal of
Foundations of Computer Science, vol.17, 69–89, 2006.

[8] M. Cavaliere, D. Sburlan. Time-Independent P Systems. Lecture Notes in Computer Science,
vol.3365, 239–258, 2005.

[9] M. Cavaliere, D. Sburlan. Time and Synchronization in Membrane Systems. Fundamenta Infor-
maticae, vol.64, 65–77, 2005.

[10] M. Cavaliere, R. Freund, A.Leitsch, Gh. Păun. Event-Related Outputs of Computations in P Sys-
tems. Journal of Automata, Languages and Combinatorics, vol.11, 263–278, 2006.

[11] M. Cavaliere, C. Zandron. Time-Driven Computations in P Systems. Proceedings of Fourth Brain-
storming Week on Membrane Computing, 133–143, 2006.

[12] G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.). Applications of Membrane Computing, Springer,
Natural Computing Series, 2006.

[13] G. Ciobanu, C. Prisacariu. Timers for Distributed Systems. Electronic Notes in Theoretical Com-
puter Science, vol.164(3), 81–99, 2006.

[14] G. Ciobanu, C. Prisacariu. Coordination by Timers for Channel-Based Anonymous Communica-
tions. Electronic Notes in Theoretical Computer Science, vol.175(2), 3–17, 2007.

[15] R. Freund, M. Ionescu, M. Oswald. Extended spiking neural P systems with decaying spikes and/or
total spiking. International Journal of Foundations of Computer Science, vol.19, 1223–1234, 2008.

[16] J. E. Hopcroft. An nlogn Algorithm for Minimizing the States in a Finite Automaton. The Theory
of Machines and Computations, Academic Press, 189–196, 1971.

[17] O.H. Ibarra, A. Păun. Computing Time in Computing with Cells. Lecture Notes in Computer
Science, vol.3892, 112–128, 2006.

Adding Lifetime to Objects and Membranes in P Systems 279

[18] H. Lodish, A. Berk, P. Matsudaira, C. Kaiser, M. Krieger, M. Scott, L. Zipursky, J. Darnell. Molec-
ular Cell Biology - Sixth Edition. Freeman, 2008.

[19] D. Molteni, C. Ferretti, G. Mauri. Frequency Membrane Systems. Computing and Informatics,
vol.27(3), 467–479, 2008.

[20] H. Nagda, A. Păun, A. Rodríguez-Patón. P Systems with Symport/Antiport and Time. Lecture
Notes in Computer Science, vol.4361, 463–476, 2006.

[21] Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.

[22] Web page of the P systems: http://ppage.psystems.eu.

